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Abstract—Stable event structures, and their duality with prime
algebraic domains (arising as partial orders of configurations),
are a landmark of concurrency theory, providing a clear char-
acterisation of causality in computations. They have been used
for defining a concurrent semantics of several formalisms, from
Petri nets to linear graph rewriting systems, which in turn lay
at the basis of many visual frameworks. Stability however is
restrictive for dealing with formalisms where a computational
step can merge parts of the state, like graph rewriting systems
with non-linear rules, which are needed to cover some relevant
applications (such as the graphical encoding of calculi with name
passing). We characterise, as a natural generalisation of prime
algebraic domains, a class of domains that is well-suited to model
the semantics of formalisms with fusions. We then identify a
corresponding class of event structures, that we call connected
event structures, via a duality result formalised as an equivalence
of categories. We show that connected event structures are exactly
the class of event structures that arise as the semantics of non-
linear graph rewriting systems. Interestingly, the category of
general unstable event structures coreflects into our category of
domains, so that our result provides a characterisation of the
partial orders of configurations of such event structures.

Index Terms—Event structures, fusions, graph rewriting, pro-
cess calculi.

I. INTRODUCTION

For a long time stable/prime event structures and their
duality with prime algebraic domains have been considered
one of the landmarks of concurrency theory, providing a clear
characterisation of causality in software systems. They have
been used to provide a concurrent semantics to a wide range
of foundational formalisms, from Petri nets [1] to linear graph
rewriting systems [2]–[4] and process calculi [5]–[7]. They
are one of the standard tools for the formal treatment of (true,
i.e., non-interleaving) concurrency. See, e.g., [8] for a reasoned
survey on the use of such causal models. Recently, they
have been used in the study of concurrency in weak memory
models [9], [10] and for process mining and differencing [11].

In order to endow a chosen formalism with an event struc-
ture semantics, a standard construction consists in viewing the
class of computations as a partial order. An element of the
order is some sort of configuration, i.e., an execution trace
up to an equivalence that identifies traces differing only for
the order of independent steps (e.g., interchange law [12]
in term rewriting, shift equivalence [13] in graph rewriting,
permutation equivalence [14] in the lambda-calculus, . . . ),
and the order relates two computations when the latter is
an extension of the former. Events are then identified with

∅

{a} {b}
{a, c} {a, b}

{a, b, c}

Fig. 1: The domain of configurations of the process a.c | b.

configurations consisting of a maximal computation step (e.g.,
a transition of a CCS process or a transition firing for a Petri
net) with all its causes. As a simple example, consider the CCS
process a.c | b. The corresponding partial order is depicted in
Fig. 1. The events correspond to configurations {a} (transition
a with empty set of causes), {a, c} (transition c caused by a),
and {b} (transition b with empty set of causes). The fact that
each event in a configuration has a uniquely determined set of
causes, a property that for event structures is called stability,
allows one to characterise such elements, order theoretically,
as the prime elements: if they are included in a join they must
be included in one of the joined elements. Each element of the
partial order of configurations can be reconstructed uniquely
as the join of the primes so that the partial order is prime
algebraic. This duality between event structures and domains
of configurations can be nicely formalised in terms of an
equivalence between the category of prime event structures
and that of prime algebraic domains [1], [15].

The set up described so far fails when moving to formalisms
where a computational step can merge parts of the state, as
it happens whenever we consider nominal calculi where as a
result of name passing the received name is identified with
a local one at the receiver [16], [17] or in the modelling of
bonding in biological/chemical processes [18]. Whenever we
think of the state of the system as some kind of graph with the
dynamics described by graph rewriting, this means that rules
are non-linear (more precisely, in the so-called double pushout
approach [19], left-linear but possibly not right-linear). In
general terms, the point is that in the presence of fusions the
same event can be enabled by different minimal sets of events,
thus preventing the identification of a notion of causality.

As an example, consider the graph rewriting system in
Fig. 2. Figure 2a reports the start graph Gs and the rewriting
rules pa, pb, and pc. Observe that rules py , where y can be
either a or b, delete edge ȳ and merge nodes c and ν. The pos-
sible rewrites are depicted in Fig. 2b. For instance, applying pa978-1-5090-3018-7/17/$31.00 c©2017 European Union
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{a, c} {b, c}

{a, b, c}

(c) The domain of configurations

Fig. 2: A graph rewriting system with fusions.

to Gs we get the graph Gb. Now, pb can still be applied to Gb
matching its left-hand side non-injectively, thus getting graph
Gab. Similarly, we can apply first pb and then pa, obtaining
again Gab. Observe that at least one of pa and pb must be
applied to enable pc, since the latter rule requires nodes c and
ν to be merged. The graph rewriting system is a (simplified)
representation of the π-calculus process (νc)(ā(c) | b̄(c) | c()).
Rules py , for y ∈ {a, b}, represent the execution of ȳ(c) that
outputs on channel y the restricted name c. The first rule that is
executed extrudes name c, while the second is just a standard
output. Only after the extrusion the name c is available outside
the scope and the input prefix c() can be consumed. Observe
that in a situation where all the three rules pa, pb, and pc are
applied, since pa and pb are independent, it is not possible
to define a proper notion of causality. We only know that
at least one of pa and pb must be applied before pc. The
corresponding domain of configurations, reported in Fig. 2c,
is naturally derived from the possible rewrites in Fig. 2b.

The impossibility of modelling these situations with stable
event structures is well-known (see, e.g., [15] for a general
discussion, [2] for graph rewriting systems or [16] for the π-
calculus). One has to drop the stability requirement and replace
causality by an enabling relation `. More precisely, in the
specific case we would have ∅ ` a, ∅ ` b, {a} ` c, {b} ` c.

The questions that we try to answer is: what can be
retained of the satisfactory duality between events structures

and domains, when dealing with formalisms with fusions?
Which are the properties of the domain of computations that
arise in this setting? What are the event structure counterparts?

The domain of configurations of the example suggests that
in this context an event is still a computation that cannot be
decomposed as the join of other computations hence, in order
theoretical terms, it is an irreducible. However, due to unsta-
bility, irreducibles are not primes: two different irreducibles
can be different minimal histories of the same event, in a way
that an irreducible can be included in a computation that is
the join of two computations without being included in any
of the two. For instance, in the example above, {a, c} is an
irreducible, corresponding to the execution of c enabled by
a, and it is included in {a} t {b, c} = {a, b, c}, although
neither {a, c} ⊆ {a} nor {a, c} ⊆ {b, c}. Uniqueness of
decomposition of an element in terms of irreducibles also fails,
e.g., {a, b, c} = {a} t {b} t {a, c} = {a} t {b} t {b, c}: the
irreducibles {a, c} and {b, c} can be used interchangeably in
the decomposition of {a, b, c}.

Building on the previous observation, we introduce an
equivalence on irreducibles identifying those that can be
used interchangeably in the decompositions of an element
(intuitively, different minimal histories of the same event).
Based on this we give a weaker notion of primality (i.e., up
to interchangeability) such that the class of domains suited
for modelling the semantics of formalisms with fusions are
defined as the class of weak prime algebraic domains.

Given a weak prime algebraic domain, a corresponding
event structure can be obtained by taking as events the set
of irreducibles, quotiented under the (transitive closure of
the) interchangeability relation. The resulting class of event
structures is a (mild) restriction of the general unstable event
structures in [15] that we call connected event structures.
Categorically, we get an equivalence between the category
of weak prime algebraic domains and the one of connected
event structures, generalising the equivalence between prime
algebraic domains and prime event structures.

We also show that, in the same way as prime algebraic
domains/prime event structures are exactly what is needed for
Petri nets/linear graph rewriting systems, weak prime algebraic
domains/connected event structures are exactly what is needed
for non-linear graph rewriting systems: each rewriting system
maps to a connected event structure and conversely each
connected event structure arises as the semantics of some
rewriting system. This supports the adequateness of weak
prime algebraic domains and connected event structures as
semantics structures for formalisms with fusions.

Interestingly, we can also show that the category of general
unstable event structures [15] coreflects into our category of
weak prime algebraic domains. Therefore our notion of weak
prime algebraic domain can be seen as a novel characterisation
of the partial order of configurations of such event structures
that is alternative to those based on intervals in [20], [21].
Our characterisation is a natural generalisation of the one for
prime event structures, with irreducibles (instead of primes)
having a tight connection with events. The correspondence



is established at a categorical level, as a coreflection of
categories, something that, to the best of our knowledge, had
not been done before in the literature.

The rest of the paper is structured as follows. In Section II
we recall the basics of (prime) event structures and their
correspondence with prime algebraic domains. In Section III
we introduce weak prime algebraic domains, connected event
structures and establish a duality result. In Section IV we
show the intimate connection between weak prime algebraic
domains, or equivalently connected event structures, and non-
linear graph rewriting systems. Finally, in Section V we wrap
up the main contributions of the paper and we sketch further
advances and possible connections with related works.

II. BACKGROUND: DOMAINS AND EVENT STRUCTURES

This section recalls the notion of event structures, as intro-
duced in [15], and their duality with partial orders.

A. Event structures

In the paper, we focus on event structures with binary
conflict. This choice plays a role in the relation with graph
rewriting (Section IV), while the duality results in Section III
could be easily rephrased for non-binary conflicts expressed
by means of a consistency predicate. Given a set X we denote
by 2X and 2Xfin the powerset and the set of finite subsets of
X , respectively. For m,n ∈ N, we denote by [m,n] the set
{m,m+ 1, . . . , n}.

Definition 1 (event structure) An event structure (ES for
short) is a tuple 〈E,`,#〉 such that
• E is a set of events;
• ` ⊆ 2Efin × E is the enabling relation satisfying X ` e

and X ⊆ Y implies Y ` e;
• # ⊆ E × E is the conflict relation.

An X ⊆ E is consistent if there is no e, e′ ∈ X with e#e′.

An ES 〈E,`,#〉 is often denoted simply by E. Computa-
tions are captured by the notion of configuration.

Definition 2 (configuration, live ES) A configuration of an
ES E is a consistent C ⊆ E which is secured, i.e., for all
e ∈ C there are e1, . . . , en ∈ C with en = e such that
{e1, . . . , ek−1} ` ek for all k ∈ [1, n] (in particular, ∅ ` e1).
The set of configurations of an ES E is denoted by Conf (E)
and the subset of finite configurations by ConfF (E). An ES is
live if conflict is saturated, i.e., for all e, e′ ∈ E if there is no
C ∈ Conf (E) such that {e, e′} ⊆ C then e#e′ and moreover
for all e ∈ E we have ¬(e#e).

In this setting, two events are concurrent when they are
consistent and enabled by the same configuration.

Remark 3 In the rest of the paper we restrict to live ES, where
conflict is saturated (this corresponds to inheritance of conflict
in prime event structures) and each event is executable. Hence
the qualification live is omitted.

Since the enabling predicate is over finite sets of events, we
can consider minimal sets of events enabling a given one.

Definition 4 (minimal enabling) Given an ES 〈E,`,#〉 de-
fine C `0 e when C ∈ Conf (E), C ` e and for any other
configuration C ′ ⊆ C, if C ′ ` e then C ′ = C.

The classes of stable and prime ES represent our starting
point and play an important role in the paper.

Definition 5 (stable and prime ES) An ES 〈E,`,#〉 is sta-
ble if X ` e, Y ` e, and X ∪ Y ∪ {e} consistent imply
X ∩ Y ` e. It is prime if X ` e and Y ` e imply X ∩ Y ` e.

For stable ES, given a configuration C and an event e ∈ C,
there is a unique minimal configuration C ′ ⊆ C such that
C ′ `0 e. The set C ′ can be seen as the set of causes of
the event e in the configuration C. This gives a well-defined
notion of causality that is local to each configuration. In a
prime ES, for any event e there is a unique minimal enabling
C `0 e, thus providing a global notion of causality. In general,
in possibly unstable ES, due to the presence of consistent or-
enablings, there might be distinct minimal enablings in the
same configuration.

Example 6 A simple example of unstable ES is the following:
the set of events is {a, b, c}, the conflict relation # is the
empty one and the minimal enablings are ∅ `0 a, ∅ `0 b,
{a} `0 c, and {b} `0 c. Thus, event c has two minimal
enablings and these are consistent, hence {a, b} ` c. This
is the event structure discussed in the introduction, whose
domain of configurations is reported in Fig. 2c.

The class of ES can be turned into a category.

Definition 7 (category of ES) A morphism of ES f : E1 →
E2 is a partial function f : E1 → E2 such that for all X1 ⊆
E1 and e1, e′1 ∈ E1 with f(e1), f(e′1) defined

• if f(e1)#f(e′1) then e1#e′1
• if f(e1) = f(e′1) and e1 6= e′1 then e1#e′1;
• if X1 `1 e1 then f(X1) `2 f(e1).

We denote by ES the category of ES and their morphisms and
by sES and pES the full subcategories of stable and prime ES.

B. Domains

A preordered or partially ordered set 〈D,v〉 is often denoted
simply as D, omitting the (pre)order relation. We denote by �
the immediate predecessor relation, i.e., x � y whenever x v
y and for all z if x v z v y then z ∈ {x, y}. A subset X ⊆ D
is consistent if it has an upper bound d ∈ D (i.e., x v d for all
x ∈ X). It is pairwise consistent if every two elements subset
of X is consistent. A subset X ⊆ D is directed if X 6= ∅
and every pair of elements in X has an upper bound in X .
It is an ideal if it is directed and downward closed. Given an
element x ∈ D, we write ↓x to denote the principal ideal
{y ∈ D | y v x} generated by x. Given a partial order D,
its ideal completion, denoted by Idl(D), is the set of ideals of
D, whose order is given by subset inclusion. The least upper
bound and the greatest lower bound of a subset X ⊆ D (if
they exist) are denoted by

⊔
X and

d
X , respectively.



Definition 8 (domains) A partial order D is coherent if for
all pairwise consistent X ⊆ D the least upper bound

⊔
X

exists. An element d ∈ D is compact if for all directed X ⊆ D
d v

⊔
X implies d v x for some x ∈ X . The set of compact

elements of D is denoted by K(D). A coherent partial order D
is algebraic if for every x ∈ D we have x =

⊔
(↓x∩K(D)).

We say that D is finitary if for every element a ∈ K(D) the set
↓a is finite. We refer to algebraic finitary coherent partially
ordered sets as domains.

Note that in a domain all non-empty subsets have a meet. In
fact, if ∅ 6= X ⊆ D, then

d
X =

⊔
L(X) where L(X) =

{y | ∀x ∈ X. y v x} is the set of lowerbounds of X that is
pairwise consistent since it is dominated by any x ∈ X .

For a domain D we can think of its elements as “pieces of
information” expressing the states of evolution of a process.
Compact elements represent states that are reached after a
finite number of steps. Thus algebraicity essentially says that
any infinite computation can be approximated with arbitrary
precision by the finite ones. More formally, when D is
algebraic it is determined by K(D), i.e., D ' Idl(K(D)).

For an ES, the configurations ordered by subset inclusion
form a domain. When the ES is stable, if an event with its
minimal history is in the join of different configurations, then
it belongs, with the same history, to one of such configurations.
In order-theoretic terms, minimal histories are prime elements,
representing the building blocks of computations.

Definition 9 (primes and prime algebraicity) Let D be a
domain. A prime is an element p ∈ K(D) such that, for any
pairwise consistent X ⊆ K(D), if p v

⊔
X then p v x for

some x ∈ X . The set of prime elements of D is denoted by
pr(D). The domain D is prime algebraic (or simply prime) if
for all x ∈ D we have x =

⊔
(↓x∩ pr(D)).

Prime domains are the domain theoretical counterpart of
stable and prime ES. For a stable ES 〈E,#,`〉, the partial
order 〈Conf (E),⊆〉 is a prime domain, denoted DS(E).
Conversely, given a prime domain D, the triple 〈pr(D),#,`〉,
where p#p′ if {p, p′} is not consistent and X ` p when
(↓p∩ pr(D)) \ {p} ⊆ X , is a prime ES, denoted ES(D).

This correspondence can be elegantly formulated at the cat-
egorical level [15]. We recall the notion of domain morphism.

Definition 10 (category of prime domains) Let D1, D2 be
prime domains. A morphism f : D1 → D2 is a total function
such that for all X1 ⊆ D1 consistent and d1, d′1 ∈ D1

1) if d1 � d′1 then f(d1) � f(d′1);
2) f(

⊔
X1) =

⊔
f(X1);

3) if X1 6= ∅ then f(
d
X1) =

d
f(X1);

We denote by pDom the category of prime domains and their
morphisms.

The correspondence is then captured by the result below.

Theorem 11 (duality) There are functors DS : sES→ pDom
and ES : pDom→ sES establishing a coreflection. It restricts
to an equivalence of categories between pDom and pES.

III. WEAK PRIME DOMAINS AND CONNECTED ES

In this section we characterise a class of domains, and the
corresponding brand of ES, that are suited for expressing the
semantics of computational formalisms with fusions.

A. Weak prime algebraic domains

We show that domains arising in the presence of fusions
are characterised by resorting to a weakened notion of prime
element. We start recalling the notion of irreducible element.

Definition 12 (irreducibles) Let D be a domain. An irre-
ducible of D is an element i ∈ K(D) such that, for any
pairwise consistent X ⊆ K(D), if i =

⊔
X then i ∈ X . The

set of irreducibles of D is denoted by ir(D) and, for d ∈ D,
we define ir(d) = ↓d∩ ir(D).

Irreducibles in domains have a simple characterisation.

Lemma 13 (unique predecessor for irreducibles) Let D be
a domain and i ∈ D. Then i ∈ ir(D) iff it has a unique
immediate predecessor, denoted p(i).

We next observe that any domain is actually irreducible
algebraic, namely it can be generated by the irreducibles.

Proposition 14 (domains are irreducible algebraic) Let D
be a domain. Then for any d ∈ D it holds d =

⊔
ir(d).

Now note that any prime is an irreducible. If D is a prime
domain then also the converse holds, i.e., the irreducibles
coincide with the primes.

Proposition 15 (irreducibles vs. primes) Let D be a do-
main. Then D is a prime domain iff pr(D) = ir(D).

Quite intuitively, in the domain of configurations of an ES
the irreducibles are minimal histories of events. For instance,
in the domain depicted in Fig. 2c the irreducibles are {a},
{b}, {a, c}, and {b, c}. For stable ES, the domain is prime and
thus, as observed above, irreducibles coincide with primes.
This fails in unstable ES, as we can see in our running example:
while {a} and {b} are primes, the two minimal histories of c,
namely {a, c} and {b, c}, are not. In fact, {a, c} ⊆ {a}t{b, c},
but neither {a, c} ⊆ {a} nor {a, c} ⊆ {b, c}.

The key observation is that in general an event corresponds
to a class of irreducibles, like {a, c} and {b, c} in our
example. Additionally, two irreducibles corresponding to the
same event can be used, to a certain extent, interchangeably
for building the same configuration. For instance, {a, b, c} =
{a, b} t {a, c} = {a, b} t {b, c}. We next formalise this
intuition, i.e., we interpret irreducibles in a domain as minimal
histories of some event and we identify classes of irreducibles
corresponding to the same event.

We start by observing that in a prime domain any element
admits a unique decomposition in terms of irreducibles.

Lemma 16 (unique decomposition) Let D be a prime do-
main. If X,X ′ ⊆ ir(D) are downward closed sets of irre-
ducibles such that

⊔
X =

⊔
X ′ then X = X ′.
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Fig. 3: Interchangeability need not be transitive.

The result above no longer holds in domains arising in
the presence of fusions. For instance, in the domain in
Fig. 2c, X = {{a}, {b}, {a, c}}, X ′ = {{a}, {b}, {b, c}}
and X ′′ = {{a}, {b}, {b, c}, {a, c}} are all decompositions
for {a, b, c}. The idea is to identify irreducibles that can be
used interchangeably in a decomposition.

Definition 17 (interchangeability) Let D be a domain and
i, i′ ∈ ir(D). We write i↔ i′ if for all X ⊆ ir(D) such that
X ∪ {i} and X ∪ {i′} are downward closed and consistent
we have

⊔
(X ∪ {i}) =

⊔
(X ∪ {i′}) and for some such X it

holds
⊔
X 6=

⊔
(X ∪ {i}).

In words, i↔ i′ means that i and i′ produce the same effect
when added to a decomposition that already includes their
predecessors and there is at least one situation in which the
addition of i and i′ produces some effect. Hence, intuitively,
i and i′ correspond to the execution of the same event.

We now give some characterisations of interchangeability.

Lemma 18 (characterising ↔) Let D be a domain and
i, i′ ∈ ir(D). Then the following are equivalent

1) i↔ i′;
2) i, i′ are consistent and for all d ∈ K(D) such that

p(i), p(i′) v d, d t i = d t i′ and for some such d it
holds d 6= d t i;

3) i, i′ are consistent and itp(i′) = p(i)ti′ 6= p(i)tp(i′).

The interchangeability relation is reflexive and symmetric,
but not transitive: in the domain of Fig. 3, i↔ i′ and i′ ↔ i′′

but not i ↔ i′′. The same holds in the domain obtained by
removing the top element.

We now introduce weak primes: they weaken the property of
prime elements, requiring that it holds up to interchangeability.

Definition 19 (weak prime) Let D be a domain. A weak
prime of D is an element i ∈ ir(D) such that for any
consistent X ⊆ D, if i v

⊔
X then there exist i′ ∈ ir(D)

with i ↔ i′ and d ∈ X such that i′ v d. We denote by
wpr(D) the set of weak primes of D.

Clearly, since interchangeability is reflexive, any prime is
a weak prime. Moreover, in prime domains also the converse
holds as interchangeability turns out to be the identity.

Lemma 20 (weak primes in prime domains) Let D be a
prime domain. Then ↔ is the identity and wpr(D) = pr(D).

We argue that the domain of configurations arising in the
presence of fusions can be characterised domain-theoretically
by asking that all irreducibles are weak primes, i.e., that the
domain is algebraic with respect to weak primes.

Definition 21 (weak prime algebraic domains) Let D be a
domain. It is weak prime algebraic (or simply weak prime) if
for any d ∈ D it holds d =

⊔
(↓d∩wpr(D)).

In the same way as prime domains are domains where all
irreducibles are primes (see Proposition 15), we can provide
a characterisation of weak prime domains in terms of coinci-
dence between irreducibles and weak primes.

Proposition 22 (weak prime domains, again) Let D be a
domain. It is weak prime iff all irreducibles are weak primes.

We finally introduce a category of weak prime domains by
defining a notion of morphism.

Definition 23 (category of weak prime domains) Let D1,
D2 be weak prime domains. A weak prime domain morphism
f : D1 → D2 is a total function such that for all X1 ⊆ D1

consistent and d1, d′1 ∈ D1

1) if d1 � d′1 then f(d1) � f(d′1);
2) f(

⊔
X1) =

⊔
f(X1);

3) if d1, d′1 consistent and d1 u d′1 � d1 then f(d1 u d′1) =
f(d1) u f(d′1);

We denote by wDom the category of weak prime domains and
their morphisms.

Compared with the notion of morphism for prime domains
in Definition 10 (from [15]), we still require the preservation of
� and t of consistent sets (conditions (1) and (2)). However,
the third condition, i.e., preservation of u, is weakened to
preservation in some cases. General preservation of meets is
indeed not expected in the presence of fusions. Consider e.g.
the running example in Example 6 and another ES E′ = {c}
with ∅ ` c and the morphism f : E → E′ that forgets a and
b. Then f({a, c})uf({b, c}) = {c}u{c} = {c} 6= f({a, c}u
{b, c}) = f(∅) = ∅. Intuitively, the condition d1 u d′1 ≺ d1
means that d′1 includes the computation modelled by d1 apart
from a final step, hence d1 u d′1 coincides with d1 when such
step is removed. Since domain morphisms preserve immediate
precedence (i.e., single steps), also f(d1) differs from f(d′1)
for the execution of a final step and the meet f(d1)uf(d′1) is
f(d1) without such step, and thus it coincides with f(d1ud′1).

In general we only have

f(
d
X1) v

d
f(X1)

In fact, for all x1 ∈ X1, we have
d
X1 v x1, hence

f(
d
X1) v f(x1) and thus f(

d
X1) v

d
f(X1). Still, when

restricted to prime domains, our notion of morphism boils
down to the original one, i.e., the full subcategory of wDom
having prime domains as objects is pDom.

Proposition 24 The category of prime domains pDom is the
full subcategory of wDom having prime domains as objects.



B. Connected event structures

We show that the set of configurations of an ES, ordered
by subset inclusion, is a weak prime domain where the
compact elements are the finite configurations. Moreover, the
correspondence can be lifted to a functor. We also identify a
subclass of ES that we call connected ES and that are the exact
counterpart of weak prime domains (in the same way as prime
ES correspond to prime algebraic domains).

Definition 25 (partial order of configurations of an ES)
Let E be an ES. We denote by D(E) the partial order
〈Conf (E),⊆〉. Given an ES morphism f : E1 → E2,
its image D(f) : D(E1) → D(E2) is defined as
D(f)(C1) = {f(e1) : e1 ∈ C1}.

We first need some technical facts, collected in the following
lemma. Recall that in the setting of unstable ES we can have
distinct consistent minimal enablings for an event. When C `0
e, C ′ `0 e, and C ∪C ′ ∪{e} is consistent, we write C e

_ C ′.
We denote by e

_
∗

the transitive closure of the relation e
_.

Lemma 26 Let 〈E,`, Con〉 be an ES. Then

1) D(E) is a domain, K(D(E)) = ConfF (E), join is union
and C � C ′ iff C = C ′ ∪ {e} for some e ∈ E;

2) C ∈ ConfF (E) is irreducible iff C = C ′ ∪ {e} and
C ′ `0 e; in this case we denote C as 〈C ′, e〉;

3) for C ∈ Conf (E), we have ir(C) = {〈C ′, e′〉 | e′ ∈
C ∧ C ′ ⊆ C ∧ C ′ `0 e′};

4) for 〈C1, e1〉, 〈C2, e2〉 ∈ ir(D(E)), we have 〈C1, e1〉 ↔
〈C2, e2〉 iff e = e1 = e2 and C1

e
_ C2.

Concerning point 1, observe that the meet in the domain
of configurations is C u C ′ =

⋃
{C ′′ ∈ Conf (E) | C ′′ ⊆

C ∧ C ′′ ⊆ C ′}, which is usually smaller than the intersection.
For instance, in Fig. 2, {a, c}u{b, c} = ∅ 6= {c}. Point 2 says
that irreducibles are configurations of the form C ∪ {e} that
admits a secured execution in which the event e appears as
the last one and cannot be switched with any other. In other
words, irreducibles are minimal histories of events. Point 3
characterises the irreducibles in a configuration. According to
point 4, two irreducibles are interchangeable when they are
different histories for the same event.

Proposition 27 Let E be an ES. Then D(E) is a weak prime
domain. Given a morphism f : E1 → E2, its image D(f) :
D(E1)→ D(E2) is a weak prime domain morphism.

A special role is played by the subclass of connected ES.

Definition 28 (connected es) An ES is connected if whenever
C `0 e and C ′ `0 e then C

e
_
∗
C ′. We denote by cES the

full subcategory of ES having connected ES as objects.

In words, different minimal enablings for the same event
must be pairwise connected by a chain of consistency. For
instance, the ES in Example 6 is a connected ES. Only event
c has two minimal histories {a} `0 c and {b} `0 c and
obviously {a} c

_ {b}. Clearly, prime ES are also connected
ES. More precisely, we have the following.

∅

{a} {b}

{a, c} {b, c}

∅

{a} {b}

{a, c1} {b, c2}

Fig. 4: Non-connected ES do not uniquely determine a domain.

Proposition 29 (connectedness, stability, primality) Let E
be an ES. Then E is prime iff it is stable and connected.

The defining property of connected ES allows one to recog-
nise that two minimal histories are relative to the same event
by only looking at the partially ordered structure and thus, as
we will see, from the domain of configurations of a connected
ES we can recover an ES isomorphic to the original one and
vice versa (see Theorem 35). In general, this is not possible.
For instance, consider the ES E′ with events E′ = {a, b, c},
and where a#b and the minimal enablings are again ∅ `0 a,
∅ `0 b, {a} `0 c, and {b} `0 c. Namely, event c has two
minimal enablings, but differently from what happens in the
running example, these are not consistent, hence {a, b} 6` c.
The resulting domain of configurations is depicted on the left
of Fig. 4. Intuitively, it is not possible to recognise that {a, c}
and {b, c} are different histories of the same event. In fact, note
that we would get an isomorphic domain of configurations by
considering the ES E′′ with events E′′ = {a, b, c1, c2} such
that a#b and the minimal enablings are again ∅ `0 a, ∅ `0 b,
{a} `0 c1, and {b} `0 c2.

C. From domains to event structures

We show how to get an ES from a weak prime domain. As
expected, events are equivalence classes of irreducibles, where
the equivalence is (the transitive closure of) interchangeability.

Domains are irreducible algebraic (see Proposition 14),
hence any element is determined by the irreducibles under
it. The difference between two elements is thus somehow
captured by the irreducibles that are under one element and
not under the other. This motivates the following definition.

Definition 30 (irreducible difference) Let D be a domain
and d, d′ ∈ K(D) such that d v d′. Then we define
δ(d′, d) = ir(d′) \ ir(d).

In a prime domain an element admits a unique decompo-
sition in terms of primes (see Lemma 16). Here the same
holds for irreducibles but only up to interchangeability. Given
a domain D and an irreducible i ∈ ir(D), we denote by [i]↔∗

the corresponding equivalence class. For X ⊆ ir(D) we define
[X]↔∗ = {[i]↔∗ | i ∈ X}.

Proposition 31 (unique decomposition up to ↔) Let D be
a weak prime domain, d ∈ K(D), and X ⊆ ir(d) downward
closed. Then d =

⊔
X iff [X]↔∗ = [ir(d)]↔∗ .

We now have the tools for mapping our domains to an ES.



Definition 32 (ES for a weak prime domain) Let D be a
weak prime domain. The ES E(D) = 〈E,#,`〉 is defined
as follows
• E = [ir(D)]↔∗ ;
• e#e′ if there is no d ∈ K(D) such that e, e′ ∈ [ir(d)]↔∗ ;
• X ` e if there exists i ∈ e such that [ir(i) \{i}]↔∗ ⊆ X .
Given a morphism f : D1 → D2, its image E(f) :

E(D1)→ E(D2) is defined for [i1]↔∗ ∈ E as E(f)([i1]↔∗) =
[i2]↔∗ , where i2 ∈ δ(f(i1), f(p(i1))) is minimal in the set,
and E(f)([i1]↔∗) is undefined if f(p(i1)) = f(i1).

The definition above is well-given: in particular, there is
no ambiguity in the definition of the image of a morphism,
since it can be shown that for all i2, i′2 ∈ δ(f(i1), f(p(i1)))
minimal, it holds i2 ↔ i′2.

Since in a prime domain irreducibles coincide with primes
(Proposition 15), ↔ is the identity (Lemma 20) and δ(d′, d)
is a singleton when d ≺ d′, the construction above produces
the prime ES pES(D) as defined in Section II.

Given a weak prime domain D, the finite configurations
of the ES E(D) exactly correspond to the elements in K(D).
Moreover, in such ES we have a minimal enabling C `0 e
when there is an irreducible in e (recall that events are
equivalence classes of irreducibles) such that C contains all
and only (the equivalence classes of) its predecessors.

Lemma 33 (compacts vs. finite configurations) Let D be a
weak prime domain and C ⊆ E(D) a set of events. Then
C is a finite configuration in the ES E(D) iff there exists a
(unique) d ∈ K(D) such that C = [ir(d)]↔∗ . Moreover, for
any e ∈ E(D) we have that C `0 e iff C = [ir(i) \{i}]↔∗ for
some i ∈ e.

Given the lemma above, it is now possible to state how
weak prime domains relate to connected ES.

Proposition 34 Let D be a weak prime domain. Then E(D)
is a connected ES.

At a categorical level, the constructions taking a weak
prime domain to an ES and an ES to a domain (the domain
of its configurations) establish a coreflection between the
corresponding categories. This becomes an equivalence when
it is restricted to the full subcategory of connected ES.

Theorem 35 (coreflection of ES and wDom) The functors
D : ES → wDom and E : wDom → ES form a coreflection.
It restricts to an equivalence between wDom and cES.

IV. DOMAIN AND EVENT STRUCTURE SEMANTICS FOR
GRAPH REWRITING

In this section we consider graph rewriting systems where
rules are left-linear but possibly not right-linear and thus, as
an effect of a rewriting step, some items can be merged. We
argue that weak prime domains and connected ES are the
right tool for providing a concurrent semantics to this class of
rewriting systems. More precisely, we show that the domain
associated with a graph rewriting system by a generalisation
of a classical construction is a weak prime domain and vice

versa that each connected ES and thus each weak prime domain
arise as the semantics of some graph rewriting system. In
Subsection IV-A we review some background material and
then in Subsections IV-B and IV-C we present our results.

A. Graph rewriting and concatenable traces

We open this section by reviewing the basic definitions
about graph rewriting in the double-pushout approach [19]. We
recall graph grammars and then introduce a notion of trace,
which provides a representation of a sequence of rewriting
steps that abstracts from the order of independent rewrites.
Traces are then turned into a category Tr(G) of concatenable
derivation traces [22].

Definition 36 A (directed) graph is a tuple G = 〈N,E, s, t〉,
where N and E are sets of nodes and edges, and s, t : E → N
are the source and target functions. The components of a graph
G are often denoted by NG, EG, sG, tG. A graph morphism
f : G→ H is a pair of functions f = 〈fN : NG → NH , fE :
EG → EH〉 such that fN ◦s = s′◦fE and fN ◦t = t′◦fE . We
denote by Graph the category of graphs and graph morphisms

An abstract graph [G] is an isomorphism class of graphs.
We work with typed graphs, i.e., graphs which are “labelled”
over some fixed graph. Formally, given a graph T , the category
of graphs typed over T , as introduced in [23], is the slice
category (Graph ↓ T ), also denoted GraphT .

Definition 37 (graph grammar) A (T -typed graph) rule is a
span (L

l← K
r→ R) in GraphT where l is mono and not epi.

The typed graphs L, K, and R are called the left-hand side,
the interface, and the right-hand side of the rule, respectively. A
(T -typed) graph grammar is a tuple G = 〈T,Gs, P, π〉, where
Gs is the start (typed) graph, P is a set of rule names, and π
maps each rule name in P into a rule.

Sometimes we write p : (L
l← K

r→ R) for denoting the
rule π(p). When clear from the context we omit the word
“typed” and the typing morphisms. Note that we consider only
consuming grammars, i.e., grammars where for every rule π(p)
the morphism l is not epi. This corresponds to the requirement
on non-empty preconditions for Petri nets. Also note that rules
are, by default, left-linear, i.e., morphism l is mono. If also
morphism r is mono, the rule is called right-linear.

An example of graph grammar has been discussed in the
introduction (see Fig. 2a). The type graph was left implicit: it
can be found in the top part of Fig. 5. The typing morphisms
for the start graph and the rules are implicitly represented by
the labelling. Also observe that for the rules only the left-hand
side L and the right-hand side R were reported. The same rules
with the interface graph explicitly represented are in Fig. 5.

Definition 38 (direct derivation) Let G be a typed graph, let
p : (L

l← K
r→ R) be a rule, and let mL be a match, i.e., a

typed graph morphism mL : L→ G. A direct derivation δ from
G to H via p (based on mL) is a diagram as in Fig. 6, where
both squares are pushouts in GraphT . We write δ : G

p/m
=⇒ H ,

where m = 〈mL,mK ,mR〉, or simply δ : G
p

=⇒ H .
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Fig. 5: The type graph and the rules of the grammar in Fig. 2a.

L

mL
��

K
loo r //

mK
��

R

mR
��

G D
l∗
oo

r∗
// H

Fig. 6: A direct derivation.

Since pushouts are defined only up to isomorphism, given

isomorphisms κ : G′ → G and ν : H → H ′, also G′
p/m′

=⇒ H

with m′ = 〈κ−1 ◦mL,mK ,mR〉 and G
p/m′′

=⇒ H ′ with m′′ =
〈mL,mK , ν ◦mR〉 are direct derivations, denoted by κ · δ and
δ · ν, respectively. Informally, the rewriting step removes (the
image of) the left-hand side from G and replaces it by (the
image of) the right-hand side R. The interface K (the common
part of L and R) specifies what is preserved. For example, the
transitions in Fig. 2b are all direct derivations. When rules are
not right-linear, some items in the (image of the) interface are
merged. This happens, e.g., for pa and pb.

Definition 39 (derivations) Let G = 〈T,Gs, P, π〉 be a graph
grammar. A derivation ρ : G0 =⇒∗G Gn over G is a (possibly
empty) sequence of direct derivations {Gi−1

pi−1
=⇒ Gi}i∈[1,n]

where pi ∈ P for i ∈ [1, n]. The graphs G0 and Gn are called
the source and the target of ρ, and denoted by s(ρ) and t(ρ),
respectively. The length of ρ is |ρ| = n. Given two derivations
ρ and ρ′ such that t(ρ) = s(ρ′), their sequential composition
ρ ; ρ′ : s(ρ) =⇒∗ t(ρ′) is defined in the obvious way.

When irrelevant/clear from the context, the subscript G is
omitted. If ρ : G =⇒∗ H is a derivation, |ρ| > 0 and κ :
G′ → G, ν : H → H ′ are graph isomorphisms, then κ · ρ :
G′ =⇒∗ H and ρ · ν : G =⇒∗ H ′ are defined as expected.

In the double pushout approach to graph rewriting, it is
natural to consider graphs and derivations up to isomorphism.
However some structure must be imposed on the start and end
graph of an abstract derivation in order to have a meaningful
notion of sequential composition. In fact, isomorphic graphs
are, in general, related by several isomorphisms, while in
order to concatenate derivations keeping track of the flow of
causality one must specify how the items of the source and
target isomorphic graphs should be identified. We follow [2],

pi : Li

mL
i
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Fig. 7: Abstraction equivalence of decorated derivations.

inspired by the theory of Petri nets [24]: we choose for each
class of isomorphic typed graphs a specific graph, named
the canonical graph, and we decorate the source and target
graphs of a derivation with a pair of isomorphisms from the
corresponding canonical graphs to such graphs.

Let C denote the operation that associates with each (T -
typed) graph its canonical graph, thus satisfying C(G) ' G
and if G ' G′ then C(G) = C(G′).

Definition 40 (decorated derivation) A decorated derivation
ψ : G0 =⇒∗ Gn is a triple 〈α, ρ, ω〉, where ρ : G0 =⇒∗ Gn
is a derivation and α : C(G0) → G0, ω : C(Gn) → Gn are
isomorphisms. We define s(ψ) = C(s(ρ)), t(ψ) = C(t(ρ)) and
|ψ| = |ρ|. The derivation is called proper if |ψ| > 0.

Definition 41 (sequential composition) Let ψ = 〈α, ρ, ω〉,
ψ′ = 〈α′, ρ′, ω′〉 be decorated derivations such that t(ψ) =
s(ψ′). Their sequential composition ψ;ψ′ is defined, if ψ and
ψ′ are proper, as 〈α, (ρ · ω−1); (α′ · ρ′), ω′〉. Otherwise, if
|ψ| = 0 then ψ;ψ′ = 〈α′ ◦ ω−1 ◦ α, ρ′, ω′〉, and similarly, if
|ψ′| = 0 then ψ;ψ′ = 〈α, ρ, ω ◦ α′−1 ◦ ω′〉.

We next define an abstraction equivalence that identifies
derivations that differ only in representation details.

Definition 42 (abstraction equivalence) Let ψ = 〈α, ρ, ω〉,
ψ′ = 〈α′, ρ′, ω′〉 be decorated derivations with ρ : G0 =⇒∗
Gn and ρ′ : G′0 =⇒∗ G′n′ (whose ith step is depicted in
the lower rows of Fig. 7). They are abstraction equivalent,
written ψ ≡a ψ′, if n = n′, pi−1 = p′i−1 for all i ∈ [1, n],
and there exists a family of isomorphisms {θXi : Xi → X ′i |
X ∈ {G,D}, i ∈ [1, n]} ∪ {θG0

} between corresponding
graphs in the two derivations such that (1) the isomorphisms
relating the source and target commute with the decorations,
i.e., θG0

◦ α = α′ and θGn
◦ ω = ω′; and (2) the resulting

diagram (whose ith step is represented in Fig. 7) commutes.

Equivalence classes of decorated derivations with respect to
≡a are called abstract derivations and denoted by [ψ]a, where
ψ is an element of the class.

From a concurrent perspective, derivations that only differ
for the order in which two independent direct derivations are
applied should not be distinguished. This is formalised by the
classical shift equivalence on derivations.

Definition 43 (sequential independence) Consider a deriva-
tion G

p1/m1
=⇒ H

p2/m2
=⇒ M as in Fig. 8. Then, its components

are sequentially independent if there exists an independence
pair among them, i.e., two graph morphisms i1 : R1 → D2

and i2 : L2 → D1 such that l∗2 ◦ i1 = mR1 , r∗1 ◦ i2 = mL2 .
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Fig. 8: Sequential independence for ρ = G
p1/m1
=⇒ H

p2/m2
=⇒ M .

Proposition 44 (interchange operator) Let ρ = G
p1/m1
=⇒

H
p2/m2
=⇒ M be a derivation whose components are se-

quentially independent via an independence pair ξ. Then, a

derivation ICξ(ρ) = G
p2/m

∗
2=⇒ H∗

p1/m
∗
1=⇒ M can be uniquely

chosen, such that its components are sequentially independent
via a canonical independence pair ξ∗.

The interchange operator can be used to formalise a notion
of shift equivalence [13], identifying (as for the analogous per-
mutation equivalence of λ-calculus) those derivations which
differ only for the scheduling of independent steps.

Definition 45 (shift equivalence) The derivations ρ and ρ′

are shift equivalent, written ρ ≡sh ρ′, if ρ′ can be obtained
from ρ by repeatedly applying the interchange operator.

If we are interested in the way ρ′ is obtained from ρ, we write
ρ ≡shσ ρ′, for σ : [1, n]→ [1, n] the associated permutation.

For instance, in Fig. 2b it is easy to see that the derivation
Gs

pa
=⇒ Gb

pb
=⇒ Gab consists of sequentially independent

direct derivations. It is shift equivalent to Gs
pb

=⇒ Ga
pa

=⇒ Gab.
Two decorated derivations are said to be shift equiva-

lent when the underlying derivations are, i.e., 〈α, ρ, ω〉 ≡sh
〈α, ρ′, ω〉 if ρ ≡sh ρ′. Then the equivalence of interest arises
by joining abstraction and shift equivalence.

Definition 46 (concatenable traces) We denote by ≡c the
equivalence on decorated derivations arising as the transitive
closure of the union of the relations ≡a and ≡sh. Equivalence
classes of decorated derivations with respect to ≡c are denoted
as [ψ]c and are called concatenable (derivation) traces.

We will sometimes annotate ≡c with the permutation relating
the equivalent permutations. Formally, ≡cσ can be defined
inductively as: if ψ ≡a ψ′ then ψ ≡cid ψ′ , if ψ ≡shσ ψ′ then
ψ ≡cσ ψ′, and if ψ ≡cσ ψ′ and ψ′ ≡cσ′ ψ′′ then ψ ≡cσ′◦σ ψ′′.

The sequential composition of decorated derivations lifts to
composition of derivation traces so that we can consider the
corresponding category.

Definition 47 (category of concatenable traces) Let G be a
graph grammar. The category of concatenable traces of G,
denoted by Tr(G), has abstract graphs as objects and con-
catenable traces as arrows.

B. A weak prime domain for a grammar

For a grammar G we obtain a partially ordered repre-
sentation of its derivations starting from the initial graph
by considering the concatenable traces ordered by prefix.

Formally, as done in [2], [3] for linear grammars, we consider
the category ([Gs] ↓ Tr(G)), which, by definition of sequential
composition between traces, is easily shown to be a preorder.

Proposition 48 Let G be a graph grammar. Then the category
([Gs] ↓ Tr(G)) is a preorder.

Explicitly, elements of the preorder are concatenable traces
[ψ]c : [Gs] → [G] and, for [ψ′]c : [Gs] → [G′], we have
[ψ]c v [ψ′]c if there is ψ′′ : G → G′ such that ψ;ψ′′ ≡c ψ′.
Therefore, given two concatenable traces [ψ]c : [Gs] → [G]
and [ψ′]c : [Gs] → [G′], if [ψ]c v [ψ′]c v [ψ]c then ψ can
be obtained from ψ′ by composing it with a zero-length trace.
Hence the elements of the partial order induced by ([Gs] ↓
Tr(G)) intuitively consist of classes of concatenable traces
whose decorated derivations are related by an isomorphism
that has to be consistent with the decoration of the source.
Once applied to the grammar in Fig. 2a, this construction
produces a domain isomorphic to that in Fig. 2c.

Lemma 49 Let G be a graph grammar. The partial order
induced by ([Gs] ↓ Tr(G)), denoted P(G), has as elements
〈ψ〉c = {[ψ · ν]c | ν : t(ψ)

∼→ t(ψ)} and 〈ψ〉c v 〈ψ′〉c if
ψ;ψ′′ ≡c ψ′ for some decorated derivation ψ′′.

The domain of interest is then obtained by ideal completion
of P(G), with (the principal ideals generated by) the elements
in P(G) as compact elements. In order to give a proof for this,
we need a preliminary technical lemma that essentially proves
the existence and provides the shape of the least upper bounds
in the domain of traces.

Lemma 50 (properties of ≡c) 1) Let ψ,ψ′ be decorated
derivations, and ψ1, ψ

′
1 such that ψ;ψ1 ≡cσ ψ′;ψ′1 and

n = |{j ∈ [|ψ|, |ψ;ψ1| − 1] | σ(j) < |ψ′|}|. Then for all
φ2, φ

′
2 such that ψ;φ2 ≡c ψ′;φ′2 it holds |φ2| ≥ n and

there are ψ2, ψ
′
2, ψ3 such that

• ψ;ψ1 ≡c ψ;ψ2;ψ3

• ψ;ψ2 ≡c ψ′;ψ′2
• |ψ2| = n

2) Let ψ,ψ′ be decorated derivations and ψ1, ψ
′
1, ψ2, ψ

′
2

such that ψ;ψ1 ≡cσ1
ψ′;ψ′1 and ψ;ψ2 ≡cσ2

ψ′;ψ′2 with
ψ1, ψ2 of minimal length. Then ψ1 ≡cσ ψ2 · ν, where ν :
t(ψ2) → t(ψ2) is some graph isomorphism and σ(j) =
σ−12 (σ1(j + |ψ|))− |ψ| for j ∈ [0, |ψ1| − 1].

Relying on the results above we can easily prove that the
ideal completion of the partial order of traces is a domain.

Proposition 51 (domain of traces) Let G be a graph gram-
mar. Then D(G) = Idl(P(G)) is a domain.

We can show that D(G) is a weak prime domain. The
proof relies on the fact that irreducibles are (the principal
ideals of) elements of the form 〈ε〉c, where ε = ψ; δ is
a decorated derivation such that its last direct derivation δ
cannot be switched back, i.e., minimal traces enabling some
direct derivation. These are called pre-events in [2], [3],
where graph grammars are linear and thus, consistently with
Lemma 15, such elements provide the primes of the domain.



Two irreducibles 〈ε〉c and 〈ε′〉c are interchangeable when they
are different minimal traces for the same direct derivation.

Theorem 52 (weak prime domains from graph grammars)
Let G be a graph grammar. Then D(G) is a weak prime
domain.

Note that when the rules are right-linear the domain and
ES semantics specialises to the usual prime event structure
semantics (see [2]–[4]), since the construction of the domain
in the present paper is formally the same as in [2].

C. Any connected ES is generated by some grammar

By Theorem 52, given a graph grammar G the domain D(G)
is weak prime. We next show that also the converse holds,
i.e., any connected ES (and thus any weak prime domain)
is generated by a suitable graph grammar. This shows that
weak prime domains and connected ES are precisely what is
needed to capture the concurrent semantics of non-linear graph
grammars, and thus strengthen our claim that they represent
the right structure for modelling formalisms with fusions.

Construction (graph grammar for a connected ES)
Let 〈E,#,`〉 be a connected ES. The grammar GE =
〈T, P, π,Gs〉 is defined as follows.

First, for every element e ∈ E, we define the following
graphs, which are then used as basic building blocks
• Ie and Se, as shown in Fig. 9(a) and Fig. 9(b);
• let Ue denote the set-theoretical product of the minimal

enablings of e, i.e., Ue = Π{X ⊆ E | X `0 e}; for every
tuple u ∈ Ue we define the graph Lu,e as in Fig. 9(c).

Moreover, for every pair of events e, e′ ∈ E such that e#e′,
we define a graph Ce,e′ as in Fig. 9(d).

The set of productions is P = E, i.e., we add a rule for
every event e ∈ E, and we define such rule in a way that
• it deletes Ie and Ce,e′ for each e′ ∈ E such that e#e′;
• it preserves the graph Se ∪

⋃
u∈Ue

Lu,e;
• for all e′ ∈ E, for all graphs Lu,e′ such that e occurs in
u, it merges the corresponding nodes and that of Se′ into
one.

The graph Se ∪
⋃
u∈Ue

Lu,e arises from Se and Lu,e, u ∈ Ue
by merging all the nodes (we use

⋃
and

⊎
to denote union

and disjoint union, respectively, with a meaning illustrated in
Figs. 9(f) and (g).) Hence, there is a match for the rule e
only if Se and all Lu,e for u ∈ Ue have been merged and
this happens if and only if at least one minimal enabling of e
has been entirely executed. The deletion of the graphs Ce,e′
establishes the needed conflicts. The rule is consuming since
it deletes the node of graph Ie. The rule is schematised in
Fig. 9(e), where it is intended that e occurs in u1j , . . . , u

nj

j for
uij ∈ Uej , j ∈ [1, k], i ∈ [1, nk]. Moreover e′1, . . . , e

′
h are the

events in conflict with e and, finally, Ue = {u1, . . . , un}.
The start graph is just the disjoint union of all the basic

graphs introduced above

Gs = (
⋃
e#e′

Ce,e′) ∪
⋃
e∈E

(Ie ∪ Se ]
⊎
u∈Ue

Lu,e)

ie

(a) Ie

e

e

(b) Se

e

u

(c) Lu,e

e#e′

(d) Ce,e′

ie e#e′1 e#e′h ee

u1 un

e1

e1

e1

u11

e1

un1
1

ek

ek

ek

u1k

ek

unk

k

ee

u1 un

e1
e1

u11 un1
1

ek
ek

u1k unk

k

e

(e) rule e

e

e

e

u1

e

u2

(f) Se ] Lu1,e ] Lu2,e

ee

u1 u2

(g) Se ∪ Lu1,e ∪ Lu2,e

Fig. 9: Some graphs illustrating the construction of GE .

For space limitations the interfaces of the rules are not given
explicitly. They can be deduced from the left and right-hand
side, and the labelling. The same applies to the type graph.

It is not difficult to show that the grammar GE generates
exactly the ES E.

Theorem 53 Let 〈E,#,`〉 be a connected ES. Then, E and
E(D(GE)) are isomorphic connected ES.

Example 54 Consider the running example ES, from Exam-
ple 6, with set of events {a, b, c}, empty conflict relation and
minimal enablings {a} `0 c and {b} `0 c. The associated
grammar is depicted in Fig. 10.

As a further example, consider an ES E1 with events
{a, b, c, d, e}. The conflict relation # is given by e#d and
the minimal enablings by ∅ `0 a, ∅ `0 b, ∅ `0 c, ∅ `0 e,
{a, b} `0 d, and {c} `0 d. The grammar is in Fig. 11.

V. CONCLUSIONS AND RELATED WORK

In the paper we provided a characterisation of a class
of domains, referred to as weak prime algebraic domains,
appropriate for describing the concurrent semantics of those
formalisms where a computational step can merge parts of
the state. We established a categorical equivalence between
weak prime algebraic domains and a suitably defined class of
connected event structures. We also proved that the category
of general unstable event structures coreflects into the category
of weak prime algebraic domains. The appropriateness of the
class of weak prime domains is witnessed by the results in the
second part of the paper that show that weak prime algebraic
domains are precisely those arising from left-linear graph
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Fig. 10: The grammar associated with our running example.

rewriting systems, i.e., those systems where rules besides
generating and deleting can also merge graph items.

Technically, the starting point is the relaxation of the stabil-
ity condition for event structures. As already noted by Winskel
in [5] “[t]he stability axiom would go if one wished to model
processes which had an event which could be caused in several
compatible ways [. . . ]; then I expect complete irreducibles
would play a similar role to complete primes here”. Indeed, the
correspondence between irreducibles and weak primes, based
on the notion of interchangeability, is the ingenious step that
allowed us to obtain a smooth extension of the classical duality
between prime event structures and prime algebraic domains.

The coreflection between the category of general unstable
event structures (with binary conflict) and the one of weak
prime algebraic domains says that the latter are exactly the
partial orders of configurations of the former. Such class of
domains has been studied originally in [20] where, general-
ising the work on concrete domains and sequentiality [25], a
characterisation is given in terms of a set of axioms express-
ing properties of prime intervals. A similar characterisation
for event structures with non-binary conflict is in [21]. We
consider our simple characterisation of this class of domains,
where weak primes intuitively account for events in a com-
putation, as a valuable contribution of the paper. We plan to
provide an in depth comparison with these previous results in
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Fig. 11: The grammar for the ES in example 54.

the full version of the paper. In brief, a formal bridge between
the two characterisations can be established by observing that,
roughly speaking, weak primes correspond to executions of
events with their minimal enablings, while intervals can be
seen as executions of events in a generic configuration.

The paper [26] studies a characterisation of the partial order



of configurations for a variety of classes of event structures
in terms of axiomatisability of the associated propositional
theories. Even if the focus is here mainly on event structures
that generalise Winskel’s ones, we believe that our work can
provide interesting suggestions for further development.

The need of resorting to unstable event structures for mod-
elling the concurrent computations of name passing process
calculi has been observed by several authors. In particular,
in [16] an event structure semantics for the pi-calculus is
defined by relying on structures that are tailored for parallel
extrusions. These are labelled unstable event structures with
the constraint that two minimal enablings can differ only for
one event (intuitively, the extruder). The corresponding domain
of configurations is weak prime algebraic but the ES fails
to be connected since non-connected minimal enablings are
admitted (roughly, because identical events in disconnected
minimal enablings are identified via the labelling).

We finally remark that a possibility for recovering a notion
of causality based on prime event structures also for rule-based
formalisms with fusions is to introduce suitable restrictions
on the concurrent applicability of rules. Indeed, the lack
of stability seems to arise essentially from considering as
concurrent those fusions that act on common items. Preventing
fusions to act on already merged items, one may lose some
concurrency, yet gaining a definite notion of causality. Tech-
nically, a prime event structure can be obtained for left-linear
grammars by restricting the applicability condition: the match
must be such that the pair 〈l;mL, r〉 of Fig. 6 is jointly mono.
This essentially means that those items that have been already
fused, should not be fused again. This is indeed the intuition
behind the proposal advanced in [27]. Concerning our running
example, this requirement would forbid the reachability of
graphs Gab and Gc in Fig. 2(b), and in turn this would imply
that the domain of configurations is the one depicted in Fig. 4,
with the limits concerning expressiveness and event identity
that we already remarked there.

Acknowledgements: We are grateful to the anonymous
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