
On the concurrent semantics

of Algebraic Graph Grammars?

Paolo Baldan1 and Andrea Corradini2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

baldan@dsi.unive.it andrea@di.unipi.it

Abstract. Graph grammars are a powerful model of concurrent and
distributed systems which can be seen as a proper extension of Petri
nets. Inspired by this correspondence, a truly concurrent semantics has
been developed along the years for the algebraic approaches to graph
grammars, based on Winskel’s style unfolding constructions as well as
on suitable notions of processes. A basic role is played in this framework
by the study of contextual and inhibitor nets, two extensions of ordinary
nets which can be seen as intermediate models between ordinary Petri
nets and algebraic graph grammars.
This paper presents a survey of these results, discussing in a precise,
even if informal way, some of the main technical contributions that made
possible the development of such a theory.

Introduction

Petri nets [40,42] are one of the most widely used models of concurrency. Since
their introduction they have attracted the interest of both theoreticians and
practitioners. Along the years Petri nets have been equipped with satisfactory
semantics, doing justice to their intrinsically concurrent nature. These semantics
have served as basis for the development of a variety of modelling and verification
techniques. However, the simplicity of Petri nets, which is one of the reasons of
their success, represents also a limit in their expressiveness. If one is interested in
giving a more structured description of the state, or if the kind of dependencies
between steps of computation cannot be reduced simply to causality and conflict,
Petri nets are likely to be inadequate.

This paper summarizes the work presented by the authors in a series of papers
[2,3,4,7,8,9,10,12], most of which written jointly with Ugo Montanari, and some
with Nadia Busi, Michele Pinna and Leila Ribeiro. Such papers are the outcome
of a project aimed at proposing graph transformation systems as an alternative
model of concurrency, extending Petri nets. The basic intuition underlying the
use of graph transformation systems for formal specifications is to represent the
states of a system as graphs (possibly attributed with data-values) and state

? Research partially supported by the EU FET-GC Project IST-2001-32747 agile,
and by the EC RTN 2-2001-00346 SegraVis.

transformations by means of rule-based graph transformations. Needless to say,
the idea of representing system states by means of graphs is pervasive in com-
puter science. Whenever one is interested in giving an explicit representation of
the interconnections, or more generally of the relationships among the various
components of a system, a natural solution is to use (possibly hierarchical and
attributed) graphs. The possibility of giving a suggestive pictorial representa-
tion of graphical states makes them adequate for the description of the meaning
of a system specification, even to a non-technical audience. A popular example
of graph-based specification language is given by the Unified Modelling Lan-
guage (UML), but we recall also the more classical Entity/Relationship (ER)
approach, or Statecharts, a specification language suited for reactive systems.
Moreover, graphs provide a privileged representation of systems consisting of a
set of processes communicating through ports.

When one is interested in modelling the dynamic aspects of systems whose
states have a graphical nature, graph transformation systems are clearly one of
the most natural choices. Since a graph rewriting rule has only a local effect
on the state, it is natural to allow for the parallel application of rules acting
on independent parts of the state, so that a notion of concurrent computation
naturally emerges in this context. The research in the field, mainly that dealing
with the so-called algebraic approaches to graph transformation [25,22,27], has
led to the attempt of equipping graph grammars with a satisfactory semantical
framework, where their truly concurrent behaviour can be suitably described
and analyzed. After the seminal work [31], which introduced the notion of shift
equivalence, many original contributions to the theory of concurrency for al-
gebraic graph transformation systems have been proposed during the last ten
years, most of them inspired by their relation with Petri nets. In particular, for
the double-pushout (dpo) approach to graph transformation, building on some
ideas of [31], a trace semantics has been proposed in [18,22]. Resorting to a
construction in the style of Mazurkiewicz, the trace semantics has been used
to derive an event structure semantics [20,19] for dpo graph grammars. Graph
grammars have been endowed also with a process semantics with the intro-
duction of graph processes [21], further refined with the notion of concatenable
(deterministic) processes [8]. A Winskel’s style unfolding construction [51] has
been defined both for the single pushout (spo) and the dpo approaches [43,9,10],
and has been exploited for providing, through suitable chains of functors, such
grammars with more abstract semantics based on event structures and domains.

In this survey paper, after recalling the basics of the algebraic approaches to
graph transformation and their relationship with Petri nets, we will summarize
the functorial, unfolding semantics of Petri nets and the elegant way in which
it can be reconciled with the event structure semantics based on determinis-
tic processes. Next we will discuss how this approach has been generalized to
algebraic graph grammars. This required the definition of new structures and
constructions that will be briefly outlined in the following sections. We shall focus
mainly on the definition of two generalizations of prime event structures, called
asymmetric and inhibitor event structures, explaining why they were necessary,

2

and to which extent they made possible to generalize to graph grammars the
constructions and results originally developed for Petri nets. It is worth stress-
ing here that this research activity contributed to the theory of Petri nets as
well, by generalizing the functorial semantics to the classes of contextual and in-
hibitor nets, already introduced in the literature. Such nets can be considered as
intermediate models between Place/Transition (P/T) nets and graph grammars.

The rest of this paper is organized as follows. In Section 1 we introduce the
dpo and spo approaches to graph transformation, discussing their relation with
Petri nets, and we stress the role of contextual and inhibitor nets as intermediate
models between Petri nets and graph grammars. This allows us to organize
the mentioned models in an ideal partial order where each model generalizes
its predecessors. Then Section 2 outlines the approach to the truly concurrent
semantics of ordinary Petri nets which is proposed as a paradigm. Section 3
describes the semantical framework that has been generalized from Petri nets to
graph grammars, and Section 4 gives an overview of the results, by explaining
how and to what extent such semantical framework has been lifted along the
chains of models, first to contextual and inhibitor nets and then to dpo and spo

graph grammars. Finally, Section 5 discusses some open problems and directions
of future research.

1 Graph grammars and their relation with Petri nets

In this section we present the algebraic approaches to graph transformation and
we discuss how ordinary Petri nets can be seen as special algebraic graph gram-
mars. The new features with which graph grammars extend ordinary Petri nets
establish a close relationship between graph grammars and two generalizations
of Petri nets in the literature, i.e., contextual and inhibitor nets.

1.1 The algebraic approaches to graph transformation

Generally speaking, a graph grammar consists of a start graph together with a
set of graph productions, i.e., rules of the kind p : L ; R, specifying that, under
certain conditions, once an occurrence (a match) of the left-hand side L in a
graph G has been detected, it can be replaced by the right-hand side R. The
form of graph productions, the notion of match, and the mechanisms establishing
how a production can be applied to a graph, and what the resulting graph is,
depend on the specific graph rewriting formalism.

Here we consider the algebraic approaches to graph rewriting [25,18,27],
where the basic notions of production and direct derivation are defined in terms
of constructions and diagrams in a suitable category. Consequently, the result-
ing theory is very general and flexible, easily adaptable to a very wide range of
structures, simply by changing the underlying category.

In the double-pushout approach, a graph production consists of a left-hand
side graph L, a right-hand side graph R and a (common) interface graph K
embedded both in R and in L, as depicted in the top part of Fig. 1. Informally,

3

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

��

��

��

��

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

RL

D HG

K

Fig. 1. A (double-pushout) graph rewriting step.

to apply such a rule to a graph G we must find a match, namely an occurrence
of its left-hand side L in G. The rewriting mechanism first removes the part of
the left-hand side L which is not in the interface K producing the graph D, and
then adds the part of the right-hand side R which is not in the interface K, thus
obtaining the graph H. Formally, this is obtained by requiring the two squares
in Fig. 1 to be pushouts in the category of graphs and total graph morphisms,
hence the name of the approach. The interface graph K is “preserved”: it is
necessary to perform the rewriting step, but it is not affected by the step itself.
Notice that the interface K plays a fundamental role in specifying how the right-
hand side has to be glued with the graph D. Working with productions having
an empty interface graph K, the expressive power would drastically decrease:
only disconnected subgraphs could be added.

In the single-pushout approach, a production consists instead of a partial,
injective graph morphism p : L½ R from the left- to the right-hand side graph.
By looking at the partial morphism p as a span of total morphisms

L←↩ dom(p)→ R

one sees that the domain of p plays here the role of the interface K of dpo rules.
To apply such a production to a given match of L in a graph G, i.e., to a total
morphism L→ G, we have to compute the pushout of p : L½ R and L→ G in
the category of graphs and partial graph morphisms.

The most relevant difference between the dpo and spo approaches (see [27])
is the fact that while the construction of the double pushout diagram may fail if
the match L → G does not satisfy the so-called gluing conditions with respect
to the given rule, the construction of the pushout of an spo rule L½ R and a
match L → R is always possible. We shall come back on this when relevant in
the rest of the paper.

4

1.2 Relation with Petri nets

A basic observation belonging to the folklore (see, e.g., [17] and references
therein) regards the close relationship existing between graph grammars and
Petri nets. Basically a Petri net can be viewed as a graph transformation system
that acts on a restricted kind of graphs, namely discrete, labelled graphs (that
can be considered as sets of tokens labelled by places), the productions being
the transitions of the net. For instance, Fig. 2 presents a Petri net transition t
and the corresponding dpo and spo graph productions which consume nodes
corresponding to two tokens in s0 and one token in s1 and produce new nodes
corresponding to one token in s2 and one token in s3. The interface is empty in
the dpo rule and the domain of the morphism is empty in the spo rule, since
nothing is explicitly preserved by a net transition. It is easy to check that both
representations satisfy the properties one would expect: the production can be
applied to a given marking if and only if the corresponding transition is enabled,
and the double or single pushout construction produces the same marking as the
firing of the transition.

76540123s0

2 ÀÀ;
;;

76540123 s1

1¢¢¤¤
¤

t
1
ÀÀ;

;;1
¢¢¤¤

¤
76540123s2 76540123 s3

���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

���
�

���
�

s0 s1s0

s0 s1s0

s3s2

s3s2

Fig. 2. A Petri net transition and the corresponding dpo and spo productions.

In this view, general graph transformation systems can be seen as a proper
extension of ordinary Petri nets in two dimensions:

1. they allow for general productions, possibly with non-empty interface, spec-
ifying rewriting steps where a part of the state is preserved, i.e., required,
but not affected by the rewriting step;

2. they allow for a more structured description of the state, that is an arbitrary,
possibly non-discrete, graph.

The first capability is essential to give a faithful representation of concur-
rent accesses to shared resources. In fact, the part of the state preserved in a
rewriting step, i.e., the (image of the) interface graph in the dpo or the domain
of the production in the spo approach, can be naturally interpreted as a part
of the state which is accessed in a read-only manner by the rewriting step. Co-
herently with such interpretation, several productions can be applied in parallel
sharing (part of) the interface. It is worth remarking that the näıve technique of
representing a read operation as a consume/produce cycle may cause a loss of

5

concurrency since it imposes an undesired serialization of the read-only accesses
to the shared resource.

As for the second capability, even if multisets may be sufficient in many
situations, as already mentioned in the introduction, graphs are more appropriate
when one is interested in giving an explicit representation of the interconnections
among the various components of the systems, e.g., if one wants to describe the
topology of a distributed system and the way it evolves.

These distinctive features of graph grammars establish a link with two ex-
tensions of ordinary Petri nets in the literature, introduced to overcome some
deficiencies of the basic model: contextual nets and inhibitor nets.

1.3 Contextual nets

Contextual nets [37], also called nets with test arcs in [16], activator arcs in [30]
or read arcs in [49], extend ordinary nets with the possibility of checking for
the presence of tokens which are not consumed. Concretely, besides the usual
preconditions and postconditions, a transition of a contextual net has also some
context conditions, which specify that the presence of some tokens in certain
places is necessary to enable the transition, but such tokens are not affected by
the firing of the transition. Following [37], non-directed (usually horizontal) arcs
are used to represent context conditions: for instance, transition t in the left part
of Fig. 3 has place s as context.

Clearly the context of a transition in a contextual nets closely corresponds to
the interface graph of a dpo production and to the domain of an spo production,
seen as a partial morphism. As suggested by Fig. 3, a contextual net corresponds
to a graph grammar still acting on discrete graphs, but where productions may
have a non-empty interface/domain.

76540123s0

2 ¿¿9
99

76540123 s1

1££¦¦
¦

t
1
¿¿9

99
1
££¦¦

¦
1 76540123 s

76540123s2 76540123 s3

���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

ss1 ss0 s0 s2 s3 s

s1 ss0 s0 s2 s3 s

Fig. 3. A contextual Petri net transition and the corresponding dpo and spo produc-
tions.

For their ability of faithfully representing concurrent read-only accesses to
shared resources, contextual nets have been used to model the concurrent access
to shared data (e.g., for serializability problems for concurrent transactions in a
database) [23,44], to give a concurrent semantics to concurrent constraint pro-
grams [14] where several agents access a common store, to model priorities [29]
and to compare temporal efficiency in asynchronous systems [49].

6

1.4 Inhibitor nets

Inhibitor nets (or nets with inhibitor arcs) [1] further generalize contextual nets
with the possibility of checking not only for the presence, but also for the absence
of tokens in a place. For each transition an inhibitor set is defined and the
transition is enabled only if no token is present in the places of its inhibitor set.
When a place s is in the inhibitor set of a transition t we say that s inhibits
(the firing of) t. The fact that a place s inhibits a transition t is graphically
represented by drawing a dotted line from s to t, ending with an empty circle,
as shown in the left part of Fig. 4.

While, at a first glance, this could seem a minor extension, it definitely in-
creases the expressive power of the model. In fact, many other extensions of
ordinary nets, like nets with reset arcs or prioritized nets, can be simulated in a
direct way by using nets with inhibitor arcs (see, e.g., [39]). Indeed the crucial
observation is that ordinary nets can easily simulate all the operations of RAM
machines, with the exception of the zero-testing. Enriching nets with inhibitor
arcs is the simplest extension which allows to overcome this limit, thus giving
the model the computational power of Turing machines.

76540123s0

2 ¿¿9
99

76540123 s1

1££¦¦
¦

76540123s4 t
1
¿¿9

99
1
££¦¦

¦
©²ª±­°®̄ 76540123 s

76540123s2 76540123 s3

• •

s0 s0

ÃÃA
AA

•

s1

¢¢¤¤¤
•

££

xxrrr
rr

s

•s4 t

ÀÀ;
;;

~~}}
}

•s2 • s3

Fig. 4. Correspondence between inhibitor Petri nets and dpo graph grammars.

In this case the relation with algebraic graph grammars is less straightfor-
ward, and it only concerns the dpo approach. We must recall that in a graph
transformation system each rewriting step is required to preserve the consistency
of the graphical structure of the state, namely each step must produce a well-
defined graph. Hence, as required by a part of the application condition of the
dpo approach, the so-called dangling condition, a production q which removes a
node n cannot be applied if there are edges having n as source or target, which
are not removed by q: in fact, such edges would remain dangling in the resulting
graph. In other words the presence of such edges inhibits the application of q.
This is informally illustrated by Fig. 4, where place s which inhibits transition
t in the left part, becomes an edge which would remain dangling after the ex-
ecution of t, in the right part. As in the case of contextual nets, this intuitive
relation can be made formal, but here, for lack of space, we cannot give the
details of the correspondence.

It is worth stressing, again informally, that in the spo approach the dangling
condition is not necessary. By the nature of pushouts in the category of graphs

7

and partial morphisms, a rule which deletes a node can be applied to any match
of its left-hand side: any edge attached to that node is automatically erased by
the construction, as a kind of side-effect.

2 Truly concurrent semantics of Petri nets

Along the years Petri nets have been equipped with several semantics, aimed
at describing, at the right degree of abstraction, the truly concurrent nature of
their computations. The approach that we propose as a paradigm, comprises the
semantics based on deterministic processes, whose origin dates back to an early
proposal by Petri himself [41] and the semantics based on the nondeterministic
unfolding, introduced in a seminal paper by Nielsen, Plotkin and Winskel [38],
and shows how the two may be reconciled in a satisfactory framework.

2.1 Deterministic process semantics

The notion of deterministic process naturally arises when trying to give a truly
concurrent description of net computations, taking explicitly into account the
causal dependencies ruling the occurrences of events in single computations.

The prototypical example of Petri net process is given by the Goltz-Reisig
processes [28]. A Goltz-Reisig process of a net N is a (deterministic) occurrence
net O, i.e., a finite net enjoying suitable acyclicity and conflict freeness properties,
plus a mapping to the original net ϕ : O → N . The flow relation induces a
partial order on the elements of the net O, which can be naturally interpreted as
causality. The mapping essentially labels places and transitions of O with places
and transitions of N , in such a way that places in O can be thought of as tokens
in a computation of N and transitions of O as occurrences of transition firings
in such computation. For instance, Fig. 5 depicts a Petri net and a deterministic
process of such a net, representing the sequential execution of two occurrences
of t1 followed by t2, in parallel with t3.

A refinement of Goltz-Reisig processes, the so-called concatenable pro-
cesses [24], form the arrows of a category CP[N], where objects are markings
(states of the net) and arrow composition models the sequential composition of
computations. It turns out that such category is a symmetric monoidal cate-
gory, in which the tensor product represents faithfully the parallel composition
of processes.

2.2 Unfolding semantics

A deterministic process represents only a single, deterministic computation of
a net. Nondeterminism is captured implicitly by the existence of several differ-
ent “non confluent” processes having the same source. An alternative classical
approach to the semantics of Petri nets is based on an unfolding construction,
which maps each net into a single branching structure, representing all the pos-
sible events that can occur in all the possible computations of the net and the

8

76540123• s1

²² &&MMMMM 76540123• s3

²²
t1BC@A

GF ED ²²

t2

²²

t3

²²76540123 s2 76540123 s4

76540123 s1

²²²²

76540123 s3

²²
t1

²²

t3

²²76540123 s1

²²

76540123 s4

t1

²²76540123 s1

&&MMMMM

t2

²²76540123 s2

Fig. 5. A Petri net and a deterministic process for the net.

relations existing between them. This structure expresses not only the causal
ordering between the events, but also gives an explicit representation of the
branching (choice) points of the computations.

In the seminal work of Nielsen, Plotkin and Winskel [38], the denotation of a
safe net is a coherent finitary prime algebraic Scott domain [47] (briefly domain),
obtained via a construction which first unfolds the net into a (nondeterministic)
occurrence net which is then abstracted to a prime event structure, which, finally,
gives rise to a domain. Building on such result, Winskel [51] proves the existence
of a chain of categorical coreflections (a particularly nice kind of adjunction),
leading from the category S-N of safe (marked) P/T nets to the category Dom

of finitary prime algebraic domains, through the categories O-N of occurrence
nets and PES of prime event structures.

S-N
U

⊥ // O-N
E

⊥ //
?
_

IOccoo
PES

L

∼ //

Noo
Dom

Poo

The first step unwinds a safe net N into a nondeterministic occurrence net
U(N), which can be seen as a “complete” nondeterministic process of the net
N , representing in its branching structure all the possible computations of the
original net N . The construction exploits the fact that in a safe Petri net, a
specific occurrence of a transition t can be identified uniquely by its history,
namely by the finite set of transition occurrences starting from the initial mark-
ing which are strictly necessary to enable to considered occurrence of t. Any two
distinct transition occurrences t1 and t2 can be related in four possible, mutually
exclusive, ways:

1. t2 is causally dependent on t1 (denoted t1 < t2) if any computation including
t2 includes also t1;

2. t1 is causally dependent on t2 (t2 < t1) in the symmetric case;

9

76540123 s1

²² ''PPPPPPP 76540123 s3

²²
t1

²²

t2

²²

t3

²²

t1

IIIIIIIIIIIII # t2 t3

76540123 s1

²² ''PPPPPPP 76540123 s2 76540123 s4

t1

²²

t2

²²

t1

IIIIIIIIIIIII # t2

76540123 s1

²² ''PPPPPPP 76540123 s2

t1

²²

t2

²²

t1 # t2

76540123 s1 76540123 s2

Fig. 6. Unfolding and event structure semantics of Petri nets.

3. t1 and t2 are in conflict (t1# t2) if they do not appear together in any
computation;

4. t1 and t2 are concurrent if none of the previous conditions holds.

The relations of causality and conflict are easily shown to be generated by
the direct causality, which relates a transition occurrence which produces a token
with all those which consume it, and by the direct conflict, which relates two
transition occurrences which would consume the same token. The occurrence
net U(N) obtained as the unfolding of a safe net N records exactly all this
information.

The subsequent step abstracts such occurrence net to a prime event structure
(pes). The pes is obtained from the unfolding simply by forgetting the places,
and remembering only the transition occurrences and the causality and conflict
relations among them. From a prime event structure E it is possible to generate
freely an occurrence net N (E) which is the “most general” among those having
E as underlying pes. Such a net is obtained by considering the events of E as
transition occurrences, and introducing, among others, one fresh place for every
pair of events related by causality or conflict in E, in order to enforce the same
relationships in N (E).

The last step (which establishes an equivalence between the category of prime
event structures and the category of domains) maps any event structure to its
domain of configurations. Fig. 6 presents the unfolding and event structure cor-
responding to the net in Fig. 5.

In [36] it has been shown that essentially the same construction applies to
the category of semi-weighted nets, i.e., P/T nets in which the initial marking
is a set and transitions can generate at most one token in each post-condition.
Besides strictly including safe nets, semi-weighted nets also offer the advantage

10

of being characterized by a “static condition”, not involving the behaviour but
just the structure of the net.

2.3 Reconciling deterministic processes and unfolding

Since the unfolding is essentially a “maximal” nondeterministic process of a
net, one would expect the existence of a clear relation between the unfolding
and the deterministic process semantics. Indeed, as shown in [35], the domain
associated to a net N through the unfolding construction can be equivalently
characterized as the set of deterministic processes of the net starting from the
initial marking, endowed with a kind of prefix ordering. This result is stated in an
elegant categorical way by resorting to concatenable processes. Given a (semi-
weighted) net N with initial marking m, the comma category 〈m ↓ CP[N]〉
is shown to be a preorder, whose elements are intuitively finite computations
starting from the initial state, and if ϕ1 and ϕ2 are elements of the preorder, ϕ1 ¹
ϕ2 when ϕ1 can evolve to ϕ2 by performing appropriate steps of computation.
Then the ideal completion of such preorder, which includes also the infinite
computations of the net, is shown to be isomorphic to the domain generated
from the unfolding.

Deterministic processes
$$

P/T Nets

00

00

Domains

Unfolding

::

3 Concurrent semantics: from nets to graph grammars

In this section, guided by the relationship between graph grammars and Petri
nets, we describe the way the semantical framework described in the previous
section has been generalized to graph grammars.

The main complications which arise in the treatment of graph grammars are
related to the possibility of expressing rewritings where part of the state is pre-
served and, just for the dpo approach, to the need of preserving the consistency
of the graphical structure of the state, a constraint which leads to the mentioned
“inhibiting effects” between production applications. Therefore, not surprisingly,
contextual and inhibitor nets play an essential role in the extension in that they
offer a technically simple framework, where problems which are conceptually
relevant to graph grammars can be studied in isolation.

Intuitively, we can organize the considered formalisms in an ideal partial
ordering leading from Petri nets to graph transformation systems

Petri
nets

// Contextual
nets

//

**

Inhibitor
nets

// dpo graph
grammars

spo graph
grammars

11

and for each one of such formalisms we develop a similar theory by following a
common schema which can be summarized as follows:

1. We define a category of systems Sys, where morphisms, which basically origin
from an algebraic view of the systems, can be interpreted as simulations.

2. We develop an unfolding semantics, expressed as a coreflection between Sys

and a subcategory O-Sys, where objects, called “occurrence” systems, are
suitable systems exhibiting an acyclic behaviour. From the unfolding we
extract an (appropriate kind of) event structure, the transformation being
expressed as a functor from O-Sys to the considered category of event struc-
tures ES. In the case of contextual nets and of spo grammars this functor
establishes a coreflection between O-Sys and ES. Finally, a connection is
established with domains and pes by showing that the category ES of gen-
eralized event structures coreflects into the category Dom of domains.
Summing up, we obtain the following chain of functors, leading from systems
to event structures and domains

Sys ⊥ // O-Sys //
?
_oo

ES ⊥ // Dom
oo

∼ // PES
oo

The last step in the chain is the equivalence between the categories Dom of
domains and PES of prime event structures, due to Winskel.

3. We introduce a notion of deterministic process for systems in Sys. Relying
on the work in point (2), a general (possibly nondeterministic) process of a
system S is defined as an “occurrence system” in O-Sys, plus a (suitable
kind) of morphism back to the original system S (the prototypical example
of nondeterministic process being the unfolding). Then, roughly speaking, a
process is deterministic if it contains no conflict, or, in other words, if the
corresponding event structure has a configuration including all the events.
The deterministic processes of a system S are turned into a category CP[S],
by endowing them with a notion of concatenation, modelling the sequential
composition of computations.

4. We show that the deterministic process and the unfolding semantics can
be reconciled by proving that, as for ordinary nets, the comma category
〈Initial State ↓ CP[S]〉, is a preorder whose ideal completion is isomorphic
to the domain obtained from the unfolding, as defined at point (2).

It is fair to point here that the steps (3) and (4) above have not been com-
pletely worked out for spo grammars.

Observe that, differently from what happens for ordinary nets, the unfold-
ing semantics (essentially based on nondeterministic processes) is defined be-
fore developing a theory of deterministic processes. To understand why, note
that for ordinary nets the only source of nondeterminism is the the presence of
pairs of different transitions with a common precondition, and therefore there
is an obvious notion of “deterministic net”. When considering contextual nets,
inhibitor nets or graph grammars the situation becomes less clear: the depen-
dencies between event occurrences cannot be described only in terms of causality
and conflict, and the deterministic systems cannot be given a purely syntactical

12

Grammar G1

���
�

���
�

���
�

�������
�

		

���
�

�
�

�
�

�
�

������
���

������
���
������
���

������������ ����

A B B B

TG = Gin =

q3

q2

q1

q1

q3
q2

B

A

A
L

B

L

BA L

Fig. 7. The safe graph grammar G1 and its net-like representation.

characterization. Consequently, a clear understanding of the structure of non-
deterministic computations becomes essential to be able to single out which are
the good representatives of deterministic computations.

4 Some insights into the technical problems

For each one of the considered models the core of the developed theory is
point (2) and, more specifically, the formalization of the kind of dependencies
among events which can occur in their computations. As mentioned above, such
dependencies cannot be faithfully reduced to causality and conflict and thus ap-
propriate generalizations of Winskel’s event structures must be defined. Next we
give some more details on the specific problems that we found for each formalism
and on the way we decided to face them.

4.1 From prime to asymmetric event structures

In the case of algebraic graph grammars, both in the dpo and in the spo ap-
proaches, the presence of a context in a production, i.e., of items that are needed
for the application of a production but which are not consumed, introduces a
new kind of dependency among production occurrences, making prime event
structures not completely satisfactory as a semantic domain.

As an example, consider the (typed) dpo graph grammar G1 of Figure 7. On
the left-hand side, the grammar is represented as usual in the dpo approach,
consisting of a set of productions (spans of injective graph morphisms) and a
start graph, all of them typed over the type graph TG (i.e., equipped with a
homomorphism to TG), which, in this case, coincides with the start graph Gin.
On the right-hand side, a net-like pictorial representation of the same grammar
is shown, where the productions and the items of the type graph play the rôle of
transitions and of places of a Petri net, respectively. This net-like representation
can be given for strongly safe graph grammars, which, intuitively, are the graph
grammar counterpart of safe nets (see [10] for more details).

13

N1

76540123•

s0

²²
t1 76540123•

s

²²
t2

e′2 # e1

e′′2

(a) (b)

Fig. 8. A simple contextual net and a prime event structure representing its behaviour.

Let us focus on productions q1 and q2. Both are applicable to the start graph
Gin. But notice that if we apply q2 first, then q1 cannot be applied anymore
because q2 deletes node B; on the other hand, if we apply q1 first, then q2 can
still be applied. This phenomenon has been extensively studied for contextual
nets. For example, in the net N1 of Fig. 8(a), transitions t1 and t2 play the same
rôle as productions q1 and q2 of the above grammar, and place s, which is a
context of q1 and a precondition of q2, is like node B above.

The possible firing sequences in net N1 are given by the firing of t1, the
firing of t2, and the firing of t1 followed by t2, denoted t1; t2, while t2; t1 is
not allowed. This situation cannot be modelled in a direct way within a prime
event structure: t1 and t2 are neither in conflict nor concurrent nor causally
dependent. Simply, as for an ordinary conflict, the firing of t2 prevents t1 to be
executed, so that t1 can never follow t2 in a computation, but the converse is not
true, since t2 can fire after t1. This situation can be interpreted naturally as an
asymmetric conflict between the two transitions. Equivalently, since t1 precedes
t2 in any computation where both transitions fire, t1 acts as a cause of t2 in
such computations. However, differently from a true cause, t1 is not necessary
for t2 to be fired. Therefore we can also think of the relation between the two
transitions as a weak form of causality.

A possible way to encode this situation in a pes is to represent the firing
of t1 with an event e1 and the firing of t2 with two distinct mutually exclusive
events: e′2, representing the execution of t2 that prevents t1, thus in conflict with
e1, and e′′2 , representing the execution of t2 after t1, thus caused by e1. Such pes

is depicted in Fig. 8.(b), where causality is represented by a plain arrow and
conflict is represented by a dotted line, labelled by #. However, this solution
is not completely satisfactory with respect to the interpretation of contexts as
“read-only resources”: since t1 just reads the token in s without changing it, one
would expect the firing of t2, preceded or not by t1, to be represented by a single
event.

In order to provide a more direct, event based representation of contextual
net computations, asymmetric event structure (aes) were introduced in [7]. An
aes, besides of the usual causality relation ≤ of a prime event structure, has a
relation ↗, called the asymmetric conflict relation, that allows one to specify

14

Grammar G2

���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

���
�

���
� ���� ����

���
�

���
�

���
�

���
�

 !
!

""#
#

$$%
%

&'&&'&
&'&
('(('(
('(

)'))')
)')
*'**'*
'

++,
,

--.
.

q4

L

L

A B
q1

q3

TG =

q2

C

L BA

q2 q3

q4

q1

B

AA BBA B

CBA CB

BA

B C B

B B

L

L

Gin =

Fig. 9. Graph grammar G2 and its net-like representation.

the new kind of dependency described above simply as t1 ↗ t2. Informally, in an
aes each event has a set of “strong” causes (given by the causality relation) and
a set of weak causes (due to the presence of the asymmetric conflict relation).
To be fired, each event must be preceded by all strong causes and by a (suitable)
subset of the weak causes. Therefore, differently from pes’s, an event of an aes

can have more than one history. Moreover the usual symmetric binary conflict
e#e′ can be represented easily by using cycles of asymmetric conflicts: if e↗ e′

and e′ ↗ e then clearly e and e′ can never occur in the same computation, since
each one should precede the other.

The main result of [7] shows that Winskel’s functorial semantics for safe nets
can be generalized to the following, similar chain of adjuctions for contextual
nets, where asymmetric event structures play a central rôle.

Semi-weighted
Contextual

Nets Ua

⊥ //
Occurrence
Contextual

Nets Ea

⊥ //
?
_oo Asymmetric

Event
Structures La

⊥ //

Naoo
Domains

Paoo

4.2 From asymmetric to inhibitor event structures

Unfortunately, aes’s are not yet sufficient to capture all relationships among
the production occurrences in a dpo graph grammar. Consider grammar G2 of
Figure 9 (in the net-like representation, on the right-hand side, nodes with empty
interior and dashed edges can be seen as empty places). More specifically, let us
focus on the relationships among the various productions. Notice that q4 can be
applied to the start graph Gin consisting of nodes B and C, but if we first apply
q1, then the application of q4 is prevented by the dangling condition: removing
the node B would leave edge L without its target node, so, basically, q4 cannot
be applied for ensuring a structural property of the state. Production q4 could
be applied again if we first delete edge L, by applying production q2 or q3.

Such complex relationships have been analyzed in depth for inhibitor Petri
nets. Consider the inhibitor net N2 in Fig. 10 where the place s, which inhibits

15

transition t, is in the post-set of transition t′ and in the pre-set of t0. The
execution of t′ inhibits the firing of t, which can be enabled again by the firing of
t0. Thus t can fire before or after the “sequence” t′; t0, but not in between the two
transitions. Roughly speaking there is a sort of atomicity of the sequence t′; t0
with respect to t. The situation can be more involved since many transitions t0,

76540123•

²²76540123•

²²

t′

²²
t ©²ª±­°®̄ 76540123 s

²²
t0

76540123•

²²76540123•

²²

t′

²²
t ©²ª±­°®̄ 76540123 s

²² ##FF
FF

F

{{xx
xx

x

t0 . . . tn

N2 N3

Fig. 10. Two inhibitor nets.

. . . , tn may have the place s in their pre-set (see the net N3 in Fig. 10). Therefore,
after the firing of t′, the transition t can be re-enabled by any of the conflicting
transitions t0, . . . , tn. This leads to a sort of or-causality, but only when t fires
after t′. With a logical terminology we can say that t causally depends on the
implication t′ ⇒ t0 ∨ t1 ∨ . . . ∨ tn.

In order to model these complex relationships in a direct way, a generalization
of pes’s and aes’s has been introduced, called inhibitor event structures (ies’s).
A ies is equipped with a ternary relation, called DE-relation (disabling-enabling
relation) and denoted by ¡̈¢§£¦¤¥Â

(·, ·, ·), which allows one to model the dependencies
between transitions in N3 as ¡̈¢§£¦¤¥Â ({t′}, t, {t0, . . . , tn}). It is possible to show that
the DE-relation is sufficient to represent both causality and asymmetric conflict
and thus, concretely, it is the only relation of an ies.

Using inhibitor event structures and the DE-relation as basic tools, a
functorial semantics in Winskel’s style has been proposed for (semi-weighted)
inhibitor nets in [4,3] as summarised by the following diagram:

Semi-weighted
Inhibitor

Nets Ui

⊥ //
Occurrence
Inhibitor

Nets
Ei

//
?
_oo Inhibitor Event

Structures
Li

⊥ // Domains

Pioo

Besides of the fact that inibitor event structures replace asymmetric ones, even at
this level of abstraction, it is possible to see another relevant difference between
the functorial semantics of semi-weighted inhibitor nets and the simpler case of
contextual nets. In fact, the functor from the category of inhibitor occurrence
nets to the category of ies’s does not have a left adjoint and thus the whole
semantic transformation is not expressed as a coreflection. Indeed, by making

16

only very mild assumptions, it has been shown in [3] that such a left adjoint does
not exist, essentially because of the presence of a restricted kind of or-causality
in inhibitor occurrence nets.

4.3 Lifting the results to dpo graph grammars

When we finally turn our attention to dpo graph grammars we are rewarded of
the effort spent on generalized Petri nets, since basically nothing new has to be
invented. Inhibitor event structures are expressive enough to model the structure
of dpo graph grammar computations and the theory developed for inhibitor nets
smoothly lifts, at the price of some technical complications, to dpo grammars.
Furthermore, not only the process and the unfolding semantics developed for
dpo graph grammars are shown to agree, but also they have been shown to
be consistent with the classical theory of concurrency for dpo grammar in the
literature, basically relying on shift-equivalence. More specifically:

1. A Winskel’s style semantics for dpo graph grammars is presented in [2,9,10],
as summarized by the following diagram:

DPO Graph
Grammars

Ug

⊥ //
DPO Occurrence

Grammars Eg

//
?
_oo Inhibitor Event

Structures
Li

⊥ // Domains

Pioo

The unfolding construction associates to each graph grammar a nondeter-
ministic occurrence grammar describing its behaviour. Such a construction
establishes a coreflection between suitable categories of dpo grammars and
the category of occurrence grammars. The unfolding is then abstracted to
an inhibitor event structure and finally to a prime algebraic domain (or
equivalently to a prime event structure).

2. Nondeterministic graph processes are introduced in [2,10], generalizing the
deterministic processes of [21]. The notion fits nicely in the theory since a
graph process of a dpo grammar G is defined simply as a (special kind of)
grammar morphism from an occurrence grammar to G, while in [21] an ad
hoc mapping was used.

3. Concatenable graph processes are introduced in [8], as a variation of deter-
ministic, finite processes, endowed with an operation of concatenation which
models sequential composition of computations. The appropriateness of this
notion is confirmed by the fact that the category CP[G] of concatenable pro-
cesses of a dpo grammar G turns out to be isomorphic to the truly concurrent
model of computation of G, as defined in [22] using the classical notions of
shift-equivalence and of traces.

4. The event structure obtained via the unfolding is shown in [9] to coincide
both with the one defined in [20] via a comma category construction on the
category of concatenable derivation traces, and with the one proposed in [46],
based on a deterministic set-theoretical variant of the dpo approach. These
results, besides confirming the appropriateness of the proposed unfolding
construction, give an unified view of the various event structure semantics
for the dpo approach to graph transformation.

17

4.4 Unfolding semantics of spo graph grammars

Recently, a Winskel’s style unfolding semantics has been developed for the spo

approach to graph transformation as well, as reported in [12]. Apart from the
technical differences in the way rules are defined, the main difference with re-
spect to the dpo approach lies in the fact that there are no conditions on rule
applications, i.e., whenever a match is found the corresponding rule can always
be applied.

It turned out that a coreflective unfolding semantics for spo graph grammars
can be defined, leading to the following chain of adjunctions:

SPO Graph
Grammars

Us

⊥ //
SPO Occurrence

Grammars
Es

⊥ //
?
_oo Asymmetric Event

Structures
La

⊥ //

Noo
Domains

Paoo

The first step of the above diagram is obtained as a slight variation of the unfold-
ing construction for spo grammars proposed in [43]. The rest of the construction
differs from and improves that for dpo graph grammars recalled above, for the
following facts:

– Due to the absence of the dangling condition, asymmetric event structures
are sufficient to represent adequately the dependencies among production
occurrences: inhibitor event structures are not necessary.

– A novel construction, inspired by the work on contextual nets [7], allows us
to build a canonical occurrence spo graph grammar N (A) from any given
asymmetric event structure A. This provides the left-adjoint functor (indeed
a coreflection) which is missing in the corresponding chain for inhibitor nets
and dpo grammars. Given an asymmetric event structure A, the correspond-
ing grammar has the events of A as productions. The graph items are freely
generated in order to induce the right kind of dependencies between events.
More specifically, first the nodes of the graph are freely generated according
to the dependencies in A. Then for any pair of nodes, edges connecting the
two nodes are freely generated according to the dependencies in A and the
specific restrictions of the spo rewriting mechanism.

5 Conclusions

In this paper we surveyed several results proposed by our coauthors and ourselves
in a series of papers, contributing to the development of a systematic theory of
concurrency for algebraic graph grammars, aimed at closing the existing gap
between graph transformation systems and Petri nets. A second achievement of
this research activity is the development of an analogous unifying theory for two
widely diffused generalizations of Petri nets, namely contextual and inhibitor
nets. In fact, while a theory of deterministic processes for these kind of nets was
already available in the literature (see, e.g., [37,15]), the Winskel-style semantics,
comprising the unfolding construction, its abstraction to a prime algebraic do-
main semantics, as well as its relation with the deterministic process semantics
were missing.

18

The truly concurrent semantics for graph grammars (and generalized nets)
is intended to represent the basis for defining more abstract observational se-
mantics to be used for the analysis and verification of the modelled systems.
For instance, the notions of process and of event structure associated to a pro-
cess naturally lead to the definition of a behavioural equivalence, called history
preserving bisimulation (HP-bisimulation) [48], which, differently from ordinary
bisimulation, takes into account the properties of concurrency of the system. A
generalization of this approach to graph grammars has been proposed in [11].

The unfolding semantics of Petri nets has been used successfully for the anal-
ysis of finite-state systems: as shown in [34], a finite fragment can be extracted
from the (possibly infinite) unfolding, which is still useful to study some relevant
properties of the system, like reachability, deadlock freeness, and liveness and
concurrency of transitions. Such an approach has been extended to contextual
nets in [50]. Inspired by this line of research, recently we started to develop, in
joint works with Barbara and Bernhard König, a methodology for the verifica-
tion of algebraic graph grammars using finite approximations of the unfolding,
and a suitable graph logic for expressing relevant properties. Papers [5,13] ad-
dress the verification of possibly infinite-state systems, while [6] is more closely
related to [34] as it consider finite-state systems only.

Finally, although we considered only graph rewriting acting on directed
(typed) graphs, it would be interesting to understand if the presented con-
structions and results can be extended to more general structures. While the
generalization to hypergraphs looks trivial, developing a similar theory for more
general structures and for abstract categories (e.g., High Level Replacement Sys-
tems [26], or the recently introduced Adhesive Categories [32]) is not immediate
and represents an interesting topic of further investigation.

References

1. T. Agerwala and M. Flynn. Comments on capabilities, limitations and “correct-
ness” of Petri nets. Computer Architecture News, 4(2):81–86, 1973.

2. P. Baldan. Modelling concurrent computations: from contextual Petri nets to graph
grammars. PhD thesis, Department of Computer Science, University of Pisa, 2000.
Available as technical report n. TD-1/00.

3. P. Baldan, N. Busi, A. Corradini, and G.M. Pinna. Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Science,
to appear, 2004.

4. P. Baldan, N. Busi, A. Corradini, and G.M. Pinna. Functorial concurrent semantics
for Petri nets with read and inhibitor arcs. In C. Palamidessi, editor, CONCUR’00
Conference Proceedings, volume 1877 of LNCS, pages 442–457. Springer Verlag,
2000.

5. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR 2001, pages 381–395. Springer,
2001. LNCS 2154.

6. P. Baldan, A. Corradini, and B. König. Veryfing Finite-State Graph Grammars:
an Unfolding-Based Approach. In Proc. of CONCUR 2004, pages 83–98. Springer,
2004. LNCS 3170.

19

7. P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric
event structures and processes. Information and Computation, 171(1):1–49, 2001.

8. P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes: relating
processes and derivation traces. In Proceedings of ICALP’98, volume 1443 of LNCS,
pages 283–295. Springer Verlag, 1998.

9. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In W. Thomas, editor, Proceedings of FoSSaCS ’99,
volume 1578 of LNCS, pages 73–89. Springer Verlag, 1999.

10. P. Baldan, A. Corradini, and U. Montanari. Unfolding of double-pushout graph
grammars is a coreflection. In G. Ehrig, G. Engels, H.J. Kreowsky, and G. Rozem-
berg, editors, TAGT’98 Conference Proceedings, volume 1764 of LNCS, pages 145–
163. Springer Verlag, 1999.

11. P. Baldan, A. Corradini, and U. Montanari. Bisimulation Equivalences for Graph
Grammars. InFormal and Natural Computing, W. Brauer, H. Ehrig, J. Karhumäki,
A. Salomaa eds., number 2300 in LNCS, pages 158–190. Springer Verlag, 2002.

12. P. Baldan, A. Corradini, U. Montanari, and L. Ribeiro. Coreflective Concurrent
Semantics for Single-Pushout Graph Grammars. Proceedings WADT 2002, volume
2755 of LNCS, pages 165–184. Springer Verlag, 2002.

13. P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Proceedings of the First International Conference on Graph Transformation (ICGT
2002), volume 2505 of LNCS, pages 14–30. Springer, 2002.

14. F. Bueno, M. Hermenegildo, U. Montanari, and F. Rossi. Partial order and con-
textual net semantics for atomic and locally atomic CC programs. Science of
Computer Programming, 30:51–82, 1998.

15. N. Busi. Petri Nets with Inhibitor and Read Arcs: Semantics, Analysis and Applica-
tion to Process Calculi. PhD thesis, University of Siena, Department of Computer
Science, 1998.

16. S. Christensen and N. D. Hansen. Coloured Petri nets extended with place capac-
ities, test arcs and inhibitor arcs. In M. Ajmone-Marsan, editor, Applications and
Theory of Petri Nets, volume 691 of LNCS, pages 186–205. Springer Verlag, 1993.

17. A. Corradini. Concurrent graph and term graph rewriting. In U. Montanari and
V. Sassone, editors, Proceedings of CONCUR’96, volume 1119 of LNCS, pages
438–464. Springer Verlag, 1996.

18. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Abstract graph
derivations in the double-pushout approach. In H.-J. Schneider and H. Ehrig,
editors, Proceedings of the Dagstuhl Seminar 9301 on Graph Transformations in
Computer Science, volume 776 of LNCS, pages 86–103. Springer Verlag, 1994.

19. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. An event struc-
ture semantics for safe graph grammars. In E.-R. Olderog, editor, Programming
Concepts, Methods and Calculi, IFIP Transactions A-56, pages 423–444. North-
Holland, 1994.

20. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. An event structure
semantics for graph grammars with parallel productions. In J. Cuny, H. Ehrig,
G. Engels, and G. Rozenberg, editors, Proceedings of the 5th International Work-
shop on Graph Grammars and their Application to Computer Science, volume 1073
of LNCS. Springer Verlag, 1996.

21. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.

20

22. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-
braic Approaches to Graph Transformation I: Basic Concepts and Double Pushout
Approach. In Rozenberg [45], chapter 3.

23. N. De Francesco, U. Montanari, and G. Ristori. Modeling Concurrent Accesses to
Shared Data via Petri Nets. In Programming Concepts, Methods and Calculi, IFIP
Transactions A-56, pages 403–422. North Holland, 1994.

24. P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of net com-
putations and processes. Acta Informatica, 33:641–647, 1996.

25. H. Ehrig. Tutorial introduction to the algebraic approach of graph-grammars. In
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, editors, Proceedings of the 3rd
International Workshop on Graph-Grammars and Their Application to Computer
Science, volume 291 of LNCS, pages 3–14. Springer Verlag, 1987.

26. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concur-
rency in High-Level Replacement Systems. Mathematical Structures in Computer
Science, 1:361–404, 1991.

27. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation II: Single pushout approach and
comparison with double pushout approach. In Rozenberg [45], chapter 4.

28. U. Golz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

29. R. Janicki and M. Koutny. Invariant semantics of nets with inhibitor arcs. In
Proceedings of CONCUR ’91, volume 527 of LNCS. Springer Verlag, 1991.

30. R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and Compu-
tation, 123:1–16, 1995.

31. H.-J. Kreowski. Manipulation von Graphmanipulationen. PhD thesis, Technische
Universität Berlin, 1977.

32. S. Lack and P. Sobociński. Adhesive categories. In I. Walukiewicz, editor, Foun-
dations of Software Science and Computation Structures, volume 2987 of LNCS,
pages 273–288. Springer, 2004.

33. M. Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109:181–224, 1993.

34. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
35. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics

for Place/Transition Petri nets. Theoretical Computer Science, 153(1-2):171–210,
1996.

36. J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Place/Transition
Petri nets. Mathematical Structures in Computer Science, 7:359–397, 1997.

37. U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6), 1995.
38. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoretical Computer Science, 13:85–108, 1981.
39. J.L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall, 1981.
40. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Schriften des Institutes

für Instrumentelle Matematik, Bonn, 1962.
41. C.A. Petri. Non-sequential processes. Technical Report GMD-ISF-77-5, Gesellshaft

für Mathematik und Datenverarbeitung, Bonn, 1977.
42. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer Verlag, 1985.
43. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technische Universität Berlin, 1996.
44. G. Ristori. Modelling Systems with Shared Resources via Petri Nets. PhD thesis,

Department of Computer Science - University of Pisa, 1994.

21

45. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation. Vol. 1: Foundations. World Scientific, 1997.

46. G. Schied. On relating rewriting systems and graph grammars to event structures.
In H.-J. Schneider and H. Ehrig, editors, Proceedings of the Dagstuhl Seminar
9301 on Graph Transformations in Computer Science, volume 776 of LNCS, pages
326–340. Springer Verlag, 1994.

47. D. S. Scott. Outline of a mathematical theory of computation. In Proceedings of
the Fourth Annual Princeton Conference on Information Sciences and Systems,
pages 169–176, 1970.

48. R. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and
refinement of actions. In A. Kreczmar and G. Mirkowska, editors, Proceedings of
MFCS’89, volume 39 of LNCS, pages 237–248. Springer Verlag, 1989.

49. W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In
Proceedings of ICALP’97, volume 1256 of LNCS, pages 538–548. Springer Verlag,
1997.

50. W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with
read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages 501–516.
Springer-Verlag, 1998.

51. G. Winskel. Event Structures. In Petri Nets: Applications and Relationships to
Other Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer Ver-
lag, 1987.

22

