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Abstract: Hans-&rg Kreowski was among the first researchers to point out that
Place/Transition Petri nets can be interpreted as instances of Gragiorraation
Systems, a fact now considered folklore. We elaborate on this obseryvdis
cussing how several different models of Petri nets can be encodbfllig into
Graph Transformation Systems. The key idea we pursue is that the roeliregés
uniquely determined, and distinct net models are mapped to alternativeaahpso

to graph transformation.

Keywords: Petri nets, graph transformation, single and double pushout approach

1 Introduction

The success of Petri nets as specification formalism for concurredistributed systems is

due (among other things) to the fact that they can describe in a naturatheagvolution of
systems whose states have a distributed nature. For example, in a Plasi@itiraret like the

one depicted in Figl, a state of the system is represented by a marking, i.e., a set of tokens
distributed among a set of places. Hence the state is intrinsically distributedaftowing for

an easy explicit representation of phenomenarikgual exclusionconcurrencycausality and
non-determinism

(a) (b)
Figure 1: (a) A marked P/T net. (b) The marking after the firing of transition

Nets and their semantics are therefore a reference point for any fommatsnded to describe
concurrent and distributed systems, and thus also for Graph Traretfon Systems (GTSs).

* Research partially supported by the MIUR PRIN 2008 SisteR.
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From Petri Nets to Graph Transformation Systems Eﬁ

Figure 2: Encoding of nets as grammars according to Kreowski.

Indeed, it belongs to the folklore that Graph Transformation Systemsecaadn as a generali-
sation of Petri nets. The first formalization of this intuition, to our knowledgges proposed by
Hans-&rg Kreowski in Kre81] using the double-pushoubpo) approach, and it is illustrated
in Fig. 2. The marked net of Figl (a) is represented in Fi@ by the graphKr(Mp) having
three kinds of nodes (for transitions, places, and tokens, resdgrtwvel where edges connect
either places and transitions (modelling the causal dependency relatitolems and places
(determining the place where a token lies). Transiti@represented by rulér (t) (the top row
of the figure): The rule does not modify the topological structure of thenwdes and edges
corresponding to places, transitions and causal dependency relatials@in the interface), but
only deletes and creates the nodes representing tokens together witlgéisecednecting them
to places. It is easy to check that the rule is applicable to gkagMp) (the gluing conditions

are satisfied), and since the two squares in the figure are pushout&r {iv) K Kr(My);
moreover, the derived grapér (M;) represents the marking;, such thatp [t) M;.

Several encodings of Petri nets as GTSs have been proposed sncand it is impossible
even to summarize them here: for some of the earliest, Ge®f] and the references therein.
In this paper we elaborate on this idea, starting from the observation thate®gTare only
one (a noticeable one) among the alternative models of Petri nets whichhbhameproposed
along the years. Sticking to “low level” Petri nets, other models of nets may atonost one
token at a time in a place, as f@ondition/Event (C/E) nef88C92 or Elementary Net Systems
(ENS) [RE9], and correspondingly a transition can fire only if the post-conditiongamety. In
the so-calledConsume-Produce-ReadKR) nets|[BBCG0g, more permissively, the transition
can fire anyhow, but the token produced on a place is “coalesced” vatssibly pre-existing
token. Orthogonally, nets of all kinds can be equipped wetid or inhibitor arcs, specifying
that the presence or the absence of a token on a place is necess$aiygfobut it does not affect
the result CH93 MR95, JK95 Vog97, AF73]. Another type of arcs, calleseset arc§AK77],
allows to specify that the firing of a transition deletes all the tokens, if aog fx given place.

What about representing these models of nets as GTSs? In principld,th#m can be
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encoded usingPo rewriting, because the latter is Turing completd’D1]. We prefer to follow
a different approach, which on the one hand allows us to keep the iegoagty simple for all
the models of nets mentioned above, and on the other hand exploits the faadsthtor GTSs
alternative formalisms have been proposed. From the GTS side we shialtcstice family
of algebraic approaches, among which we consider the classical samgledouble-pushout
approachesljow93 EPS73, and the less known Subobject Transformation Systebitj04g.
The latter basically consists of rewriting in the lattice of subgraphs of a gjkaoh, and it turns
out to be the natural framework for encoding net models which allow at orestoken on a
place (where a state is a subset of places).

We encode nets using a very simple kind of graphs, containing nodeshang edges only.
A marking of a net is represented by a set of edges, one for each kel attached to a node
representing a place. It is thus reminiscent of the encoding by Krealiskissed above, even
if the transitions are not represented explicitly in the states: They are ethardy as rules of
the GTS. Interestingly, inhibitor and reset arcs can be encoded exadtig same way: The
different behaviour is determined by the choice of the GTS approach.

The following table summarizes the results we shall present. For each ofrdeeliasic net
models, we indicate the GTS approach that can be used to encode it inqgeeseead, inhibitor
and/or reset arcs: note that we do not allow for nets which include boihiimhand reset arcs.

Read arcs Read + Inhibitor Read + Reset
P/T nets DPOOr sPO DPO SPO
ENS STSOr STS= STS STS=
CPR nets STSn Or STSS, STSh STSS

Table 1: Summary of the proposed encodings.

The few variants of theTsapproach referred to in the table will be introduced later on. The
encodings of P/T Petri nets with read, inhibitor and reset arcs as GTigowginally discussed
in [BCMO05]. The present paper provides a systematic view of such encodingsngi¢hem in
a much more general framework which recomprises Elementary Net Systeluoganets.

The paper is structured as follows. Sectibpresents the three GTS approaches we deal with
in our work, and it is complemented in SectiBrby the kinds of nets for which we present an
encoding. Sectiod discusses these encodings, and the correspondence betweertiadteta
models and GTS approaches. Sectiodraws some conclusions and offers pointers to future
work.

2 Algebraic approaches to graph transformation

This section introduces some basic notions concerning the algebraic forméisgraph rewrit-
ing considered in the paper. We concentrataygped Graph Transformations Syste(@gss),
both in thesingle-pushou(spP9 [Low93 EHK'97] and thedouble-pushou{pro) [EPS73
CMR*97] approach, and oBubobject Transformation Syste(ssss) [CHS0§. Typed rewrit-
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From Petri Nets to Graph Transformation Systems Eﬁ

ing is a well-established variant of the classical proposals where rewtékes place on so-
called typed graphs, i.e., graphs labelled over a structure which is itseli@ gEMR96,
LKW93].

2.1 Graphs and graph morphisms

We introduce here the basic concepts concerning graphs and theirismspH-or the sake of
simplicity, our introduction to GTSs will deal with unary hyper-graphs orilycs they are just
what is needed for the encoding of Petri nets that we are going to préséeed, all the remarks
in this section could be generalized to any kind of (hyper-)graphs aitallith some additional
care, to anyadhesivecategory [S05. Similarly, the encodings presented later would work in
standard categories of (hyper-)graphs.

Given a partial functionf : A — B we denote bydom(f) its domain i.e., the sefac A |
f(a) is defined. Let f,g: A — B be two partial functions. We writé < g whendom(f) C
dom(g) and f (x) = g(x) for all x € dom(f).

Definition 1 (graph and graph morphism) @inary) graph Gis a triple G = (Vg, Eg, Cg),
whereVg is a set of noded s is a set of edges ant; : Eg — Vg is a function mapping each
edge to the node it is connected to.

A partial graph morphism f G — H is a pair of partial functiong = (fy : Ng — Ny, fg :
Ec — En) such thaty o fg < fyocg (see Fig3.(a))

We denote byPGraph the category of (unlabelled) graphs and partial graph morphisms. A
morphism is calledotal if both components are total, and the corresponding subcategory of
PGraph is denoted byGraph.

Notice that if a partial graph morphisinis defined over an edge, then it must be defined on
the node the edge is connected to: This ensures that the domfis afwell-formed graph.

Definition 2 (subgraph lattice) A grapls is asubgraphof H, written G C H, if Ng C Ny,
Es C Ey, and the inclusions form a graph morphism. The subgraphksafdered by inclusion
form a distributive lattice, denoteflub(H), where the meet and the joinU are defined as
component-wise intersection and union, respectively.

Given graphdH andG C H, we will write, a bit informally,H \ G to denote the set of items
(nodes and edges) bf which do not belong te.

f
EG—E>EH |G1‘4>’G2|

] D

NGf4>NH
N

(a) (b)
Figure 3: Diagrams for partial graph and typed graph morphisms.
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Given a graphr, atyped graph Gover T is a graph|G|, together with a total morphism
tc : |G| — T. A partial morphismbetweenT-typed graphsf : G; — G is a partial graph
morphismf : |G1| — |Gz| consistent with the typing, i.e., such thgt > tg, o f (see Fig3.(b)).

A typed graphG is calledinjectiveif the typing morphisnig is injective. The category of -
typed graphs and partial typed graph morphisms is denotdd®graph.

Given a partial typed graph morphisft G; — G, we denote bydom f) the domain off
typed in the obvious way. Given a subgrapbf T, i.e., an element dub(T ), we often consider
it as a graph typed ovér by the inclusion. Since we work only with typed notions, we usually
omit the qualification “typed”.

2.2 Double-pushout rewriting

Chosen a type graph, a(T-typed)dPorule g= (L <|—> K< R) is a pair ofinjective (total,
T-typed) graph morphisms K — L andr : K — R, where|L|, |K| and|R]| are finite graphs. The
graphd., K andR are called théeft-hand sidetheinterface and theright-hand sideof the rule,
respectively.

Definition 3 (bpodirect derivation) Given a grapB, abpPorule g, and amatch(i.e., a total
graph morphismy : L — G, aDbpPo direct derivation from G to H using g (based on epists,
written G :>g'°° H, if the diagram

q: LQK%R

| [

G¢4—D——H

can be constructed, where both squares are pushotutsiraph.

Given an injective morphisrh: K — L and a matchy: L — G as in the above diagram,
their pushout complemelfite., a graptD with morphismsk andb such that the left square is a
pushout) exists if and only if thgluing conditionis satisfied. This consists of two parts:

e theidentification conditionrequiring that if two distinct nodes or edgesloére mapped
by g to the same image, then both are in the imagke of

¢ the dangling condition stating that no edge i@\ g(L) should be connected to a node
in g(L\ 1(K)) (because otherwise the application of the rule would leave such an edge
“dangling”).

2.3 Single-pushout rewriting

Chosen a type graph, a (T -typed)sporule g= (L . R) is an injective partial typed graph
morphismr : L — R. The graph4. andR are called théeft-hand sideand theright-hand sideof
the rule, respectively.

Definition 4 (spodirect derivation) Given a grapB, ansporule r, and amatch(i.e., a total
graph morphismyy : L — G, we say that there is asPodirect derivation from G to H using r
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From Petri Nets to Graph Transformation Systems Eﬁ

(based on g)written G =>F°H, if the following is a pushout square -PGraph.

Roughly speaking, the rewriting step removes from the gapie image of the items of the
left-hand side which are not in the domainrginamelyg(L \ dom(r)), adding the items of the
right-hand side which are not in the imagerphamelyR\ r(dom(r)). The items in the image
of dom(r) are “preserved” by the rewriting step (intuitively, they are accessed‘ieaal-only”
manner).

A relevant difference with respect to tbeo approach is that here there is dangling condi-
tion preventing a rule to be applied whenever its application would leave danglgeseln fact,
as a consequence of the way pushouts are construcledPidraph, when a node is deleted by
the application of a rule also all the edges connected to such node araldsldtee rewriting
step, as a kind of side-effect. For instance, e the top row of Fig4, which consumes node
B, can be applied to the grapgh in the same figure. As a result both nd8end edge. are

removed.
Eahes
: — ]

Figure 4: Side-effects isPorewriting.

Even if the category?Graph has all pushouts, still we will consider a condition which corre-
sponds to thédentification conditiorof the bPo approach.

Definition 5 (valid match) Let :L — Rbearule. Amatcly: L — G of r is calledvalid when
for anyx,y € |L|, if g(X) = g(y) thenx,y € dom(r).

Conceptually, a match is not valid if it requires a single resource to be omtstwice, or
to be consumed and preserved at the same time. In the paper we consigsiahs where all
matches are valid: This is needed to have a resource-conscious itaggoréor derivations, i.e.,
where each resource is consumed at most once.

We close this section noting that for eazho rule we can easily construct @rorule, which
behaves like the original one when the dangling condition is satisfied. Cleaglyconverse
construction is possible as well.

. . |
Definition 6 (from bPoOto sporules, and vice versa) Let= (L« K < R) be aT-typedDPO
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rule. Then, the associatddtyped sporule, denoted by¥(q), is given by the partial graph
morphismrol*: L — R, wherel* : L — K is the partial inverse df, defined in the obvious way.

Vice versa, for & -typedsporuleq = (L R R), the associatedporule is defined ag/(q) =
(L <> dom(r) < R).

2.4 Subgraph Transformation Systems

In the typed approaches to graph transformation, the type graph plaejesanalogous to the set
of places in Petri nets. In particular, the constraint that a place canic@ttaost one token can
be translated into the requirement that the typing morphism is injective. Thiitimomis built-in
in the instance of th8ubobject Transformation Systampproach CHS0§ that we present here.
In the original formulation, the framework where rewriting is defined is theibigive lattice
of subobjects of a fixed object of an adhesive category. Such g@égpes unnecessary here,
and we instantiate the definitions to the case where the category of con€napis, which is
indeed adhesive. As a consequence, in the following we read ‘as Subgraphlransformation
Systems.
Chosen a type graph, a(T -typed)sTsrule gis a tripleq = (L,K,R), whereL,K,Re€ Sub(T),
K CLandK CR. The graphg, K andRare called théeft-hand sidetheinterfaceand theright-
hand sideof the rule, respectively.

Definition 7 (sTsdirect derivation) Given a grap® in Sub(T) and ansTsruleq= (L,K,R),
there is asTsdirect derivation from G to H using,qurittenG =5 H, if H € Sub(T) and there
existsD € Sub(T) such that

(i) LUD=G; (i) DUR=H;
(i) LND=K; (iv) DNR=K.

If such a graplD exists, we shall refer to it as tleentextof the direct derivatiors =>§TS H.

It is instructive to consider the relationship betweersas direct derivation and apodirect
derivation as introduced above. First observe 8ait(T) can be seen as a category where the
arrows are the inclusions, and a ryle K,R) can be seen as a spga= (LD K CR), i.e., a
pair of arrows inSub(T). Next, we shall say that there iscantact situatiorfor a rule (L, K, R)
at a subgraptc D L € Sub(T) if GANRZ L. Intuitively, this means that some items of the
subgraphG are created but not deleted by the rule: If we were allowed to apply thettles
match via ebpodirect derivation, the resulting object would contain the common part twide an
consequently the resulting morphismTovould not be injective; i.e., the result would not be a
subgraph off . The next result, presented iGIHS0§, shows that asTsdirect derivation is also
aDpPodirect derivation if no contact occurs.

Proposition 1 (sTs derivations are contact-free double pushoutsgt G and H be graphs in
Sub(T) and g= (L,K,R) be ansTsrule. Then G=3™H if and only if LC G, GNRC L,
and G=g3"°H, i.e., if there is a graph [x T-Graph such that the diagram below forms two
pushouts in TGraph.
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L+——K—>R

Lo | e |

G+——D——H

In the last result we used the fact thatsms rule can be considered aslatypedDpPo rule,

considering the inclusions as arrowsGmaph. Conversely, & -typedbporuleq = (L # K <
R) induces arsTsrule .#(q) obtained by considering the images|bf, |K| and|R] in the type
graph, i.e.. (q) = (t.(|L]), tk (IK]),tr(IR]))-

2.5 Other kinds of STSs

We introduce here three variations of the definitiorsoEdirect derivation, obtained by slightly
changing the properties satisfied by the context giaph

The first definition is reminiscent of theesqui-pushoupproach CHHKO06], and it leads to
anspclike approach foisTs where rules can be applied regardless of the dangling condition,
removing, as a side-effect, those edges which would remain dangling.

Definition 8 (sTs= direct derivation) Given a grapBin Sub(T) and ansTsruleq= (L,K,R),
there is arsTs= direct derivation from G to H using,qvritten G =™ H, if H € Sub(T) and

q
there exist® € Sub(T) such that

(i) LUD CG;

(i)’ D is the largest subgraph & such thaL N D = K;
(i) DUR=H;

(iv) DNR=K.

Weakening the first condition of Definitiohand imposing the “largest subgraph” requirement
in (ii)" implies that some items & \ L may not occur irD, like when deleting a node forces the
deletion of incident edges in trsPoapproach. The superscript&Ts= reminds the weakening
of the first condition.

The next variants drop the requirem@&t R = K. This allows for some overlap between the
items preserved in the conte®tand those newly introduced I The injectivity of the typing
forces these items to be coalesced, similarly to what happermsrmets. This is done fosTss
in bothbpo andsPostyle.

Definition 9 (sTsy andsTss, direct derivations) Given a grapgh in Sub(T) and ansTsrule
q= (L,K,R), there is ansTsy direct derivation from G to H using,qaritten G =575 H, if
H € Sub(T) and there exist® € Sub(T) such that

(i) LUD=G; (i) LND=K; (i) DUR=H.

Analogously, there is asTss direct derivation from G to H using,qwritten G :ET% H, if
H € Sub(T) and there exist® € Sub(T)

(i) LUDCG;

Festschrift H.-J. Kreowski 8/18



@ ECEASST

(i)’ D is the largest subgraph & such thalL "D =K;
(i) DUR=H.

The figure to the right shows the differences among the
various kinds ofsTsdirect derivations introduced in Def-
initions 7, 8 and 9. The type graphl on the top con-
tains two nodesp and e, and one edge connected to
o. The lattice of subgraphs ofF is depicted undefr,
with dashed lines representing inclusions. The arrows
show all the possible direct derivations among elements
of Sub(T) using thesTsrule g = ({c},0,{e}) and the
following approaches introduced in Definitiods 8 and
9:1=5TS2=STS",3=STSn,4=STS.

2.6 Graph grammars

In the previous sections we presented six different definitions of diedtation, each of which
determines a different algebraic approach to graph transformationedébr one of those ap-
proaches, a graph grammar contains a type graph, a start graphpfirgt names, and a
mapping from rule names to corresponding rules. Clearly, the precigetidefiof start graph

and of rule depends on the chosen approach.

Definition 10 (graph grammar)  AIND graph grammaywherekiND € {DPO, SPQ STS STS=,
STSn, STSR}, is a tuple? = (T, G, P, ), whereT € Graph is thetype graph P is a set ofrule
names 7T is a function which associateskanD rule! to each rule name iR, andGs is the
start graph which has to be consistent witinD. That is, Gs is a T-typed graph ifKIND
€ {DPO,sPC}, andGs € Sub(T) in all other cases.

A derivationover akIND grammar¥ is a sequence ofIND direct derivations using rules in

3 Enriched Petri nets

In this section we introduce some basic extensions of Petri nets, namelyitietsad, inhibitor
and reset arcs. A study of the expressiveness of these kindssphbong with a comparison with
other extensions proposed in the literature, like priorities, exclusiveansitions and switches,
is carried out in Pet81 LC94].

To give the formal definition of these generalised nets we need some ndiatieats and
multisets. Given a seX we write 2X for the powerset oK and X® for the free commutative
monoid overX, with monoidal operatiorp, whose elements will be referred to amiltisets

1 To be precise, foKIND € {STS=, STsy, STSS ), aKIND rule is ansTsrule.
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over X. Given a multisetM € X%, with M = @,.x Mx - x, for x € X we will write M(x) to
denote the coefficieritly. Moreover, we denote bjM] the underlying subset of, defined as
[M]] = {xe X | M(x) > 0}. With little abuse of notation, we will writg € M instead ofk € [M]).

GivenM, M’ € X% we writeM < M’ whenM(x) < M’(x) for all x € X. In this case thenultiset
difference M@ M is the multiseM” such thaM &M” = M’. ForY C X andM € X®, we denote
by M[Y] the restriction oM to Y, i.e., M[Y](x) = M(x) if x € Y, andM[Y](x) = O otherwise.
Finally, the symbol 0 denotes the empty multiset.

3.1 Place/Transition nets

We are now ready to define the enriched P/T nets considered in the Bagetes ordinary flow
arcs and read arcs, the nets are endowed with so-called “distinguistsdqrapresented by the
©(.) function below), which will be interpreted either as inhibitor or reset artisértoken game.

Definition 11 (enriched P/T nets) Aenriched (marked) Place/Transition (P/T) Petri neta
tupleN = (S Tr, *(.),(.)%, (), ©(.),m), where

e Sis aset ofplaces

e Tris a set oftransitions

*(.),(.)*: Tr — S* are functions mapping each transition to its pre-set and post-set, re-
spectively;

():Tr— 25is a function mapping each transition to ésntext

©(.): Tr — 2Sis a function mapping each transition todtistinguished sedf places, such
that for allt € Tr, (*t®t®t®)[®t] = 0 (i.e., no token in®t can be either read, consumed
or produced by);

e me S is a multiset called thaitial marking.

We assume, as usual, than Tr = 0. We shall denote with*(.),(.)*,(.) and ©(.) also the
functions fromSto 2" defined as, fos€ S, *s={tc Tr|sct*}, s* = {t e Tr |se °t},
s={teTr|set},and®={teTr|se ©t}.

A state of a P/T net is defined asraarking that is, a set of tokens distributed over the places.
Formally, a markingVl is a multiset of places, i.eM € S”. Thetoken gameletermines when
a transitiont is enabledat a given marking, and, if enabled, what marking is reached after
firing the transition. For a transitionto be enabled at a marking, it is necessary foM to
contain the pre-set dfand an additional set of tokens which covers the contekt Afiditional
conditions for enabledness, as well as the result of firing, dependedntdrpretation given to
the distinguished arcs: As anticipated, we interpret them eithieh#stor arcsor asreset arcs
obtaining the classes of nets below.

Definition 12 (inhibitor and reset P/T nets) Ainhibitor Place/Transition nets an enriched
P/Tnet(STr,*(.),(.)*,(.), ®(.),m) where the distinguished arcs are interpreted as inhibitor arcs.

Festschrift H.-J. Kreowski 10/18
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Given a markingVl € S” and a transition € Tr, t isi-enabledif *t®t <M andM[®] =0 (i.e.,
M contains no token in any place 8f). Theinhibitor transition relationbetween markings is
defined as

Mt)i M’ if tisi-enabled aM andM’ = (M & °t) @t°.

A reset P/T nets an enriched P/T net where the distinguished arcs are interpretecebanes
GivenM € S” andt € Tr, t isr-enabledif °*t &t < M. Thereset transition relations defined as

M[t) M’ if tis r-enabled aM andM’ = (M & *t) &t*) © M[ ]

(i.e., the firing oft deletes all the tokens from places$ Such places are certainly empty after
the firing, because they cannot belong to the post-sgt of

For a transitiort, if the distinguished se®t is empty the two alternative enabling conditions
coincide, as well as the induced transition relations on markings. In the fotiowe call
contextual Petri netthe class of nets such that all its transitions have the distinguished set empty.

Firing sequences and reachable markings are defined in the usual way.

Examplel An example of an enriched P/T nétcan be found in the left part of Fi§. Graph-
ically, transitions are connected to context places by undirected arde diglinguished places
by dotted undirected arcs.

Starting from the initial markingo ® s1 ® S, ® &4, @ possible firing sequence for all interpreta-
tions isty;t, leading to the marking, © sz ® 254 & S.

If we first firet,, the net reaches the markiggd s, © s4 @ 's. Now, if N is seen as an inhibitor
P/T net, the presence of a tokersimhibitst; which cannot fire. If, instead\ is seen as a reset
P/T net, transition; can fire and, as a consequence, pkieemptied, producing the marking

S DS 2%.

3.2 Elementary nets

Let us callelementarya net where the states are definedsas)set®f places, rather thamulti-
setsof places as for P/T nets. Thus elementary nets comprise several ndsmamsed in the
literature, including C/E net8[C97], Elementary Net System&E9q, Consume-Produce-Read
nets BBCGO0{ and others.

An enriched elementary (marked) n& Tr, *(.),(.)*,(.), ©(.),m) is defined as an enriched
P/T net in Definitionl, requiring®(.),(.)* : Tr — 2Sandm< 25 (i.e., *t andt® for allt € Tr, as
well as the initial markingn, are sets rather than multisets). Furthermore, besides the disjointness
condition on the distinguished places, that is formulate@®as/t Ut*) N ©t = 0, it is required
that no token irt is consumed or produced, i.€*tUt*)Nt =0 forallt € Tr.

Both inhibitor and reset elementary nets are easily defined, interpretingstivgydished arcs
as expected. However, since the states are subsets of places, thegeoahdition and the
transition relation must ensure that the marking reached by firing a transitiosés This is
obtained in a different way by the two models of nets that we introderes require a stronger
enabling condition with respect to P/T nets, whiler nets, intuitively, change the transition
relation by allowing to merge tokens of the marking with those produced by thsitican.
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Definition 13 (inhibitor and reset Elementary Net Systems) iAhibitor ENS is an enriched
elementary netSTr, *(.),(.)*,(.), ©(.),m) where the distinguished arcs are interpreted as in-
hibitor arcs. Given a markinyl C S and a transitiort € Tr, t is ie-enabledif *tUt C M,

MN =0, and(M\ °t)Nt* = 0. Theie-transition relationbetween markings is defined as

M [t)ie M’ if tis ie-enabled avl andM’ = (M \ *t) Ut®.

A reseteNSis an enriched elementary net where the distinguished arcs are interaseteset
arcs. GiverM C Sandt € Tr, t isre-enabledf *tUt C M and(M\ *t)Nt* = 0. There-transition
relationis defined as

M [t)re M/ if t is re-enabled a¥l andM’ = ((M\ *t)Ut®)\ ©t.

The condition(M \ °t) Nt* = 0 ensures that there is “no contact”, ifecan produce a token
only ifitis notin M, or ifitis deleted byt itself. As a consequence theoperator in the definition
of M’ is actually a disjoint union. This is the main difference with respectie nets, where
the “no contact” condition is omitted, and the arguments@f the definition of the successor
marking might not be disjoint.

Definition 14 (inhibitor and resetPrRnets) Aninhibitor CPRNetis an enriched elementary net
where for a marking/l C Sand a transition € Tr, t isic-enabledif *tUt C M andM N ©t = 0;
theic-transition relationis defined as

M [t)ic M’ if tis ic-enabled aM andM’ = (M \ °t) Ut®.

A resetcPRnetis an enriched elementary net where krC Sandt € Tr, t is rc-enabledif
°t Ut C M; therc-transition relationis defined as

M [t)c M/ if t is rc-enabled aM andM’ = ((M\ *t)Ut®)\ ©t.

Example2 Observe thatthe ndtin Fig. 5 can be seen as @ans. In this case, starting from the
initial marking {0, s1,S2, %} the transitiort; cannot fire due to a contact situationsi) hence
the only possible firing sequencetis

If we interpretN as acPRrnet, then; can fire and the reached markind s, s, 3,4}, where,
intuitively, the token generated & is “merged” with the pre-existing one. In this statecan
fire producing the markings,, ss, &4,S}. If we start by firingt,, as in the P/T casg, is blocked
or can fire (emptying placs), depending on whether we interphétas an inhibitor or a reset
CPRNet.

4 From enriched nets to graph transformation systems
This section shows how enriched Petri nets can be encoded as geapimars. Interestingly,

the encoding is essentially the same for all kinds of nets: The different tgg&me flavours are
obtained by changing the approach to rewriting.
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4.1 Encoding Petri nets as graph grammars

It is part of the folklore (see e.g. the discussion@of9q and the references therein) that (or-
dinary) Petri nets can be seen as a special kind of graph grammarssiriplest idea is that
the marking of a net is represented as a graph with no edges, typed eydades: A token in
placesis a node typed oves. Then transitions are seen as rules which consume and produce
nodes, as prescribed by their pre- and post-set. In this way, Petexsatly correspond to graph
grammars acting over graphs containing only nodes, where rulesygeseitem.

To make the encoding parametric with respect to the chosen class of Rstriheee we
consider a slightly different encoding, where edges, rather tharsnptiey the role of tokens.
Roughly, the idea of the encoding is the following:

e aplace is represented as a node;
e tokens in a place are represented as unary edges connected to édspaoding node;

e atransition becomes a rule, which deletes the tokens in its pre-set, pradagasst-set
and preserves the tokens in its context; for any place in the distinguished sethe
corresponding node is deleted and created again.

Note the chosen encoding for the distinguished sét lof the DPO approach this will prevent
the application of the rule if there is at least one token (edge) in the place,cusing an
inhibitor effect. In thespoapproach, the application of the rule will delete as a side-effect any
edge possibly attached to the node, thus giving raise to a reset effect.

As a first step, we show how the set of places underlying an enrichdeitieer P/T or ele-
mentary) gives raise to a type graph. In all cases there will be asiodbe type graph for each
placesin the net, and the number of edges incident on the node typedsovi#rrepresent the
number of tokens in that place. Also the way in which markings are encadgichphs does not
depend on the specific kind of nets we are considering.

Definition 15 (type graph, markings) L&l be a set of places. Then, the associated type graph
Tsis (S, S c), wherec(s) =sforallse S

Given a subset of place® C Sand a markingVl € S, we define the grapfBs(S,M) as
(S,E(M),c), typed in the obvious way ovéls, such thate(M) = {(s,i) | s€ [MJAO<i <
M(s)} andc((s,i)) = sforall (s,i) € E(M). We write simplyGs(M) for Gs(S,M).

So, each place contributes a nagled an edge in the type graphs, and a marking can be
regarded as a multiset of edges of the type graph.

Next we introduce the encoding of net transitions into grammar rules. As medtiabove,
the encoding is essentially independent of the kind of nets we are cangiddihe different
firing behaviour will be obtained by changing the considered rewritingagmh. Indeed, next
we define the encoding of a transition asrorule, but changing the rewriting approach §®o
or sT9) will just require a syntactical change in the presentation of the rule.

Definition 16 (net transitions aspPorules) Lett be a transition of an enriched P/T net with
place se6. Thent is encoded as &-typedbpPotransition
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Inhibitor Reset
DPO SPO
P/T nets
Gs(t) 7 (Gs(t))
STS STS=
ENS
7 (Gs(t)) J(Gs(t))
CPR nets STSm STS%
7 (Gs(t)) S (Gs(t))

Table 2: Encoding Petri nets as graph grammars.

Gs(t) = Gg(XU %t te °t) «+ Gg(X,t) — Gg(XU ©t,1:€B'[')
whereX = [*t &t $t*] and the left and right morphisms are inclusions.

The bpPorule Gg(t) corresponding to a transitidndeletes the edges in its pre-set, preserves
the edges in its context and produces the edges in its post-set. The ttadbe@to edges in the
pre-set, context and post-set (i.e., theXgare preserved. Finally, the nodes corresponding to
the places € © in the distinguished set ¢fare deleted and produced again.

It is now immediate to provide the encoding for the different kinds of Pets imgo graph
grammars of the appropriate approach.

Definition 17 An enriched Petri nel = (S Tr,F,C,D, m) of one of the six types of nets pre-
sented in Definitiond2, 13 and14 is encoded as &IND graph gramma® (N) = (T, G, P, 1)
where

e T=Tg
e P=Tr
° GS:GS(m)

MoreoverkIND and thekIND rule 71(t) associated tb € P are defined, according to the type of
the net, as shown in Tabke

Obviously, the encoding also works for contextual nets (see the figineoof Tablel in the
Introduction).

It can be shown that the encoding preserves the firing relation andaleisity, in the sense
specified by the next theorem.

Theorem 1 Let N be an enriched Petri net of one of the types introduced in Se8fitat
KIND be the type of grammar corresponding to the type of N according to Taldad let M
be a marking of N. If Mt) M’ in N thenGs(M) ={"NP Gg(M’) in the KIND graph grammar
¢ (N); vice versa, iiGs(M) ={'"NP G’ in thekIND graph grammatZ(N) then M[t) M" in N with
Gs(M") =G.
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Figure 5: An enriched Petri nét and the correspondirmpo grammatr.

4.2 Examples

In order to provide some more intuition, we briefly discuss the encoding éovdhious classes
of Petri nets.

4.2.1 P/T Petri nets.

As shown in Table, the behaviour of P/T Petri nets is faithfully captured by standsrd or
spograph grammars.

Inhibitor nets. WhenN is a P/T inhibitor net¥(N) is a bpo graph grammar, where the
effects of the dangling condition are used to encode inhibitor arcs. Aganpe, the net in
Fig. 5, seen as an inhibitor P/T net, is encoded by the grammar in the same figuatgdras
abppogrammar. Observe that since place ©ty, i.e.,sinhibits transitiort;, the rule associated
with t; deletes and produces again the node correspondisg to this way the presence of
tokens in places, represented by edges connected to such node, will inhibit the ruleidech
the dangling condition.

Reset nets. In the case of a P/T reset nidt the encodingZ(N) is anspogrammar and the
side-effects related to node deletion turn out to capture precisely theibehaf reset arcs. As

an example the net in Fi¢, seen as a reset P/T net, is encoded by the grammar in the same
figure, seen as aspogrammar (by transforming the rule using the functi#f.)). The fact that
rulet; deletes and produces again the nedetermines, as side effect, the deletion of all edges
connected to such node, representing tokens in glace

Contextual nets. For contextual P/T nets, i.e., P/T nets whéite= 0 for all t, the rules of
the corresponding grammar never delete nodes. Hencesptbh@and theDPO approaches are
interchangeable. In particular, ordinary P/T net transittpsach that = ©t = 0, are represented
by rules with an interface containing only nodes (see the rule corresmgptut, in Fig. 5).
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Figure 6: AnsTsy, derivation which is not a legaTsderivation.

4.2.2 Elementary nets.

As shown in Table, ENSs are encoded asrss. As an example, let us consider again theNhet
in Fig. 5, which can be interpreted as ans interpreting, correspondingly, the grammar on the
right as arsTs.

Observe that, even though there is a match of thetjuille the start graplGs, i.e., the left-
hand side of the rule is a subgraph@, the rule cannot be applied, because there is a contact
situation. More precisely, referring to Fif, condition(iv) of Definition 7 (namely,D "R = K)
is not satisfied, as the intersection between the right-hand sitieamid the context grapb
contains the edge connectedsiovhich is not inK.

If we interpretN as acPRrRnet and correspondingly the grammar asasy, then the diagram
in Fig. 6 is a legal derivation: in fact conditiong — iii ) of Definition 8 are satisfied, while
condition(iv) is not required anymore.

5 Concluding remarks and future work

In this paper we discussed the encoding of different Petri net model&nafoh Transformation
Systems. Our aim was of a methodological nature, and its accomplishmentsnareaszed
by the taxonomy proposed in Tablésand?2. Intuitively, the results can be synthesized by the
slogan “encode the net once”, that is, a Petri net is always encadedtally in the same way,
while different net models correspond to alternative approaches ph gransformation.

A relevant issue, which has been neglected in the present papegrostice study of concur-
rency in Petri nets and in their graph grammar counterparts. Admittedly, igharghortcoming
as far as inhibitor nets are considered (already noteB@MO05]): If two transitions are inhib-
ited by the same placg their encodings asporules cannot be executed in parallel, since both
rules delete and produce again the node correspondigg to

s1 (o) S

S
s O %

For instance, in the inhibitor nd&y, above the two transitiornts andt, can fire concurrently.
However, in the correspondirmpo grammar¥ (N) the rules associated tp andt, delete and
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generate again the same naknd thus they are forced to be executed sequentially. The devel-
opment of a theory encompassing the concurrent behaviour of the @voledels represents a
stimulating direction of future investigation. We believe that, as it happened pettethis can
lead to a fruitful technology transfer between the Petri net and GTS world

Acknowledgements: We acknowledge the anonymous referees for the detailed and construc-
tive comments which allowed us to improve the presentation.
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