
Adhesivity is not enough:
Local Church-Rosser revisited?

Paolo Baldan1, Fabio Gadducci2, and Pawel Sobociński3

1 Dipartimento di Matematica Pura e Applicata, Università di Padova
2 Dipartimento di Informatica, Università di Pisa

3 School of Electronics and Computer Science, University of Southampton

Abstract. Adhesive categories provide an abstract setting for the double-
pushout approach to rewriting, generalising classical approaches to graph
transformation. Fundamental results about parallelism and confluence,
including the local Church-Rosser theorem, can be proven in adhesive
categories, provided that one restricts to linear rules. We identify a class
of categories, including most adhesive categories used in rewriting, where
those same results can be proven in the presence of rules that are merely
left-linear, i.e., rules which can merge different parts of a rewritten ob-
ject. Such rules naturally emerge, e.g., when using graphical encodings
for modelling the operational semantics of process calculi.

Keywords: Adhesive and extensive categories, double-pushout rewrit-
ing, local Church-Rosser property, parallel and sequential independence.

Introduction

The strength of graph transformation formalisms in the specification of dis-
tributed and concurrent systems lies on the relative ease of use, due to their
visual nature. However, equally relevant is the fact that these formalisms often
come equipped with a rich theory of concurrency, including confluence properties
that can be pivotal in developing suitable verification techniques.

Focusing on the double pushout (dpo) approach to graph transformation,
parallel and sequential independence are central properties in the corresponding
concurrency theory. While the former is essentially a local confluence property,
the latter identifies suitable conditions for establishing whenever two rewrite
steps, even though performed in sequence, do not interfere with each other and
thus can be potentially applied in any order (as well as concurrently).

The local Church-Rosser theorem tightly connects parallel and sequential
independence: two sequentially independent steps can be applied to the same
start graph, resulting in a pair of parallel independent steps; analogously, two
parallel independent steps can be sequentialised in any order. This allows for
defining concurrent rewrites as equivalence classes up to shift equivalence [2],
identifying (as for the better-known permutation equivalence of λ-calculus) those
rewrite sequences that differ for the scheduling of independent steps.

? Supported by the MIUR project SisteR and the University of Padua project AVIAMO.

Rewriting over adhesive categories (ACs) was proposed as an abstraction
of the dpo approach to graph transformation. Many well-known categories with
graph-like objects are adhesive. Moreover, since ACs subsume many properties of
e.g. hlr categories [5], several results about parallelism and confluence, including
the local Church-Rosser theorem, can be proven with no additional assumptions
if one restricts to linear rules, i.e., to spans of monos [16].

The restriction to linear rules is common in the dpo literature. It has been
folklore, though, that local Church-Rosser should “usually” hold for left-linear
rules, i.e. where only the left leg of the span is required to be injective. This has
been established within the concrete setting of a category of labelled directed
graphs [9, 13] and, in the context of HLR rewriting, sufficient axioms were ex-
hibited in [7]. Those axioms have not been shown to be preserved by common
operations such as functor category and slice and thus, to the best of our knowl-
edge, this result has not been proved for a class of categories that would include,
say, the category of hyper-graphs HGraph or of graphs with second order edges
(both presheaf categories, thus adhesive) where linear rules may not suffice.

Whenever distinct parts of the state are to be fused as a result of a transfor-
mation, it becomes necessary to use a non-injective morphism as the right-hand
side of the rule. A notable example is given by the encodings of process calculi
as graph transformation systems, where the exchange of channel names and the
creation of connections are modeled as node fusions [10]. In order to extend the
results about independence and parallelism to left-linear rules, adhesivity does
not appear to be enough. Roughly, while the distinguishing feature of ACs is
that pushouts along monos are well behaved, for non-linear rules some of the
pushouts involved in the technical lemmas are not necessarily of this kind.

Instead of looking for an axiomatic characterisation of the class of categories
in which the result could be proven, this paper takes a different approach. First
we show that the local Church-Rosser theorem for left-linear rules holds in any
AC C with a strict initial object (hence extensive [16, Lemma 4.1]), where monos
are coproduct injections and pushouts are stable under pullback, an example
being Set, but not, for example, Graph. Then, we note that the technical results
used in the proof of the theorem mention only pushouts and pullbacks; hence
whenever they hold in C, they hold in any functor category over C as well as
in any slice or coslice category over C. Since these operations can be iterated,
the result holds in a family of categories that contains most known examples of
ACs, such as, in particular, Graph and other graph-like categories.

An analogous result can be proven for quasi-adhesivity: a local Church-Rosser
theorem for rules where the left-leg is a regular mono holds in any quasi-adhesive
category C with a strict initial object (hence extensive [16, Lemma 6.3]), where
regular monos are coproduct injections and pushouts are stable under pullback.
Again, this extends to any category obtained from this class by iterating functor,
slice and coslice category constructions (although here the presence of equalisers
in the base category is needed [16, Lemma 6.6]). A notable example in the base
class is Inj, the category of injective functions in Set. By the closure properties,

2

the category IGraph of graphs with interface (expressible as Inj•⇒•) can be
recast, thus subsuming the proposal for their rewriting [11].

The paper has the following structure. We first recall the basics of dpo rewrit-
ing in adhesive (and quasi-adhesive) categories and the local Church-Rosser the-
orem for linear rules. Then, we cut directly to our main contribution, providing
a class of categories where the local Church-Rosser theorem holds for left-linear
rules. Afterwards we provide an application of our results for the rewriting of
graphs with interface, used in the graphical encoding of nominal calculi. We
conclude summing up our contribution and laying the plans for future work.

1 Background

In this section we introduce the basics of the double-pushout (dpo) approach to
rewriting [2,4], including the notion of sequential and parallel independence. We
also introduce adhesive categories [16] as an abstract setting for dpo rewriting.

1.1 DPO Rewriting

Hereafter C denotes a fixed category.

Definition 1 (rule and direct derivation). A (dpo) rule on C is a span

p : L
l← K

r→ R in C. The objects L, K, and R are called left-hand side, context
and right-hand side of the rule, respectively.

A match of p in an object G of C is an arrow mL : L→ G. A direct derivation
p/m : G =⇒ H from G to H via rule p at the match mL is a diagram as depicted
in Fig. 1, where the two squares are pushouts in C and m = 〈mL,mK ,mR〉.

L

mL

��

K
loo r //

mK

��

R

mR

��
G D

l∗
oo

r∗
// H

Fig. 1. A direct derivation.

The notion of sequential independence aims
at characterising direct derivations which, even if
performed in sequence, do not interfere with each
other and thus could be potentially applied in any
order (and concurrently).

Definition 2 (sequential independence). Let p1, p2 be rules and let
p1/m1 : G =⇒ H1, p2/m2 : H1 =⇒ H be direct derivations as in Fig. 2. They are
called sequential independent if there exist arrows i1 : R1 → D2 and i2 : L2 → D1

such that l∗2 ◦ i1 = mR1 and r∗1 ◦ i2 = mL2 .

A strictly related notion is parallel independence which is aimed at charac-
terising independent direct derivations starting from the same object.

Definition 3 (parallel independence). Let p1, p2 be rules and p1/m1 : G =⇒
H1, p2/m2 : G =⇒ H2 direct derivations as in Fig. 3. They are called parallel
independent if there exist arrows i1 : L1 → D2 and i2 : L2 → D1 such that
l∗2 ◦ i1 = mL1

and l∗1 ◦ i2 = mL2
.

3

L1

mL1

��

K1

l1oo
r1 //

mK1

��

R1

mR1

i1

!!

L2

mL2

~~

i2

}}

K2

l2oo
r2 //

mK2

��

R2

mR2

��
G D1

l∗1

oo
r∗1

// H1 D2
l∗2

oo
r∗2

// H

Fig. 2. Sequential independence for p1/m1 : G =⇒ H1 and p2/m2 : H1 =⇒ H.

R1

mR1

��

K1

r1oo
l1 //

mK1

��

L1

mL1

��

i1

!!

L2

mL2

��

i2

}}

K2

l2oo
r2 //

mK2

��

R2

mR2

��
H1 D1

r∗1

oo
l∗1

// G D2
l∗2

oo
r∗2

// H2

Fig. 3. Parallel independence for p1/m1 : G =⇒ H1 and p2/m2 : G =⇒ H2.

The two notions are often connected by two properties, which are denoted
under the collective name of the local Church-Rosser theorem. The first one is
clearly the counterpart of standard local confluence.

Definition 4 (parallel confluence). Let p1, p2 be rules and p1/m1 : G =⇒
H1, p2/m2 : G =⇒ H2 parallel independent derivations as in Fig. 3. Then, the
derivations satisfy the parallel local confluence property if there exist a graph H
and derivations p2/m

∗
2 : H1 =⇒ H, with match r∗1 ◦ i2, and p1/m

∗
1 : H2 =⇒ H,

with match r∗2 ◦ i1, such that p1/m1 and p2/m
∗
2 as well as p2/m2 and p1/m

∗
1 are

sequential independent.

The second part moves instead from sequential independent derivations.

Definition 5 (sequential confluence). Let p1, p2 be rules and p1/m1 : G =⇒
H1, p2/m2 : H1 =⇒ H sequential independent derivations as in Fig. 2. Then, the
derivations satisfy the sequential local confluence property if there exist a graph
H2 and a derivation p2/m

∗
2 : G =⇒ H2, with match l∗1 ◦ i2, such that p1/m1 and

p2/m
∗
2 are parallel independent.

Sequential and parallel local confluence are the basis of the concurrency the-
ory of dpo rewriting. When they hold, concurrent derivations can be seen as
equivalence classes of concrete derivations up to shift equivalence [2], identifying
(as for the better-known permutation equivalence of λ-calculus) those derivations
that differ only for the scheduling of independent steps.

1.2 Rewriting in adhesive categories and local confluence

Most categories of graph-based objects satisfy both local confluence properties
when restricted to linear rules. A general setting where the theorem can be
proven is that of adhesive categories (ACs) [16].

4

A

ss ''
C

''
B

ss
D

(a)

A′

ss ''

��

C′

''

��

B′

ss

��

D′

��

A

ss ((
C

((
B

ss
D

(b)

Fig. 4. A pushout square (a) and a commutative cube (b).

Definition 6 (adhesive categories). A category C is called adhesive if

– it has pushouts along monos;
– it has pullbacks;
– pushouts along monos are Van Kampen (vk) squares.

Referring to Fig. 4, a vk square is a pushout like (a), such that for each
commuting cube as in (b) having (a) as bottom face and the back faces of which
are pullbacks, the front faces are pullbacks if and only if the top face is a pushout.

The prototypical AC is Set, the category of sets and total functions. Ex-
ploiting the closure properties of ACs, it is immediate to deduce that also
Graph = Set•⇒•, mentioned before, is adhesive. Likewise, the category of di-
rected hyper-graphs HGraph is a category of presheaves and thus adhesive. In
fact, HGraph = SetM where M is a category with objects N × N ∪ {•}, and
where, from any (m,n) there are m+ n arrows into •.

Example 1. Figure 7 depicts a rule in the AC HGraph of hyper-graphs. The
left-hand side, context and right-hand side are separated by vertical lines. The
arrows from the context to the left- and right-hand side are represented by the
positions of the items and by the labels (ignoring for now {p} and the dotted
arrow). Graphically, nodes are circles and edges are boxes enclosing their label,
with either incoming or outgoing tentacles, connecting edges to their source and
target nodes, respectively. For the sake of readability, these tentacles are either
ordered clock-wise, or when necessary, they are labelled by numbers 0, 1 and 2.

Intuitively, in this graphical interpretation, the application of a rule first
removes all the items of G matched by L− l(K), leading to object D. Then the
items of R−r(K) are added to D, thus obtaining H. When the rule is not linear,
taking the second pushout can also cause some merging.

ACs subsume many properties of hlr categories [6], and this fact ensures the
validity of several results about parallelism and confluence. In particular, a local
Church-Rosser theorem for linear rules holds with no additional assumptions.

Definition 7 ((left-)linear rules in ACs). A rule p : L
l← K

r→ R in an AC
is called left-linear if l is mono, and linear if both l and r are so.

5

Actually, the first half of local confluence holds for left-linear rules [16, The-
orem 7.7], provided that the AC in question has enough pushouts.

Proposition 1 (parallel confluence in ACs). Let p1, p2 be left-linear rules
in an AC with all pushouts and p1/m1 : G =⇒ H1, p2/m2 : G =⇒ H2 paral-
lel independent derivations, as in Fig. 3. Then, they satisfy the parallel local
confluence property.

Instead, the restriction to linear rules is needed for the second half of the
local Church-Rosser theorem.

Proposition 2 (sequential confluence in ACs). Let p1, p2 be linear rules in
an AC and p1/m1 : G =⇒ H1, p2/m2 : H1 =⇒ H sequential independent deriva-
tions as in Fig. 2. Then, they satisfy the sequential local confluence property.

1.3 Quasi-adhesivity

A theory for rewriting can be developed also in the wider class of quasi-adhesive
categories (QACs). Recall that a mono is regular if it is obtained as an equalizer.

Definition 8 (quasi-adhesive categories). A category C is called quasi-
adhesive if

– it has pushouts along regular monos;
– it has pullbacks;
– pushouts along regular monos are vk squares.

Then, the two confluence properties can be established for derivations in
QACs, exactly as for those in ACs, by adapting the notion of (left-)linear rule.

Definition 9 ((left-)linear rules in QACs). A rule p : L
l← K

r→ R in a
QAC is called left-linear if l is regular mono, and linear if both l and r are so.

Even though every AC is a QAC, no confusion may arise: for ACs Defini-
tions 7 and 9 denote the same class of rules since in ACs all monos are regular [15].

Example 2. A prototypical example of quasi-adhesive category is Inj: objects
are injective functions in Set and arrows are pairs of functions between the
corresponding sources and targets, making the diagram commute. An arrow is
mono when both components are mono; it is a regular mono when it is mono
and the resulting diagram is a pullback [15].

A relevant, graph-based example is the category of graphs with interface
IGraph, whose objects are injective graph morphisms. Such category can be
defined as Inj•⇒•, hence it is quasi-adhesive by the closure properties in [16],
since Inj is quasi-adhesive and has equalisers. Similarly, the category IHGraph
of hyper-graphs with interface can be defined as InjM, for M the category used
in Section 1.2 to present the category of hyper-graphs as a presheaf category.

6

Graphs with interface have been used in the modelling of process calculi,
the basic idea being that nodes in the interface represent the free names of the
process itself [10]. They are also at the basis of the borrowed context approach
to the labelled semantics of graph transformation [8].

Consider again rule pπ in Fig. 7. Its three components can be seen as graphs
with interface. When the interface is discrete (i.e., it contains no edge, as it
happens for the examples in this paper), it is simply represented as a set. For
instance, the interface of the left-hand side is just {p} and the dotted arrow indi-
cates the image of p into the left-hand side graph. Regular monos in IHGraph
are easily proven to be the pairs of injective graph morphisms such that the
interface is reflected as well as preserved, hence rule pπ is left-linear.

2 Church-Rosser for left-linear rules

The results about local confluence in (quasi-)adhesive categories cannot be proven
when we consider rules which are only left-linear. Still, the result has been shown
to hold in several concrete categories, most notably the category of directed
graphs Graph [13]. The aim here is to prove the result in an abstract general
setting, so that we can conclude that it holds in most of the categories used in
dpo rewriting. We will first consider a setting intended to treat the adhesive
case, and then generalise it to deal with QACs.

2.1 Adhesive case

We first identify a class of ACs where Proposition 2 can be extended and shown
to hold for rules that are merely left-linear.

Definition 10 (class B). We denote by B the class of adhesive categories C
which satisfy the following properties

i) C has all pushouts;
ii) C has a strict initial object 0 (any arrow f : a→ 0 is an isomorphism);

iii) its monos are coproduct injections (for any mono f : a� b, b is a coproduct
of a and some c, and f is the corresponding injection);

iv) all pushouts are stable under pullback (for any cube like the one in Fig. 4,
if the bottom face is a pushout and the lateral faces are pullbacks then the
top face is a pushout).

The category Set of sets and functions is clearly in B. Moreover, recall that
any AC satisfying strict initiality is also extensive [16, Lemma 4.1], thus all
categories in B are so. Notice that membership in B is actually very restrictive;
for example B does not include Graph, which has monos that are not coproduct
injections, nor the category of sets and partial functions which does not have
a strict initial object; both of which are examples of ACs. Indeed B is not in
general closed under coslice nor functor category constructions.

In order to prove the local Church-Rosser theorem for left-linear rules we
need just two technical lemmas. The first result concerns the validity of a de-
composition property which generalises the one holding in ACs [16, Lemma 4.6].

7

A

l
��

(1)

k // B

(2)

r //

s
��

C

v
��

X
u
// Y //

w
// Z

(a)

A
��

l
��

(1)

k // B

(2)

r //
��

s
��

C
��

v
��

X
u
// Y

w
// Z

(b)

Fig. 5. Diagrams for (a) mixed decomposition and (b) pushout decomposition.

Definition 11 (mixed decomposition). We say that a category C satisfies
the mixed decomposition property if for any commuting diagram like the one
depicted in Fig. 5(a) (where w is mono), whenever (1)+(2) is a pushout and (2)
is a pullback, then (1) is a pushout.

Lemma 1 (mixed decomposition in B). Let C be a category in the class B
of Definition 10. Then, it satisfies the mixed decomposition property.

With respect to [16, Lemma 4.6], we dropped the requirement enforcing ar-
rows l, s, v and r to be monos. A similar result is proven in [14] for partial ACs,
but with the additional requirement that the outer pushout is hereditary. As for
the stricter case, the lemma above implies that all the squares of the diagram in
Fig. 5(a) are both pushouts and pullbacks.

Definition 12 (pushout decomposition in B). We say that a category C
satisfies the pushout decomposition property if for any commuting diagram like
the one depicted in Fig. 5(b) (where l, s and v are mono), whenever the regions
(1)+(2) and (2) are pushouts then (1) is a pushout.

Lemma 2 (pushout decomposition in B). Let C be a category in class B.
Then, it satisfies the pushout decomposition property.

The crucial observation is that Lemmas 1 and 2 mention only monos, pushouts
and pullbacks, and since all these are built “pointwise” for product, functor cate-
gory, slice and coslice, the lemmas hold in any category obtained from a category
in class B by iterating these operations.

Proposition 3. If mixed and pushout decompositions hold in a category C, then
they hold in C/C, C/C and CX for any C ∈ C and any small category X.

Finally, since most known ACs are constructed from Set by iterating the
above operations, the local Church-Rosser theorem for left-linear rules holds in
all these categories. Examples include the aforementioned Graph, HGraph and
their typed versions (slices) as well as the category of sets and partial functions.

Proposition 4 (sequential confluence for left-linear rules). Let C be any
category obtained from a category in class B by iterated application of the functor
category, slice and coslice constructions; let p1, p2 be left-linear rules over C, and
let p1/m1 : G =⇒ H1, p2/m2 : H1 =⇒ H be sequential independent derivations
as in Fig. 2. Then they satisfy the sequential local confluence property.

8

2.2 Quasi-adhesive case

The theory above can be easily generalised to quasi-adhesivity, roughly by re-
placing ACs with QACs and monos with regular monos.

Definition 13. Let QB be the class of quasi-adhesive categories C such that

i) C has all pushouts;
ii) C has a strict initial object;

iii) regular monos are coproduct injections;
iv) all pushouts are stable under pullback.

Then Proposition 4 holds replacing class B with QB, because Lemmas 1 and 2
can be reproved in a straightforward fashion.

It is not difficult to show that Inj is in QB using the facts that it is a
quasi-topos and quasi-adhesive [15]; the fact that regular monos are coproduct
injections is an easy exercise. We thus obtain the local Church-Rosser theorem for
it and any functor category over it, hence in particular IHGraph, the category
of hyper-graphs with interface in which we work in the following section.

3 Graph Rewriting for the Concurrent Semantics of π

A recently developed area of application for graphs with interface is the visual
modelling of nominal calculi. Here we focus on the deterministic fragment of the
π-calculus and on its graphical semantics, along the lines of [11] (see Section 2
there for the syntax and operational semantics of the calculus). The results in
this paper are needed for formally describing the concurrency in the graphical
semantics, thus obtaining one of the few such semantics available for π-calculus.

The idea is quite simple: we work in the (quasi-adhesive) category of graphs
with interface IHGraph and each process is associated with a graph having a
discrete interface. The topology of the graph represents a (simplified) syntactic
tree of the process. The interface contains a node p, denoting the root of the
graph, and a set of nodes denoting free names in the process (this can be larger
than the actual set of free names of the process). As an example, the encoding of
the process (νa)(ba.aa | b(d).dc) can be found in Fig. 6. The interface contains the
root p and two other nodes representing the free names b and c (the different sorts
for processes and names are visually represented by • and ◦ nodes, respectively).
Each input or output prefix operator, like ba, corresponds to an edge labelled
by in or out, with one incoming tentacle and three (ordered) outgoing ones,
denoting the continuation (labelled by 0) and the channel names, respectively.
For the sake of readability, these outgoing tentacles are either ordered clock-wise,
or whenever necessary, they are labelled by numbers 0, 1 and 2.

The restriction operator (νa) is modelled by an edge ν connecting the root to
the restricted name a and by dropping the node a from the interface. Note the
lack of an edge for the parallel operator: parallelism is reduced to being linked
to the same node, as with the components ba.aa and b(d).dc of our process.

9

ν

��

out
0 //

2
//

1

//

• // out //

��$$

•

p // •

//

11

..

◦

◦ boo

in
0 //

2
99

1 88

• // out
0 //

1

00

2
00• ◦ coo

◦

Fig. 6. The graphical encoding of process (νa)(ba.aa | b(d).dc).

p // • //

..

in

2 ##

1
$$

0 // •

◦2

out //
??

00

• ◦1

◦3

p // • •

◦2

• ◦1

◦3

p // •

◦23

◦1

Fig. 7. The rule pπ for synchronization.

A single rule pπ (depicted in Fig. 7) suffices for simulating process reduction.
As explained before, a node may be the target of a dotted arrow, meaning that
the node is in the image of a node of the interface (the source of the arrow).
The nodes may be labeled by natural numbers, which are used for describing
the (interface preserving) span of arrows constituting the rule. E.g. the nodes
identified by 2 and 3 are merged by the rule.

The structural rules are taken care of by the matching mechanism: the em-
bedding of a graph into a larger one models the closure of reduction with respect
to contexts. The presence of the interface {p} guarantees that a reduction may
occur only on the top operators, i.e., never inside a prefix such as ba or b(d).
Graph isomorphism takes care of the closure with respect to structural congru-
ence. For example, the graph on the left of Fig. 8 is the encoding of the target
process of the reduction (νa)(ba.aa | b(d).dc)→ (νa)(aa | ac).

The presence of the interface node p in the context graph of pπ implies that p
can be shared by concurrent reductions. This permits the simultaneous execution
of reductions involving top operators.

However, rule pπ is left-linear only: the left leg of the rule is a regular mono
(since it reflects the interface), while the right leg is not even mono. Hence, even
though category IHGraph is quasi-adhesive, the results previously available for
rewriting in QACs do not apply, and we need to resort to the theory in Section 2
to formally analyse the concurrency in the system.

10

ν

��

p // •

..

//

//

out //

��##

•

◦ ◦ boo

out
0 //

1
//

2
00• ◦ coo

p // • //

//

out //

��##

•

◦ boo

out
0 //

1
//

2
00• ◦ coo

Fig. 8. The graphical encoding of process (νa)(aa | ac) (left) and bb | bc (right).

In order to make the example more illustrative, we add rule pν in Fig. 9. It
models the revelation of a restricted name (νa)P → P{b/a}, which is associated
to the free name b occurring in the process, while the corresponding restriction
operator is removed. As before, the rule is only left-linear.

p

||

b

""
• // ν // ◦ ◦

p

{{

b

##
• ◦ ◦

p

{{

b

""
• ◦

Fig. 9. The rule pν for revealing a restricted name.

Rule pν can be applied to (νa)(aa | ac), resulting in the process bb | bc: its
graphical encoding is depicted on the right of Fig. 8. It is intuitively clear that
the two direct derivations represented by first applying the synchronization, and
then the revelation, are sequential independent, so they should be executable
simultaneously. In order to prove this formally, since the involved rules are left-
linear only, we need to resort to the quasi-adhesive variant of Proposition 4.

4 Conclusions

We have identified a class of categories where the local Church-Rosser theorem,
a fundamental result in the dpo approach to rewriting, holds also for left-linear
rules and arbitrary matches. This class includes most of the adhesive and quasi-
adhesive categories actually used as domain categories for rewriting.

There are many examples where left-linear rules arise naturally. One that
we consider relevant is related to the graphical encodings of nominal calculi:
changes to the physical or logical topology of a system determined by phenomena
like name passing or fusion or code mobility are naturally modelled by rules
whose right-hand sides are not monomorphisms. By our results these calculi can
be equipped with a concurrent semantics, as obtained by exploiting the local
Church-Rosser theorem (see e.g. [10, 12]).

11

A further advancement in the theory would be to consider situations where
the left-linearity of the rules does not guarantee the existence of the pushout
complement, as in the case of the (quasi-adhesive) category of term graphs [3]
and of the category of graphs with equivalences [1], possibly constraining the
match without necessarily requiring it to be a monomorphism.

References

1. Baldan, P., Gadducci, F., Montanari, U.: Concurrent rewriting for graphs with
equivalences. In: CONCUR’06. LNCS, vol. 4137, pp. 279–294. Springer (2006)

2. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Alge-
braic approaches to graph transformation I: Basic concepts and double pushout
approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing
by Graph Transformation, vol. 1, pp. 163–245. World Scientific (1997)

3. Corradini, A., Gadducci, F.: On term graphs as an adhesive category. In: TERM-
GRAPH’04. ENTCS, vol. 127(5), pp. 43–56. Elsevier (2005)

4. Drewes, F., Habel, A., Kreowski, H.J.: Hyperedge replacement graph grammars.
In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph
Transformation, vol. 1, pp. 95–162. World Scientific (1997)

5. Ehrig, H., Ehrig, K., Prange, U., Täntzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, Springer (2006)

6. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement cat-
egories and systems. In: ICGT’04. LNCS, vol. 3256, pp. 144–160. Springer (2004)

7. Ehrig, H., Habel, A., Parisi-Presicce, F.: Basic results for two types of high-level
replacement systems. In: GETGRATS Closing Workshop. ENTCS, vol. 51, pp.
127–138. Elsevier (2002)

8. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Mathematical Structures in Computer
Science 16(6), 1133–1163 (2006)

9. Ehrig, H., Kreowski, H.J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: MFCS’76. LNCS, vol. 45, pp. 284–293. Springer (1976)

10. Gadducci, F.: Graph rewriting for the π-calculus. Mathematical Structures in Com-
puter Science 17(3), 407–437 (2007)

11. Gadducci, F., Lluch-Lafuente, A.: Graphical encoding of a spatial logic for the
π-calculus. In: CALCO’07. LNCS, vol. 4624, pp. 209–225. Springer (2007)

12. Gadducci, F., Monreale, G.V.: A decentralized implementation of mobile ambients.
In: ICGT’08. LNCS, vol. 5214, pp. 115–130. Springer (2008)

13. Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited.
Mathematical Structures in Computer Science 11(5), 637–688 (2001)

14. Heindel, T.: Hereditary pushouts reconsidered. In: ICGT’10. LNCS, vol. 6372, pp.
250–265. Springer (2010)

15. Johnstone, P.T., Lack, S., Sobociński, P.: Quasitoposes, quasiadhesive categories
and Artin glueing. In: CALCO’07. LNCS, vol. 4624, pp. 312–326. Springer (2007)

16. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. Theoretical Infor-
matics and Applications 39(3), 511–545 (2005)

12

