
GT-VMT 2006

Towards a Notion of Transaction
in Graph Rewriting 1

P. Baldana, A. Corradinib, F.L. Dottic, L. Fossb,d,2

F. Gadduccib, L. Ribeirod

a Università Ca’ Foscari di Venezia, Italy

b Università di Pisa, Italy
c Pontif́ıcia Universidade Católica do Rio Grande do Sul, Brasil

d Universidade Federal do Rio Grande do Sul, Brasil

Abstract

We define transactional graph transformation systems (t-gtss), a mild extension of the ordinary framework
for the double-pushout approach to graph transformation, which allows to model transactional activities.
Generalising the work on zero-safe nets, the new graphical formalism is based on a typing discipline which
induces a distinction between stable and unstable items. A transaction is then a suitably defined minimal
computation which starts and ends in stable states. After providing the basics of t-gtss, we illustrate the
expected results, needed to bring the theory to full maturity, and some possible future developments.

Keywords: Graph transformations, zero-safe nets, transactions.

1 Introduction

Graphs and graph transformations represent the core of most visual languages [2].

In fact, graphs can be naturally used to provide a structured representation of the

states of a system, which highlights its subcomponents and their logical or physical

interconnections. Then, the events occurring in the system, which are responsible

for the evolution from one state into another, can be modelled as the application

of graph transformation rules. Such a representation is not only precise enough to

allow the formal analysis of the system under scrutiny, but it is also amenable of an

intuitive, visual representation, which can be easily understood also by a non-expert

audience.

A graph transformation system (gts) consists of a set of rewriting rules, also

called graph productions [14]. In their basic formulation, gtss do not provide

1 Research partially supported by the CNPq-CNR Project IQ-Mobile II, the EC RTN 2-2001-00346
SegraVis, the EU IST-2004-16004 SEnSOria and the MIUR Project ART.
2 Supported by CAPES and CNPq.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

mechanisms for synchronising or structuring computations, even if, since the left-

hand side of productions can be arbitrarily large, a kind of synchronisation among

items in the state (graph items) can be expressed.

Along the years several enrichments of the basic framework have been proposed,

extending gtss with mechanisms for expressing synchronisation between produc-

tions as well as for tackling modularity and refinement issues, which are features

deemed necessary for a high-level specification formalism.

Instead, to our knowledge, scarce attention has been devoted to the idea of

extending gtss in order to allow the specification of transactional activities. Ab-

stractly, a transaction is an activity, involving the execution of a group of events,

which can either bring the system to a successful state or fail. In the last case the

partial execution of the transaction is discarded and has no effect on the system. In

concrete implementations this is achieved with a roll-back mechanism which restores

the starting state when a failure is detected.

In this paper we face, from a foundational perspective, the problem of equip-

ping graph transformation with mechanisms for modelling transactions. More pre-

cisely, we propose a mild extension to the double-pushout (dpo) approach to graph

transformation, introducing transactional graph transformation systems (t-gtss), a

framework which provides a simple way of expressing transactional activities. Our

formalism is deeply influenced and generalists the zero-safe nets proposal, intro-

duced in [3] to solve an analogous modelling problem in the setting of Petri nets.

The basic tool is a typing mechanism for graphs which induces a distinction

between stable and unstable graph items. Given a typed graph, representing a

system state, we can identify a subgraph which represent its “stable” part, i.e.,

the fragment of the state which is visible from an external observer. The “valid”

computations of a t-gts may start from a completely stable graph, evolve through

graphs with unstable items and eventually end up in a new stable state; and the

valid computations which are minimal, in a certain sense to be made precise in the

paper, represent transactions.

The paper introduces the t-gtss formalism, provides the basic concepts and

illustrates a simple case study. In a concluding section we outline how the inter-

nal structure of transactions can be abstracted away by considering the so-called

abstract gts associated to the t-gts, where unstable items disappear and each

distinct transaction becomes a single atomic production, which rewrites the start-

ing stable state to the final stable state. Thus “unfinished” transactions have no

counterpart at the abstract level. Finally, we outline future venues of research,

pointing out the technical issues which need to be further elaborated upon, such as

the precise functorial correspondence between a t-gts and its abstract counterpart.

2 Typed Graph Transformation Systems

In this section we introduce the basics of the double-pushout (dpo) algebraic ap-

proach to graph rewriting [9]. We remark that, although our approach will be

developed for dpo rewriting over directed (multi-)graphs, it could have been easily

adapted to other approaches to graph rewriting, e.g., to the single-pushout approach

and to different notions of graph (e.g., to hypergraphs, which are used indeed in the

2

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

example in Section 4).

An essential ingredient of our theory is a typing discipline for graphs which will

allow us to distinguish between stable and unstable items in a given graph. Typing

for graphs (e.g., [5]) can be seen as a labelling technique, which allows to label each

graph over a structure that is itself a graph (called the type graph). The labelling

function is required to be a graph morphism.

Formally, a graph is a tuple 〈V,E, s, t〉, where V and E are sets of nodes and

edges, and s, t : E → V are the source and target functions. Given a graph T , a

typed graph G over T is a graph |G|, together with a total graph morphism tG :

|G| → T . A morphism between T -typed graphs f : G1 → G2 is a graph morphism

f : |G1| → |G2| consistent with the typing, i.e., such that tG1 = tG2 ◦ f . The

category of T -typed graphs and typed graph morphisms is denoted by T -Graph.

Rewriting rules, called (T -typed) productions, are of the kind q = Lq
lq← Kq

rq→
Rq, where Lq, Kq and Rq are T -typed graphs (called the left-hand side, the interface

and the right-hand side of the production, respectively), and lq, rq are injective

morphisms. A rule intuitively specifies that an occurrence of the left-hand side Lq
in a larger graph can be rewritten into the right-hand side graph Rq, preserving

the interface Kq. Formally, given a typed graph G, a production q, and a match

g : Lq → G, a direct derivation δ from G to H using q, g exists, written δ : G
q,g

=⇒ H,

if the diagram

Lqq :

g

��

Kq
lqoo

rq //

k
��

Rq

h
��

G D
b

oo
d
//H

can be constructed, where both squares are pushouts in T -Graph.

A graph transformation system is then defined as a collection of rules, over a

fixed graph of types.

Definition 2.1 [graph transformation system] A T -typed graph transformation

system (gts) is a tuple G = 〈T, P, π〉, where T is a graph, P is a set of pro-

duction names and π is a function mapping production names in P to T -typed dpo

productions.

A derivation in a gts G is a sequence of direct derivations using productions of

G
G0

q0,g0
=⇒ G1

q1,g1
=⇒

qn,gn
=⇒ Gn+1.

3 Transactional Graph Transformation Systems

In this section we introduce the basics of transactional graph transformation sys-

tems. After discussing the typing discipline which allows to distinguish between

stable and unstable items in a given typed graph, we show how this can be used to

define a notion of transaction.

The distinction between stable and unstable items is induced by specifying a

subgraph of the type graph, which is intended to represent the stable types.

3

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

Definition 3.1 [Transactional gts] A transactional gts is a pair 〈G, Ts〉, where G
is a T -typed gts and Ts is a subgraph of the type graph T of G, called the stable

type graph.

Given a graph G typed over T we can single out its stable part S(G), i.e., the

subgraph consisting of its stably-typed items only. Formally, S(G) can be defined

as the graph typed over Ts obtained by considering the pullback

|S(G)|

��

� � ι // |G|

��

Ts
� � // T

Without loss of generality, we will assume a concrete choice for S(G), by impos-

ing that the morphism ι in the pullback diagram above is an inclusion.

We say that a graph is stable if it consists only of stable items. This is formalised

in the next definition.

Definition 3.2 [stable graph] A T -typed graph G is called stable if |S(G)| = |G|
(i.e., if the morphism ι in the pullback diagram is the identity). It is called unstable

otherwise.

It can be shown that the above transformation is functorial: given a morphism of

T -typed graphs f : G→ H, the transformation above uniquely induces a morphism

S(f) : S(G) → S(H) (which is, given the concrete choice for S(G), the restriction

of f to S(G)). The corresponding functor S : T -Graph → Ts-Graph is called

stabilising functor.

The stabilising functor can be applied point-wise to any production of a given

t-gts, thus producing a gts typed over the stable type graph.

Definition 3.3 [stabilised gts] Given a T -typed t-gts 〈G, Ts〉, the stabilised gts

S(G) is given by 〈Ts, P, π′〉, where π′(q) = S(π(q)) for any q ∈ P .

The functor S, when applied to a derivation in a given t-gts 〈G, Ts〉, produces a

derivation in S(G). An indirect proof of this fact can be obtained by observing that

there exists a typed gts morphism f : G → S(G), in the sense of [1], which essen-

tially forgets about the non-stable items. Then, using the fact that gts morphisms

are simulations, one can infer the result below.

Proposition 3.4 Let 〈G, Ts〉 be a t-gts and let d = G0
q1,g1
=⇒ G1

q2,g2
=⇒ . . .

qn,gn
=⇒ Gn

be a derivation in G. Then

S(d) = S(G0)
q1,S(g1)

=⇒ S(G1)
q2,S(g2)

=⇒ . . .
qn,S(gn)

=⇒ S(Gn)

is a derivation in S(G).

Let us come to the definition of a transaction in a t-gts 〈G, Ts〉. Inspired by the

approach for Petri nets proposed in [3] and extended to nets with read arcs in [4],

we introduce stable steps, stable transactions and abstract stable transactions. In

the following 〈G, Ts〉 is a fixed t-gts.

A stable step is, intuitively, a computation which starts and ends in stable

states. Moreover, once generated, stable items are “frozen”, in the sense that they

4

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

L1

g1
��

K1
l1oo r1 //

k1
��

R1

u

##
h1

L2

s

{{
g2

~~

K2
l2oo r2 //

k2
��

R2

h2
��

G D1b1
oo

d1
//X D2b2
oo

d2
//H

Fig. 1. Sequential independent derivations.

cannot be read or consumed by other productions inside the same step. Therefore,

the dependencies between productions occurring in a step are induced by unstable

items: this implies that at the abstract level, where unstable items are forgotten,

all such productions will be applicable in parallel.

To give a formal definition we need to briefly review some notions. A derivation

G
q1,g1
=⇒ X

q2,g2
=⇒ H as in Figure 1 is called sequential independent [6] if there are two

morphisms s : L2 → D1 and u : R1 → D2 such that d1 ◦ s = g2 and b2 ◦ u = h1.

Intuitively, the images in X of the left-hand side of q2 and of the right-hand side

of q1 overlap only on items that are preserved by both derivation steps. In this

case we can apply the two productions in the reverse order, obtaining derivation

G
q2,g′2=⇒ X ′

q1,g′1=⇒ H and we can also apply them concurrently, obtaining a parallel

direct derivation G
q1+q2,g+3 H.

Definition 3.5 [stable step] A stable step is a derivation d = G0
q1,g1
=⇒ G1

q2,g2
=⇒

. . .
qn,gn
=⇒ Gn which enjoys the following properties:

(i) G0 and Gn are stable graphs;

(ii) the derivation S(d) is equivalent to a parallel direct derivation

S(G0)
q0+...+qn,S(g)+3 S(Gn) in S(G).

Definition 3.6 [stable transaction] A stable transaction is a stable step d = G0
q1,g1
=⇒

G1
q2,g2
=⇒ . . .

qn,gn
=⇒ Gn such that, if S(G0)

q0+...+qn,S(g)+3 S(Gn) in S(G) is the induced

parallel derivation, then

(i) g is an epimorphism;

(ii) any intermediate graph Gi (i 6= 0, n) is not stable.

By condition (i), the start graph contains exactly what the transaction needs to

be brought to a successful end, while by condition (ii) no sub-derivation of d is a

transaction, thus guaranteeing atomicity.

Actually, since we are considering a concurrent model of computation, the fact

that all the intermediate graphs are not stable should not be related to the specific

order in which productions are applied. Rather, this property should still hold for

any derivation which is obtained from the original one by exchanging independent

steps of computation, i.e., any shift-equivalent (see, e.g., [13,6]) derivation. When

combining shift-equivalence with an equivalence which abstracts also with respect to

the concrete identities of items in the involved graphs, i.e., which considers graphs

up to isomorphism, we obtain the so-called abstract truly-concurrent equivalence [6].

The equivalence class of a derivation d with respect to such equivalence will be

denoted by [d]c and called abstract trace.

5

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

0

+

=

GC

S S 0

=

+

true false

C

+ S

0

= truefalse

Fig. 2. The type graph (left) and its stable component (right).

Definition 3.7 [abstract stable transaction] An abstract stable transaction is an

abstract trace [d]c, such that for any d′ ∈ [d]c the derivation d′ is a stable transaction.

It follows from the definition that if two abstract stable transactions can be

applied in parallel to a stable graph, then all the direct derivations of either of them

are independent of the direct derivations of the other one. Thus, as desired, the

transactions can be interleaved in an arbitrary way.

Clearly, a more manageable characterisation of abstract stable transactions

would be desirable: even if the corresponding theory is not yet completely de-

veloped, we will sketch in the concluding section how such a characterisation could

be obtained by means of suitable graph processes.

4 A simple example on integer equality

We now present a simple gts for testing the equality between integer expressions

involving natural numbers represented as sequences S(S(. . . S(0) . . .)) and a sum

operator. Despite its small size we hope that this example will pinpoint the key

features of our approach.

The type (hyper-)graph and its stable subgraph are depicted in Figure 2. Explic-

itly stated, the dashed items (dashed boxes representing (hyper-)edges and dashed

circles for nodes) are not stable. Notice that, as usual for hypergraphs, each edge is

connected to an ordered list of nodes. The order is implicit in our drawings: the first

connection leaves the edge from the top, and the others follow counter-clockwise.

As a sample expression to be evaluated we consider S(S(0)) + S(0) = S(0), as

represented by the stable graph G0 on the left of Figure 5. For the sake of simplicity,

G0 is a tree, but the system also works for acyclic graphs, where subexpressions can

be shared. In order to ensure that a shared subexpression is not affected by the

evaluation of an outer expression, some rules duplicate the part of the structure

that needs to be accessed in a destructive manner.

Let us consider the production p1 in Figure 3: the graph on the left (center,

right) represents the left-hand side (interface and right-hand side, respectively) of

the production. Note that, according to the shape of the type graph, an unstable

operator can be connected to a stable node only through an additional unstable

node and a C-labelled edge. In order to simplify the presentation, such node and

the C-labelled edge will be omitted in the figures. For instance, production p1

6

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

p
2.1

=

S S S S S

=

S

p
3.2

true=

0 0

1 11

2 3

p
2.2

=

SS

1

2

4

3

1

4
4

5
5

5

1

=

p
1

= =

p
2.3

S

=

SS S

3

4 5

2

1 1 1

4

3

5 5

3

4

=

p
3.3

=

0 0 0

true

0

1 1 1

2 3 3 3

p
3.1

=

0 0 0 0

true

0 0

p
4.1

0S

=

0S

false

S 0

p
6.1

+

2 3

4 5

1

=

++

1

2 3

54

6

=

+

2 3

1

54

p
4.4

=

0S S

false

S

2 3

4

1 1 1

2 2

4 4

p
4.2

S

=

0

false

1 1 1

2 3

4
4 4

GC

p
4.3

0S

=

0 0

false

1 1 1

2 3 3 3

44
4

GC

p
7

S

1

2 2 2

GCGC

p
8

0

1

GC

Fig. 3. Productions for the equality operator and for garbage collection.

should be read as

5

p
1

1

2 3

=

1

2 3

=

C C

1

2 3

4

Intuitively, a computation proceeds as follows. The only production that can be

applied to a stable graph like G0 is p1, which starts a transaction by replacing the

stable edge = with its unstable, dashed counterpart = . Next, conceptually, the

equality operator traverses the expression (see production p2.1), triggering, whenever

it is needed, the evaluation of the sum operators by generating an unstable copy of

them (production p6.1). In turn, the evaluation of the sum generates as its result a

chain of unstable successor operators (see productions p12.1 and p11.1 in Figure 4),

recursively triggering the evaluation of nested additions (as in production p9.1),

and stopping when both arguments are zero (as in production p10.1). The equality

operator can then proceed, consuming the chain of unstable successors generated

by the sum, till when either one or two zeros are reached. At this point the boolean

result is generated (as in productions p3.2), and, if needed, the “garbage collection”

of the remaining unstable items is started (productions p4.2, p7 and p8).

The presence of stable and unstable versions of both operators and constants

motivates the existence of several variants for each production. For example, all

the productions p2.1, p2.2 and p2.3 (as well as its symmetric version p2.4 which is

not depicted) basically replace, conceptually, the subexpression S(x) = S(y) by the

equivalent one x = y. Such productions do not have the same structure, though,

because stable S-edges have to be preserved, as they may belong to a shared subex-

7

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

p
10.1

+

0 0 0 0 00

0

p
10.3

0 0

0+

0 0

1

2 3

1 1

3 3

+

+ +

+

2 3

4 5

2 3

4 5

++

2

4 5

6 3

1 1 1p
9.1

p
11.1

S

+

1 2

3

S

0

1 2

3

S
1

2

3

+

S

0

4

0

p
10.2

+

0 0

0

1

2 3

1 1

p
11.2

+

S

1 2

3

0

1

3

0

1

3

+

S

4

0

p
12.1

S

+

32

4

1

S

2 3

4

1

3

+S

S

4

1

2
5

p
12.2

S

+

1

2

4

3 3

1

4

3

+

S

4

5

1

Fig. 4. Productions for the sum operator.

3

S

6

0

1

4 5

7 8

S

0

0

S

S

9

2

+

false

3

S

6

0

=

11

S

S

5

S

4

S

7

S

9

0

8

00

13

12

1

2

+

4 5

3

7 8

=

S

0

0

S

S

S

6

0

9

1

2

+

1

3

=

S

6

0

5

8

+

S

0

S

11

4

S

7

S

9

0

10

2

+

GC

S

3

6

S

0

5

8

0

0

13

12

S

1

4

0

S

S

9

7

2

+

false

Fig. 5. An expression (left), some unstable states (center), and the result (right).

pression, while unstable S-edges have to be deleted, as they should not appear in

the final state: this can be done safely, because unstable S-edges are generated by

the productions in a way that guarantees that they are never shared.

The same observation applies to each other group of productions, like p3. (mod-

elling the rule 0 = 0 ; true), p4. (modelling S(x) = 0 ; false), and so on. Notice

that several rules have a symmetric version (exchanging the left and right arguments

of the main binary operator) which are not depicted. For example the productions in

the missing p5. family model the evaluation of 0 = S(x) to false. They are obtained

from the p4. productions by exchanging the arguments of the equality operator.

Some states of the derivation starting from S(S(0)) + S(0) = S(0) and reaching

the final state, which represents the result false, are depicted in Figure 5. From the

starting state productions p1, p6.1 and p12.1 are applied, reaching the second state;

next, applying productions p12.1, p11.1, p10.1 and p2.3 the third state is reached; then,

applying p4.3 the fourth state is reached; and finally the application of p7 and p8

produces the final state. Note that all the intermediate states are unstable, due

to the presence of at least one unstable item. Hence, the only visible states in the

derivation, which can be shown to be a stable transaction, are the initial and final

ones.

The corresponding abstract stable transaction includes all the derivations which

are obtained by switching sequential independent direct derivations, such as the one

8

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

which applies the productions in the order p1, p6.1, p12.1, p2.3, p12.1, p4.3, p11.1, p10.1,

p7 and p8. It can be shown that each abstract stable transaction in the proposed

system performs the evaluation of exactly one equality operation, building as an

unstable intermediate structure the result of the sum operators, and destroying

them at the end.

5 Future perspectives

This paper introduces transactional graph transformation systems, a formalism

which is intended to enrich the classical dpo approach to graph rewriting with

a built-in notion of transaction. Our work so far outlined the basic notions under-

lying the framework, and further results are now needed to bring the theory to full

maturity.

Abstract GTS associated to a transactional GTS

A first line of research concerns the definition of the abstract gts associated to a

t-gts. As discussed in the paper, a t-gts can be seen at two different levels of

abstraction. It can be viewed as a standard graph transformation system, where

both stable and unstable states, and thus also the internal structure of transactions,

are visible. But we can also abstract away from the unstable states and observe only

complete transactions. Formally, this gives rise to another gts, whose definition

requires the notion of the production induced by a derivation sequence, a known

construction in the literature. The production induced by a derivation d : G0 ⇒∗ Gn
has G0 as left-hand side and Gn as right-hand side. The interface graph is the

subgraph of G0 which, intuitively, consists of all the items which are preserved by

all the direct derivations occurring in the sequence.

Definition 5.1 [Abstract gts] Let 〈G, Ts〉 be a t-gts. Given an abstract stable

transactions [d]c, a production induced by d is called abstract production for the

transaction [d]c.

The abstract gts associated to the given t-gts, denoted by A(〈G, Ts〉), is the

gts 〈Ts, P ′, π′〉 where P ′ is the set of abstract stable transactions [d]c and π′([d]c)

is an abstract production for the transaction [d]c.

As an example, the abstract production that corresponds to the transaction

depicted in Figure 5 is shown in Figure 6.

As it should be evident from the proposed example, the abstract gts associated

to a t-gts can have, in general, an infinite number of productions. Indeed, the

notion of transaction allows one to model an abstract system with infinitely many

productions by means of a lower level system, with a finite number of productions.

From a theoretical point of view the definition of the abstract gts associated to a

t-gts might not be yet fully satisfactory, since it lacks an extensional presentation,

as it is offered by categorical means in terms of adjunctions.

However, note that any gts G can be naturally seen as a t-gts 〈G, T 〉 by con-

sidering the entire type graph T as stable. Hence, turning the classes of gtss and

of t-gtss into categories GTS and TGTS, respectively, there would be an obvious

inclusion functor of GTS into TGTS. Thus, a solid justification for the construc-

9

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

1

=

2

4 5

3

7 8

+

S

0

0

S

S

S

6

0

9

1

2

4 5

3

7 8

+

S

0

0

S

S

S

6

0

9

1

false

2

4 5

3

7 8

+

S

0

0

S

S

S

6

0

9

Fig. 6. The abstract production induced by the transaction of Figure 5.

tion of the abstract gts associated to a t-gts could come from a characterisation of

the mapping A (Def. 5.1) as a functor from the category of t-gtss to the category

of gtss, and from its characterisation as the right adjoint to the inclusion functor

in the opposite direction. Intuitively, this would mean that, given a t-gts 〈G, Ts〉,
the abstract gts A(〈G, Ts〉), given in Definition 5.1, is the “best approximation” of

〈G, Ts〉 in the category GTS.

We foresee two possible ways of proving a result of this kind:

(i) Freely generated category of systems with transactions as productions. In-

spired by the work on zero-safe Petri nets [3], the idea consists of freely generating

complex computations of a given t-gts, starting and ending in stable states, by

suitably composing its original productions. The considered composition operation

should act differently on the stable and unstable items, composing the former in

parallel and the latter sequentially. Moreover, it should be subject to axioms which

identify computations differing only for the order of independent steps. In this set-

ting transactions would be identified as computations that cannot be decomposed

as the parallel composition of (non trivial) computations.

(ii) Transactions as special processes. Graph processes [5] are structures which

provide a truly concurrent representation of a deterministic computation in a given

gts, by explicitly representing the start and ending state, as well as all the in-

termediate items produced in the computation and their causal dependencies. A

transaction can be characterised as a process which starts and ends in stable states,

where only direct causal dependencies between stable items exist, and which satisfies

suitable atomicity properties.

In both cases, it seems that the appropriate choice of morphisms in the category

of t-gts should be that of implementation or refinement morphisms [10,11], which

allow to map a single production into a computation.

Multi-level transactional GTSs

Another issue to be addressed concerns the “binary” distinction between stable and

unstable items, which can be unsatisfactory in certain situations. In fact, a system

can be viewed at several levels of abstractions, and what appears to be as an atomic

production can be refined to a computation at a lower level and can be the building

block of more complex transactions at a higher-level. In the proposed framework,

the situation could be recast by replacing the stable/unstable dichotomy by a multi-

10

Baldan, Corradini, Dotti, Foss, Gadducci, Ribeiro

layered structure, consisting of a set of graphs T0, T1, . . . , Tn such that Ti+1 is a

subgraph of Ti, representing the stable types for layer i.

The functorial characterisation of abstract gtss that we envision could also be

helpful to provide a modular semantics to the multi-layered t-gtss.

Relations with refinement and modularity for GTSs

We do believe that our semantical analysis of transactional mechanisms in graph

transformation is original. However, the same notion of abstract gts calls for a

comparison with the approaches to refinement and modularisation proposed in the

literature (see [12] and the references therein).

Transactions could be exploited to simulate modules, since the atomicity of some

computations is induced by the fact that some states are classified as non-observable

or unstable at the abstract level. We leave to future work the further elaboration

of these ideas, as well as a comparison with the literature.

Acknowledgments. We are mostly grateful to Roberto Bruni for insightful dis-

cussions and his careful reading of a preliminary version of this paper.

References

[1] P. Baldan, A. Corradini, and U. Montanari. Unfolding of double-pushout graph grammars is a
coreflection. In Ehrig et al. [7], pages 145–163.

[2] R. Bardohl, M. Minas, A. Schurr, and G. Täntzer. Application of graph transformation to visual
languages. In Ehrig et al. [8], chapter 3, pages 105–180.

[3] R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and individual token approaches.
Info. & Co., 156(1-2):46–89, 2000.

[4] R. Bruni and U. Montanari. Transactions and zero-safe nets. In H. Ehrig, G. Juhás, J. Padberg,
and G. Rozenberg, editors, Advances in Petri Nets: Unifying Petri Nets, volume 2128 of LNCS, pages
380–426. Springer, 2001.

[5] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae, 26(3/4):241–
265, 1996.

[6] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic approaches to
graph transformation I: Basic concepts and double pushout approach. In Rozenberg [14], chapter 3,
pages 163–245.

[7] G. Ehrig, G. Engels, H.J. Kreowski, and G. Rozenberg, editors. Proceedings of the International
Workshop on Theory and Application of Graph Transformations, volume 1764 of LNCS. Springer,
1999.

[8] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph Grammars and
Computing by Graph Transformation, Vol. 2: Applications, Languages and Tools. World Scientific,
1999.

[9] H. Ehrig, M. Pfender, and H.J. Schneider. Graph-grammars: An algebraic approach. In R.V. Book,
editor, IEEE Conf. on Automata and Switching Theory, pages 167–180. IEEE Computer Society Press,
1973.

[10] M. Grosse-Rhode, F. Parisi Presicce, and M. Simeoni. Refinement of graph transformation systems via
rule expressions. In Ehrig et al. [7], pages 368–382.

[11] R. Heckel, A. Corradini, H. Ehrig, and M. Löwe. Horizontal and vertical structuring of graph
transformation systems. Mathematical Structures in Computer Science, 6(6):613–648, 1996.

[12] R. Heckel, H. Ehrig, G. Engels, and G Täntzer. Classification and comparison of module concepts for
graph transformation systems. In Ehrig et al. [8], chapter 17, pages 669–689.

[13] H.-J. Kreowski. Manipulation von Graphmanipulationen. PhD thesis, Technische Universität Berlin,
1977.

[14] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transformation, Vol.
1: Foundations. World Scientific, 1997.

11

	Introduction
	Typed Graph Transformation Systems
	Transactional Graph Transformation Systems
	A simple example on integer equality
	Future perspectives
	References

