
Pre-nets, read arcs and unfolding:
a functorial presentation⋆

Paolo Baldan1, Roberto Bruni2, and Ugo Montanari2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italia.
2 Dipartimento di Informatica, Università di Pisa, Italia.

baldan@dsi.unive.it, bruni@di.unipi.it, ugo@di.unipi.it

Abstract. Pre-nets have been recently proposed as a means of providinga func-
torial algebraic semantics to Petri nets (possibly with read arcs), overcoming
some previously unsolved subtleties of the classical model. Here we develop a
functorial semantics for pre-nets following a sibling classical approach based on
an unfolding construction. Any pre-net is mapped to an acyclic branching net,
representing its behaviour, then to a prime event structureand finally to a finitary
prime algebraic domain. Then the algebraic and unfolding view are reconciled:
we exploit the algebraic semantics to define a functor from the category of pre-
nets to the category of domains that is shown to be naturally isomorphic to the
unfolding-based functor. All the results are extended to pre-nets with read arcs.

Introduction

P/T Petri nets [Rei85] are one of the most widely known modelsof concurrency. Since
their introduction, almost fifty years ago [Pet62], the conceptual simplicity of the model
and its intuitive graphical presentation have attracted the interest of both theoreticians
and practitioners. Nevertheless, the concurrent semantics of Petri nets still presents sev-
eral aspects that cannot be considered fully encompassed. The aim of this paper is to
point out the missing fragments of the overall picture and tofill as many gaps as possi-
ble, providing neat mathematical constructions.

We concentrate on the semantic interpretation arising fromthe so-calledindividual
token philosophy(ITPh) as opposed to thecollective token philosophy(CTPh). The two
terminologies have been introduced in [GP95] to distinguish the interpretation of to-
kens in the same place as anonymous and indistinguishable resources (CTPh), from the
view of tokens as resources uniquely characterised by theirhistories and causal depen-
dencies (ITPh). On the one hand, theCTPh, taking the paradigm of multiset rewriting
to the extreme consequence is somehow simpler: repeated elements in a multiset are
completely equivalent and cannot be distinguished one fromthe other. On the other
hand, theCTPh is less amenable to the full variety of concurrent semantic frameworks
that can be studied in theITPh. Roughly these can be classified in process-oriented,
unfolding, algebraic, and logical:
⋆ Research supported by the FET-GC Project IST-2001-32747 AGILE and by the MIUR Project

COFIN 2001013518 COMETA. The second author is also supported by an ItalianCNR fellow-
ship for research on Information Sciences and Technologies, and by the CS Department of the
University of Illinois at Urbana-Champaign.

2 P. Baldan, R. Bruni and U. Montanari

– The processapproach focuses on non-sequential / concurrent models of compu-
tations and on their composition. Several notions of (deterministic) process have
been proposed that rely on different abstractions in modelling resources, executed
events and concurrent computations [BD87,GR83,DMM96,Sas98].

– Theunfolding approachis built on top of nondeterministic processes to account for
a broader view of computations, which includes concurrency, causality and con-
flict. Starting from the seminal work of Winskel [Win87], which focuses on the
simpler class ofsafenets, several authors have contributed to the generalisation of
the approach to the full class of P/T Petri nets [MMS92,MMS97a,MMS96], show-
ing that a chain of adjunctions (coreflections in the case of safe or semi-weighted
nets) leads fromPTNetsto PES, for PTNetsthe category of P/T Petri nets andPES
the category of prime event structures, which is equivalentto the categoryDom of
coherent finitary prime algebraic domains (for this reason,the unfolding approach
is sometimes referred to as adenotational semantics).

– The algebraic approach, originally proposed in [MM90] for theCTPh under the
statement “Petri nets are monoid”, recasts the process approach in universal alge-
bras: The idea is to characterise the concurrent model of computation as the initial
model in a suitable algebra of decorated computations.

– The logical view tries to recast the algebraic approach into deduction theories,
whose sentences denote concurrent execution strategies and whose theorems se-
lect admissible computations [BMMS01].

Category theory has been shown instrumental in all the aboveapproaches: processes
come naturally equipped with notion of a parallel and a sequential composition, which
provides the structure of amonoidal category; adjunctions and coreflections are cate-
gorical notion used in the unfolding semantics to guaranteethat all constructions are
as good as possible; P/T Petri nets are essentially graphs with structured nodes, and, as
such, can be naturally equipped with structure-preservinghomomorphism, which can
also be seen as simulation morphisms; initiality in the algebraic semantics is again a
categorical notion for selecting the best candidate model;finally, the logical view ex-
ploits the fact that adjunctions between the categories of models of two theories, like
the theory of Petri nets and the theory of concurrent models,can be more conveniently
expressed as theory morphisms (whose existence is easier toprove).

When categories are involved, a central property of the semantic constructions, wit-
nessing their appropriateness, isfunctoriality, i.e., the fact that simulation morphisms
between nets are preserved at the level of computational, algebraic, logical and deno-
tational models. A second crucial property isuniversality, in the sense of constructions
expressed as adjunctions. In fact, we remind that when functors are left/right adjoints
they preserve colimits/limits yielding good compositionality properties.

For theITPh the unfolding approach is completely stable and satisfactory. Instead,
the application of the algebraic approach to theITPh presents several problems basically
related to the fact that the monoidal operation on computations is commutative only
up to a symmetry natural isomorphism. As a consequence, the construction proposed
in [DMM96] fails to preserves some ordinary simulation morphisms between nets. The
situation is improved in [MMS97b] up to a pseudo-functorialconstruction [Sas98].
Correspondingly, different notions of deterministic processes, which differ just in the

Pre-nets, contexts and unfolding 3

decoration of minimal and maximal places have been proposedas “concrete” models.
The lack of functoriality has also discouraged the formulation of a logical semantics.

The problem intuitively resides in the dichotomy between the multiset view of a
state and the need of distinguishing uniquely its elements to track their causal history.
A relevant advance of the theory has been the introduction ofpre-nets[BMMS99] (see
also [BMMS01] for an extensive discussion), a variant of ordinary nets where a to-
tal ordering is imposed on the places occurring in the pre- and post-set of transitions.
Any pre-net can be seen as a concrete “implementation” of thePetri net obtained by
forgetting about the ordering of places in pre- and post-sets. Using strings rather than
multisets allows to uniquely characterise each element by its position. Thus pre-nets
allow to obtain a satisfactory algebraic treatment, where the construction of the model
of computation yields an adjunction between the category ofpre-nets and the category
of models (symmetric monoidal categories [Mac71]) and it can be expressed as a theory
morphism, accounting for the algebraic and logical views. Notably, the construction of
the model of computation for all pre-nets implementing the same Petri net yields the
same result, hence we can define the semantics of a net asthealgebraic semantics of
any of its pre-net implementations. Still the picture is incomplete, since some classical
approaches to the semantics of Petri nets have not been yet explored for pre-nets.

In this paper we complete the theory of pre-nets by showing that:

– Concrete notions of deterministic occurrence pre-nets andof pre-net processes can
be defined in analogy with Petri nets. Finite processes form asymmetric monoidal
category which turns out to be isomorphic via a symmetric monoidal functor to the
algebraic model of computation, thus reconciling the process and algebraic view
in a fully functorial construction (a result not possible for Petri nets). Moreover, a
graphical presentation is introduced for pre-net processes.

– A domain semantics for pre-nets can be defined by generalising a construction
proposed for ordinary nets in [MMS96]. Given a pre-netR, the comma category
〈u ↓ Z(R)〉, whereu is the initial state ofR andZ(R) its algebraic model, is a pre-
order whose ideal completion is a prime algebraic domain. Roughly this domain
consists of the set of deterministic processes of the net, endowed with a kind of
prefix ordering.

– An unfolding semantics can be defined which associates to anypre-net, first an
acyclic pre-net representing all its possible computations in a single branching
structure, then an event structure and finally a prime algebraic domain.

– Since the unfolding is essentially a nondeterministic process that completely de-
scribes the behaviour of a pre-net, a clear link between the unfolding and the alge-
braic approach is called for. The result showing that the domain originating from
the algebraic model of computation and the one extracted from the unfolding are
isomorphic, can now be stated in a satisfactory categoricalframework: the two con-
structions can be expressed asnaturally isomorphic functors(while the analogous
result for ordinary Petri nets [MMS96] holds only at the level of objects).

– Finally, the pre-net and Petri net framework are reconciledby explaining how the
domain semantics of a net and of its pre-net implementationsare related.

We remark that, although in the case of pre-nets all the construction are functorial,
one link is still missing, because the functor that abstracts the unfolding of a pre-net

4 P. Baldan, R. Bruni and U. Montanari

to a prime event structure is not characterised as a universal construction. Whether the
mentioned construction can be defined as a right adjoint or not is a non-trivial question.
We strongly conjecture that the answer is negative, but thisis left as an open problem.

Along the years, Petri nets have been generalised in severalways to increase their
expressivity. In the last part of the paper we focus on a mild but significant extension,
i.e., the addition ofread arcs, which allows to provide a faithful representation of read-
only accesses to resources. Nets with read arcs, calledcontextual netsin [MR95], have
been used to model a variety of applications and phenomena, such as transaction seri-
alizability in databases [DFMR94], concurrent constraintprogramming [MR94], asyn-
chronous systems [Vog97], and analysis of cryptographic protocols [CW01].

Pre-nets have been already shown to be useful to define a neat algebraic semantics
for contextual nets [BMMS02]. Here, relying on some previous work on the different
semantic approaches for nets with read arcs, we discuss how the whole theory developed
in this paper for ordinary pre-nets generalises in the presence of read arcs.

Synopsis.The rest of the paper is structured as follows. Section 1 reviews the basics
of pre-nets and their algebraic semantics. Section 2 definesa process semantics for
pre-nets and compares it to the algebraic semantics. Section 3 develops the unfolding
semantics of pre-nets. Section 5 extends our results to netswith read arcs. Finally, Sec-
tion 6 summarises the results in the paper and some open questions. We assume that the
reader has some familiarity with P/T Petri net theory and category theory.

1 Pre-nets and their algebraic semantics

In this section we recall the basics of pre-nets [BMMS99,BMMS01], discussing their
algebraic semantics and the relation with ordinary P/T Petri nets.

Notation. Given a setX, we denote byX⊗ the free monoid overX (finite strings of
elements ofX) with the empty stringε as the unit, and byX⊕ the free commutative
monoid overX (finite multisets overX) with unit the empty set/0. We writeµ : X⊗ →X⊕

for the function mapping any string to the underlying multiset. Furthermore, given a
function f : X → Y⊗ we denote byf⊗ : X⊗ → Y⊗ its obvious monoidal extension.
Similarly, giveng : X → Y⊕ we denote byg⊕ : X⊕ → Y⊕ its commutative monoidal
extension. Givenu∈X⊗ or u∈X⊕ we denote by[[u]] the underlying subset ofX defined
in the obvious way. When set relations are used over string and multisets, we implicitly
refer to the underlying set. E.g., foru,v ∈ X⊗ (or X⊕) by x ∈ u we meanx ∈ [[u]] and
similarly u∩v means[[u]]∩ [[v]].

Recall that aP/T Petri netis a tupleN = (∂0,∂1,S,T), whereS is a set ofplaces,
T is a set oftransitions, and∂0,∂1 : T → S⊕ are functions assigning multisets called
source and target, respectively, to each transition. Amarkednet is a pair〈N,m〉 where
N is a P/T Petri net andm∈ S⊕. A Petri net morphism f= 〈 fs, ft〉 : N → N′ is a pair
wherefs : S⊕ →S′⊕ is a monoid homomorphism, andft : T → T ′ is a function such that
∂′i ◦ ft = fs◦ ∂i , for anyt ∈ T andi ∈ {0,1}. The category of P/T Petri nets (as objects)
and Petri net morphisms (as arrows) is denoted byPetri. A morphism of marked P/T
nets f : 〈N,m〉 → 〈N′,m′〉 is subject to the additional requirement of preservation ofthe

Pre-nets, contexts and unfolding 5

N0

••

a

2

•

b

t0 •

c

t1

d e

1,4

a

{1,3}

2

b

1

t0

2 1

3

2 2c

t1

12

d e

R0

Fig. 1.The P/T Petri netN0 and (one of) its pre-net implementationR0.

initial marking, i.e.,fs(m) = m′. The category of marked P/T Petri nets (as objects) and
marked Petri net morphisms (as arrows) is denoted byPetri∗.

A pre-netis roughly a Petri net where the resources (tokens in places)are linearly
ordered. In other words, the state as well as the pre- and post-conditions of transitions
are strings rather than multisets of places.

Definition 1 (pre-net).A pre-netis a tuple R= (ζ0,ζ1,S,T), where S is a set ofplaces,
T is a set oftransitions, andζ0,ζ1 : T →S⊗ are functions assigning, respectively, source
and target to transitions. Amarkedpre-net is a pair〈R,u〉 with R a pre-net and u∈ S⊗.

The pictorial representation of Petri nets has certainly played an important role in
their large diffusion as a specification framework. This graphical presentation (places
represented as circles, transition as boxes, pre- and post-set multirelation as weighted
arcs, tokens as black bullets) can be extended to pre-nets byadopting the following
conventions: (1) weighted arcs are replaced by arcs labelled with theordered list of
positionsin which the place appears in the pre- / post-set of the transition, with lists
of length greater than one enclosed in curly brackets; (2) tokens are represented as
numbers denoting their positions in the current state. An example of pre-netR0 can
be found in the right part of Fig. 1. It will be used throughoutthe paper to illustrate
definitions and concepts. From the inscription{1,3} of the arc froma to t0, we see that a
firing of t0 requires two tokens froma, to be taken as first and third consumed resources,
while the second token to be consumed byt0 must be taken fromc, as imposed by the
inscription 2 of the arc fromc to t0 (we remark that 2 denotes a position, not the number
of tokens to be consumed). Moreover, from the inscriptions inside the circles fora, b
andc, we note that the initial marking ofR0 is the stringu= abca, i.e., that thea occurs
in the first and fourth positions ofu, b in the second, andc in the third.

As for P/T Petri nets, the notion of pre-net morphism naturally arises from an alge-
braic view, where places and transitions play the role of sorts and operators.

Definition 2 (pre-net morphism). A pre-net morphism from R= (ζ0,ζ1,S,T) to R′ =
(ζ′0,ζ′1,S′,T ′) is a pair f = 〈 fs, ft〉 where fs : S⊗ → S′⊗ is a monoid homomorphism,
and ft : T → T ′ is a function such thatζ′i ◦ ft = fs◦ ζi , for i ∈ {0,1}. We denote by
PreNet the category of pre-nets and their morphisms with the obvious composition.

6 P. Baldan, R. Bruni and U. Montanari

A marked pre-net morphism from〈R,u〉 to 〈R′,u′〉 is a pre-net morphism f: R→ R′

such that fs(u) = u′. We denote byPreNet∗ the category of marked pre-nets and their
morphisms with the obvious composition.

Pre-nets can be seen as a specification formalism (slightly)more concrete than Petri
nets. In particular any pre-netR can be thought of as an “implementation” of the Petri
net which is obtained fromR replacing any string by the corresponding multiset. This
construction is formalised below.

Definition 3. The functorA : PreNet→ Petri is defined as follows:

– any pre-net R= (ζ0,ζ1,S,T) is mapped toA(R) = (∂0,∂1,S,T), where∂i(t) =
µ(ζi(t)) for each t∈ T and i∈ {0,1};

– any pre-net morphism f: R→ R′ is mapped toA(f) = 〈g⊕s , ft〉, where gs(s) =
µ(fs(s)) for each s∈ S.

We denote byA∗ : PreNet∗ → Petri∗ the obvious extension ofA to marked nets.

For instance, referring to Fig. 1, the ordinary Petri netN0 in the left part is implemented
by R0, i.e., we haveA∗(R0) = N0. The transitiont0 : 2a⊕c→ c⊕d∈N0 is implemented
ast0 : aca→ cd∈R0, andt1 : b⊕c→ c⊕e∈N0 ast1 : bc→ ec∈R0. Clearly alternative
implementations would have been possible exploiting different linearizations.

Intuitively, a computation of a pre-net consists of “explicit” steps, namely firings
of transitions which consume and produce resources, and of “implicit” steps which
rearrange the order of the resources to allow the application of transitions. All the se-
quences of implicit steps that implement the same permutation of a given state are
indistinguishable. Formally, the model of computation of apre-net is the free symmet-
ric strict monoidal category generated by the pre-net, the symmetries playing the role
of the above mentioned implicit steps. LetSSMC be the category of symmetric strict
monoidal categories (as objects) and symmetric monoidal functors (as arrows), and let
SSMC⊗ denote the full subcategory containing only the categorieswhose monoid of
objects is freely generated. Then the algebraic model of computation of a pre-netR is
its imageZ(R) throughZ : PreNet→ SSMC⊗, the left adjoint to the obvious forgetful
functor fromSSMC⊗ to PreNet. A more illustrative definition is given below.

Definition 4. Given a pre-net R= (ζ0,ζ1,S,T), the model of computationZ(R) is a
symmetric monoidal category whose objects are the elementsof S⊗ and whose arrows
are generated by the rules in Fig. 2, quotiented out by the axioms of monoidal categories
and the coherence axioms makingγ , the symmetry natural isomorphism (all axioms
are collected in Fig. 3).

Recall that apointedcategory is a pair〈C,OC〉, whereC is a category andOC is an
object inC. A pointed functor F: 〈C,OC〉 → 〈D,OD〉 is a functorF : C → D such that
F(OC) = OD. The construction of the model of computation extends to marked pre-nets
and to the categorySSMC⊗

∗ of pointed strictly symmetric monoidal categories.

Definition 5. Given a marked pre-net〈R,u〉, the model of computationZ∗(〈R,u〉) is
the pointed category〈Z(R),u〉.

Pre-nets, contexts and unfolding 7

u∈ S⊗

idu : u→ u∈ Z(R)

u,v∈ S⊗

γu,v : uv→ vu∈ Z(R)

t ∈ T ζ0(t) = u ζ1(t) = v

t : u→ v∈ Z(R)

α : u→ v, α′ : u′ → v′ ∈ Z(R)

α⊗α′ : uu′ → vv′ ∈ Z(R)

α : u→ v, β : v→ w∈ Z(R)

α;β : u→ w∈ Z(R)

Fig. 2. Inference rules forZ(R).

For anyu,v,w∈ S⊗ and

for anyα : u→ v,β : v→ w,δ : w→ z,α′ : u′ → v′,β′ : v′ → w′,α′′ : u′′ → v′′ ∈ Z(R):

UNIT: idε ⊗α = α = α⊗ idε,

ASSOCIATIVITY: (α⊗α′)⊗α′′ = α⊗ (α′⊗α′′) (α;β);δ = α;(β;δ)

IDENTITIES: α; idv = α = idu;α idu⊗ idv = iduv

FUNCTORIALITY: (α;β)⊗ (α′;β′) = (α⊗α′);(β⊗β′)

NATURALITY : (α⊗α′);γv,v′ = γu,u′ ;(α′⊗α)

COHERENCE: γu,vw = (γu,v⊗ idw);(idv⊗ γu,w) γu,v;γv,u = iduv

Fig. 3.Axioms for Z(R).

Notice thatZ∗ extends to a left adjoint functor fromPreNet∗ to SSMC⊗
∗ .

Given a pre-netRand two statesu,v∈ S⊗ we say thatv is reachable fromu if there
is an arrowα : u→ v in Z(R). If 〈R,u〉 is a marked pre-net we say thatv is reachable
if it is reachable fromu. One can easily see thatv is reachable in〈R,u〉 if and only
if µ(v) is reachable inA∗(〈R,u〉). More generally, given any P/T netN, all its pre-
net implementations have essentially the same behaviour, in the sense that they have
isomorphic models of computation. Hence the semantics ofN can be recovered by an
arbitrarily chosen pre-net implementation.

Theorem 1. For any pair of pre-nets R and R′, if A(R)≃ A(R′) thenZ(R)≃ Z(R′) via
a symmetric monoidal functor.

Moreover, the categoryZ(R) can be quotiented out by suitable axioms to recover
all the algebraic computational models ofA(R) in the literature (e.g. concatenable pro-
cesses, commutative processes). Analogous results holds also in the marked case.

2 Concatenable processes for pre-nets

In this section we introduce a notion of (concatenable) process for pre-nets. A process
is intended to provide a static representation of a concurrent computation, which makes
explicit the events occurring in the computation and their causal dependencies. The
appropriateness of our notion of pre-net process will be formalised by showing that
for any pre-net the category of concatenable processes is isomorphic to its model of
computation via a symmetric monoidal functor.

8 P. Baldan, R. Bruni and U. Montanari

2.1 Safe and occurrence pre-nets

Let R be a pre-net. A stateu∈ S⊗ is calledsafeif any place occurs at most once inu,
i.e., if µ(u) is a safe marking. A marked pre-net is called safe if the source and target of
all transitions as well as all the reachable states are safe.

Definition 6 (causality, conflict, concurrency).Let R= (ζ0,ζ1,S,T) be a pre-net. The
causality relationis the least transitive relation<R⊆ (S∪T)× (S∪T) such that

(i) if s ∈ ζ0(t) then s<R t; (ii) if s ∈ ζ1(t) then t<R s.

Given a place or transition x∈ S∪T, we denote by⌊x⌋ the set ofcausesof x in T ,
defined as⌊x⌋ = {t ∈ T | t ≤R x} ⊆ T, where≤R is the reflexive closure of<R.

Theconflict relation #R⊆ (S∪T)× (S∪T) is defined as the least relation such that

(i) if ζ0(t)∩ζ0(t ′) 6= /0 then t#Rt ′; (ii) if x #Rx′ and x′ ≤R x′′ then x#Rx′′.

A set of places X⊆ S isconcurrent, written co(X) if for any s,s′ ∈ X neither s< s′

nor s#s′, and
S

x∈X⌊x⌋ is finite.

Definition 7 (occurrence pre-net).Anoccurrence pre-netis a safe pre-net R such that
(i) causality<R is a partial order and, for any transition t, the set of causes⌊t⌋ is finite;
(ii) there are no backward conflicts, i.e., for any t6= t ′, ζ1(t)∩ ζ1(t ′) = /0; (iii) conflict
#R is irreflexive. An occurrence pre-net isdeterministicif it has no forward conflicts,
i.e., for any t6= t ′, ζ0(t)∩ζ0(t ′) = /0.

We denote byPreOcc∗ the full subcategory ofPreNet∗ whose objects are occur-
rence pre-nets.

It is immediate to verify that the relations of causality andconflict in a pre-netRare
the same as in the implemented Petri netA(R). HenceR is a safe (occurrence) pre-net
if and only if the corresponding Petri netA(R) is a safe (occurrence) net. This implies
thatA∗ restricts to a well-defined functor fromPreOcc∗ to Occ∗, the full subcategory
of Petri∗ where objects are occurrence nets.

2.2 Processes of a pre-net

An interesting feature of Petri nets is the fact that a net process can still be represented
as a special Petri net (decorated with a morphism to the original net) [GR83]. This is
true also for pre-nets.

Let us call a pre-net morphismf : R→ R′ elementaryif for any s∈ S, fs(s) ∈ S′

(places are sent to single places rather than to strings).

Definition 8 (process).Let R= (ζ0,ζ1,S,T) be a pre-net. Aprocessof R is an ele-
mentary pre-net morphismπ : O → R where O is an occurrence pre-net and for any
t, t ′ ∈ TO, if ft(t) = ft(t ′) andζ0(t) = ζ0(t ′) then t= t ′ (irredundancy).

The processπ is finite / deterministic if the underlying occurrence pre-net O is finite
/ deterministic. For a finite deterministic processπ we denote bymin(π) (resp.,max(π))
the set of places of O which are minimal (resp., maximal) w.r.t. ≤O.

Pre-nets, contexts and unfolding 9

A concatenable process of a pre-net is a deterministic finiteprocess of the net with
explicit source and target states, i.e., with a total ordering in the minimal and maximal
places of the underlying occurrence pre-net.

Definition 9 (concatenable process).A concatenable process of a pre-net R is a triple
δ = 〈σ,π,τ〉, whereπ is a deterministic finite process of R andσ,τ ∈ S⊗O are string of
places in SO such that

µ(σ) = min(π) and µ(τ) = max(π).

We denote byζ0(δ) the stringπ⊗
s (σ) and byζ1(δ) the stringπ⊗

s (τ).

An isomorphism of (concatenable) processesδ andδ′ is an isomorphism of the under-
lying pre-nets consistent with the mapping to the original pre-net and with the lineariza-
tions of minimal and maximal places. The isomorphism class of a concatenable process
δ is written[δ] and called anabstractconcatenable process.

Concatenable processesδ = 〈σ,π,τ〉 of pre-nets can be graphically represented by
slightly adjusting the visual modelling of ordinary Petri processes: (1) places (and tran-
sitions) are labelled by their images throughπ, (2) minimal and (resp. maximal) places
carry also as superscript (resp., subscript) their position in σ (resp.,τ); (3) arcs are la-
belled by the (unique) position in which the place appears inthe pre- and post-set of the
transition (again, we remark that arc labels stand for positions, not for weights).

In Fig. 4 some simple processes are illustrated (for our running exampleR0) that
correspond to single transitions, place identities and permutations.

Given two concatenable processesδ1 = 〈σ1,π1,τ1〉 andδ2 = 〈σ2,π2,τ2〉, such that
ζ1(δ1) = ζ0(δ2) their concatenation is defined as the process obtained by gluing the
maximal places ofπ1 and the minimal places ofπ2 according to their orderings.

Definition 10 (sequential composition).Let δ1 = 〈σ1,π1,τ1〉 andδ2 = 〈σ2,π2,τ2〉 be
concatenable processes of a pre-net R such thatζ1(δ1) = ζ0(δ2). Suppose T1∩T2 = /0
and S1∩S2 = max(π1) = min(π2), with τ1 = σ2. In other wordsδ1 andδ2 overlap only
onmax(π1)= min(π2), and such places carry the same ordering in the interfacesτ1 and
σ2. Then their sequential compositionδ1;δ2 is the concatenable processδ = 〈σ1,π,τ2〉,
where the processπ is the (componentwise) union ofπ1 andπ2.

The above construction induces a well-defined operation of sequential composition
between abstract concatenable processes. In particular, if [δ1] and[δ2] are abstract con-
catenable processes such thatζ1(δ1) = ζ0(δ2) then we can always findδ′2 ∈ [δ2] such
that δ1;δ′2 is defined. Moreover the result of the composition seen at abstract level,
namely[δ1;δ′2], does not depend on the particular choice of the representatives.

Definition 11. We denote byP P (R) the category having the elements of S⊗ as objects
and abstract concatenable processes of R as arrows, with obvious composition as in
Definition 10 and obvious identities.

The categoryP P (R) is a symmetric strict monoidal category. In fact (1) parallel
composition⊗ is readily defined for processesδ1 = 〈σ1,π1,τ1〉 andδ2 = 〈σ2,π2,τ2〉
such thatT1 ∩T2 = S1 ∩S2 = /0, asδ1 ⊗ δ2 = 〈σ1σ2,π,τ1τ2〉, whereπ is the compo-
nentwise union ofπ1 andπ2; (2) parallel composition induces a well-defined tensor

10 P. Baldan, R. Bruni and U. Montanari

t0 =

a1

1

c2

2

a3

3

t0

1 2

c1 d2

t1 =

b1

1

c2

2

t1

1 2

e1 c2

ida =
a1

1
idb =

b1
1

idd =
d1

1

γb,ca =
b1

3 c2
1 a3

2

γcd,b =
c1

2 d2
3 b3

1

Fig. 4.Textual and graphical representation of simple pre-net processes.

p1 = ida⊗ γb,ca =
a1

1 b2
4 c3

2 a4
3

p2 = t0⊗ idb =

a1

1

c2

2

a3

3

b4
3

t0

1 2

c1 d2

p3 = t1⊗ idd =

b1

1

c2

2

d3
3

t1

1 2

e1 c2

Fig. 5.Tensor product of simple processes.

product between abstract concatenable processes; (3) the tensor product is associative
(but not commutative!) and it has the empty process〈ε,π /0,ε〉 as unit; (4) the component
γu,v of the symmetry natural isomorphism is defined by the abstract class of processes
〈σuσv,π,σvσu〉 with no transitions and such thatπ⊗(σu) = u andπ⊗(σv) = v.

In Fig. 5 the processes of Fig. 4 are composed via tensor products in the larger
processesp1 : abca→ acab, p2 : acab→ cdbandp3 : bcd→ ecd. Finally, in Fig. 6, the
processes illustrated so far are composed sequentially inp4 : abca→ cdb, p5 : cdb→
ecdandp : abca→ ecd.

The next theorem shows that pre-net processes provide an appropriate description
of the concurrent computations of a pre-netR, in the sense that concatenable pre-net
processes can be seen as concrete representatives of the arrows inZ(R).

Theorem 2. The categoryP P (R) is isomorphic to the model of computationZ(R) via
a symmetric monoidal functor.

The theorem above is proved by observing that, beingP P (R) a symmetric monoidal
category, a functor fromF : Z(R) → P P (R) can be easily defined by mapping genera-
tors to generators. A functor in the converse direction, is defined by identifying a normal

Pre-nets, contexts and unfolding 11

p4 = p1; p2 =

a1

1

c3

2

a4

3

b2
3

t0

1 2

c1 d2

p5 = γcd,b; p3 =

b3

1

c1

2

d2
3

t1

1 2

e1 c2

p = p4; p5 =

a1

1

c3

2

a4

3

b2

1

t0

2 1

d3 c 2

t1

1 2

e1 c2

Fig. 6. Sequential composition of processes.

form for the processes inP P (R) which, roughly, corresponds to a maximally concur-
rent computation. As a technical remark, the proof is much simpler w.r.t. analogous ones
for (concatenable, strongly concatenable) process categories associated to Petri nets, as
we can (arbitrarily) fix the normal form expression in such a way that all isomorphic
processes have exactly the same normal form (whereas in Petri nets the normal form
can be fixed only up-to isomorphism).

3 Unfolding of pre-nets

A deterministic process describes a single deterministic computation of the net. The
unfolding approach, originally devised in [NPW81], associates to a system a single
denotational structure representing, in an unambiguous way, all the events occurring
in any possible computation and their dependencies. This structure expresses not only
the causal ordering between the events, but also gives an explicit representation of the
branching (choice) points of the computations.

In this section we develop a functorial unfolding semanticsfor pre-nets, discussing
the difficulties which arise in trying to express this functor as a universal construction.

3.1 Unfolding construction

Given a marked pre-net〈R,u〉 the unfolding construction unwindsR into an occurrence
pre-net, starting from the initial stateu, firing transitions in all possible way and record-
ing the corresponding occurrences.

12 P. Baldan, R. Bruni and U. Montanari

1≤ i ≤ |u|

u′i = 〈 /0,ui , i〉 ∈ S′ ηs(u′i) = ui

v∈ S′⊗ safe co([[v]]) t ∈ T η⊗
s (v) = ζ0(t)

t ′ = 〈v,t〉 ∈ T ′ ηt(t ′) = t ζ′0(t
′) = v

t ′ = 〈v,t〉 ∈ T ′ ζ1(t) = w1 . . .wn

w′
i = 〈{t ′},wi , i〉 ∈ S′ ηs(w′

i) = wi ζ′1(t
′) = w′

1 . . .w′
n

Fig. 7. Inference rules for the unfoldingUp(〈R,u〉) of a pre-netR.

Definition 12 (unfolding). Let〈R,u〉 be a marked pre-net. The unfoldingUp(〈R,u〉) =
((ζ′0,ζ

′
1,S

′
,T ′),u′) and thefolding morphismηR = 〈ηt ,ηs〉 : Up(R) → R are the oc-

currence pre-net and (elementary) pre-net morphism inductively defined by the rules in
Fig. 7, with u′ = 〈 /0,u1,1〉 . . . 〈 /0,u|u|, |u|〉 (where ui denotes the ith element of the string
u, and|u| is the length of u).

Observe that items in the unfolding are enriched with their causal histories. Any
places′ = 〈x,wi , i〉 records its generatorx (x is empty when the place is in the initial
state, otherwisex is a singleton), the placewi in the original pre-net and a numberi
which allow to distinguish multiple occurrences of tokens in the same place, having the
same history. Any transitiont ′ = 〈v,t〉 represents a firing oft that consumes the string
of resourcesv.

The unfolding of our running exampleR0, with initial stateabca, is depicted in
Fig. 8. The morphismηR0 : Up(〈R0,abca〉)→ R0 is implicitly represented by labelling
each place and transitionx with its imageηR0(x). For some items in the unfolding also
the concrete identity is provided. For instance,a1 = 〈 /0,a,4〉 represents the occurrence of
a in the fourth position of the initial marking,t ′0 = 〈a4c3a1,t0〉 represent an occurrence
of t0, which fires using the fourth, third and second resource in the initial state.

The unfolding construction can be characterised as a universal construction estab-
lishing a coreflection between the categoriesPreOcc∗ andPreNet∗

Theorem 3. The unfolding construction induces a functorUp : PreNet∗ → PreOcc∗,
right adjoint to the inclusionIp : PreOcc∗ → PreNet∗, with counitη : Ip◦Up → 1.

3.2 Event structure and domain semantics

The unfolding semantics for a pre-net can be naturally abstracted to a prime event struc-
ture semantics.Prime event structures(PES) are a simple event based model of (concur-
rent) computations in which events are considered as atomicand instantaneous steps,
which can appear only once in a computation. An event can occur only after some other
events (itscauses) have taken place and the execution of an event can inhibit the execu-
tion of other events. This is formalised via two binary relations:causality, modelled by
a partial order relation, andconflict, modelled by a symmetric and irreflexive relation,
hereditary w.r.t. causality.

Definition 13 (prime event structures).A prime event structure(PES) is a tuple P=
〈E,≤,#〉, where E is a set ofeventsand≤, # are binary relations on E calledcausality
andconflict, respectively, such that:

Pre-nets, contexts and unfolding 13

t0t0 t1

t0 t0 t1 t1

e c e c

c3 = 〈 /0,c,3〉a1 = 〈 /0,a,1〉 a4 = 〈 /0,a,4〉

caa

c cd d

c d c d

4 b1 3 2

1 3

2

1 1 1 1 2

3
3

2 2
1

22 11 1 2

22

1

2

3

2

1

c

〈{t ′1},c,2〉

〈{t ′1},e,1〉

2 1

2
121

b2 = 〈 /0,b,2〉

e

t ′0 = 〈a4c3a1,t0〉 t ′1 = 〈b2c3,t1〉

Fig. 8. The unfolding of〈R0,abca〉.

1. the relation≤ is a partial order and⌊e⌋ = {e′ ∈ E : e′ ≤ e} is finite for all e∈ E;
2. the relation# is irreflexive, symmetric and hereditary with respect to≤, i.e., e#e′

and e′ ≤ e′′ implies e#e′′ for all e,e′,e′′ ∈ E;

Let P0 = 〈E0,≤0,#0〉 and P1 = 〈E1,≤1,#1〉 be twoPES’s. A PES-morphismf : P0 →
P1 is a partial function f: E0 → E1 such that for all e0,e′0 ∈ E0, assuming that f(e0)
and f(e′0) are defined:

1. ⌊ f (e0)⌋ ⊆ f (⌊e0⌋);
2. (a) f(e0) = f (e′0) ∧ e0 6= e′0 ⇒ e0#0e′0; (b) f (e0)#1 f (e′0) ⇒ e0#0e′0;

The category of prime event structures andPES-morphisms is denoted byPES.

Given an occurrence pre-net the correspondingPEScan be obtained by forgetting
about the places, keeping the transitions and the dependency relations among them.
The transformation is functorial since the transition component of a morphism between
occurrence pre-nets satisfies the requirements to be aPES-morphism between the un-
derlyingPES’s.

Definition 14 (from occurrence pre-nets toPES’s). Let Ep : PreOcc∗ → PESbe the
functor defined on objects byEp(R) = 〈T,≤R,#R〉 for any occurrence pre-net R and on
arrows byEp(f) = ft for each occurrence pre-net morphism f: R0 → R1.

Winskel in his seminal work [Win87] shows thatPES’s are intimately connected
with another classical semantical model, i.e.,prime algebraic, finitely coherent, finitary

14 P. Baldan, R. Bruni and U. Montanari

PreNet∗
Up

⊥ PreOcc∗
Ep

Ip

PES
L

⊥ Dom
P

Fig. 9. Denotational semantics of pre-nets.

partial orders, hereafter referred to simply asdomains[Ber78]. Formally, an equiva-
lence is established between the categoryPESof prime event structures and the cate-
goryDom of domains and additive, stable, immediate precedence-preserving functions:

PES
L

∼ Dom
P

The functorL associates to eachPESthe domain of its configurations, while the functor
P maps each domain to aPES having its prime elements as events. Relying on this
classical result, thePESsemantics defined in this section for pre-nets can be equivalently
interpreted as a domain semantics. The situation is summarised in Fig. 9.

Interestingly, a clear relation can be established betweenthe functorial domain
semantics of a Petri netN as defined in [MMS96] and the domain semantics of its
pre-net implementations defined here. Recall that, generalising Winskel’s work on safe
nets [Win87], the semantics for ordinary P/T Petri nets in [MMS96] is given as a chain
of adjunctions from the category of nets to the category of domains. The diagram below
summarises these results.

PTNets∗
Ud

⊥ DecOcc∗

F ⊢

Safe∗
U

⊥ Occ∗

D

E

⊥ PES
L

⊥

N

Dom
P

The domain associated to a Petri net by the above construction can be obtained from
that of any of its pre-net implementations by equating all the events which correspond
to occurrences of the same transition with different linearizations of the same resources
(which may differ for the order of tokens in the same place). Formally this is expressed
as a natural transformation between the two semantics:

Theorem 4. There is a natural transformationς : L ◦Ep◦Up → L ◦E ◦F ◦Ud ◦A .

As a consequence (as it happens for the algebraic models of computation) the domains
associated to the pre-net implementations of a given net areall isomorphic, i.e., for all
R, R′, if A(R) ≃ A(R′) thenL ◦Ep◦Up(R) ≃ L ◦Ep◦Up(R′).

Unfortunately, in the case of pre-nets finding a left adjointfor the functorEp appears
to be quite problematic. Intuitively, the left adjoint should freely generate an occurrence
pre-net from anyPES in a way which guarantees the existence and uniqueness of a
representation ofPES-morphisms inPreOcc∗. Places could be freely generated as for
ordinary Petri nets, but then it would be impossible to fix a linear order on the pre- and

Pre-nets, contexts and unfolding 15

post-sets of transitions in a “universal” way. Our conjecture is thatEp is not a right
adjoint functor.

An idea which seems promising in view of a universal characterisation of the men-
tioned construction is to abandon the purely algebraic viewof pre-nets, considering an
alternative notion of pre-net morphism, based on a weaker condition which requires
the preservation of pre- and post-sets of transitions only up to a permutation. The
permutation should be explicitly mentioned in the morphismitself, i.e., a morphism
f : R→ R′ would be enriched with a family of permutations{ω0

t ,ω1
t }t∈T such that

ωt : f⊗s (ζi(t)) → ζi(ft(t)) for any transitiont in R.

4 Reconciling the unfolding and algebraic semantics of pre-nets

The unfolding of a marked pre-net can be seen as a maximal nondeterministic pro-
cess, representing all its possible computations. Hence itis natural to expect that a
tight relationship can be established between the unfolding and the algebraic / process
approach. In this section we show that the domain produced through the unfolding con-
struction can be obtained, equivalently, by means of a functorial construction based
on the model of computation. The correspondence holds at categorical level, namely
the functorL ◦Ep ◦Up (see Fig. 9) and the new functor based on the algebraic se-
mantics are naturally isomorphic. This improves the analogous result existing for Petri
nets [MMS96], which only holds at the object level.

Let 〈R,u〉 be a marked pre-net and consider the comma category〈u ↓ P P (R)〉
(which, by Theorem 2, is isomorphic to〈u ↓ Z(R)〉). Objects are concatenable pro-
cesses ofR with source inu, and an arrow exists from a processδ1 to δ2 if δ2 = δ1;δ
for some processδ. It can be shown that〈u ↓ P P (R)〉 is a preorder, i.e., in〈u ↓ P P (R)〉
there is at most one arrow between any two objects. Let.R denote the corresponding
preorder relation i.e.,δ1 .R δ2 if there existsδ such thatδ1;δ = δ2.

An alternative characterisation of.R, enforces the intuitive idea that it is a gener-
alisation of the prefix ordering over processes. First, we need to introduce the notion of
left injection for concatenable processes.

Definition 15 (left injection). Letδi : u→ vi (i ∈ {1,2}) be two objects in〈u↓P P (R)〉,
with δi = 〈σi ,πi ,τi〉. A left injectionι : δ1 → δ2 is a morphism of pre-netsι : Rπ1 → Rπ2

(where Rπi is the pre-net underlyingπi), such that

1. ι preserves the ordering of minimal places, namelyσ2 = ι⊗s (σ1);
2. ι is rigid on transitions, namely for t′2 in Rπ2 and t1 in Rπ1, if t ′2 ≤ ι(t1) then t′2 = ι(t ′1)

for some t′1 in Rπ1 (the image of a lower set is a lower set).

The name “injection” comes from the fact that any morphismι between marked de-
terministic occurrence nets results to be injective on places and transitions. The word
“left” is related to the fact thatι is required to preserve only the string of minimal places.

Lemma 1. Let δi : u→ vi (i ∈ {1,2}) be objects in〈m↓ P P (R)〉, with δi = 〈σi ,πi ,τi〉.
Thenδ1 .R δ2 iff there exists a left injectionι : δ1 → δ2.

16 P. Baldan, R. Bruni and U. Montanari

SSMC∗
'

PreOrd
Idl

PreNet∗

Z

Up

⇓ ρ PreOrd

PreOcc∗
Ep

PES
L

Dom
⊆

Fig. 10.Reconciling the algebraic and unfolding semantics of pre-nets.

By exploiting the above characterisation and the fact thatUp is a right adjoint
we can conclude that the ideal completion of the preorder〈u ↓ P P (R)〉, denoted by
Idl(〈u ↓ P P (R)〉), is isomorphic to the domainL(Ep(Up(R))) obtained from the un-
folding of the pre-netR.

To gain some intuition observe that the elements of the partial order induced by
the preorder〈u ↓ P P (R)〉 are classes of concatenable processes which are “left isomor-
phic”, i.e., isomorphic via a left injection. Intuitively,the partial order consists of pro-
cesses starting from a fixed initial state and ordered by prefix. Since processes are finite,
taking the ideal completion of the partial order induced by the preorder〈u ↓ P P (R)〉
(which produces the same result as taking directly the idealcompletion of〈u↓ P P (R)〉)
is necessary for moving from finite computations to arbitrary ones.

Theorem 5 (unfolding vs. concatenable processes).Let 〈R,u〉 be a marked pre-net.
ThenIdl(〈u ↓ P P (R)〉) is isomorphic to the domainL(Ep(Up(R))).

The above results admits a nice categorical formulation, since all the involved con-
structions can be seen as functors. LetPreOrd be the category of preorders and mono-
tone functions, and letFlat : Cat→ PreOrd be the functor mapping any category to the
underlying preorder (wherex≤ y if and only if there was an arrowf : x→ y in the origi-
nal category). Let': SSMC∗ →PreOrd be the functor mapping any pointed symmetric
strict monoidal category〈C,OC〉 to Flat(〈OC ↓ C〉). Finally let PreOrd → PreOrd be
the ideal completion functor, mapping any preorder to its ideal completion. Then the
following result holds (see Fig. 10).

Theorem 6. There is a natural isomorphismρ : Idl◦ ' ◦P P ∗ → L ◦Ep◦Up.

5 Adding read arcs

Several extensions of ordinary Petri nets have been proposed in the literature to enrich
the expressiveness of the basic model. A mild generalisation which has been shown to
be quite useful is the addition of the so-calledread arcswhich allow a transition to
check for the presence of a token in a place without removing the token itself. Observe
that a read arc cannot be safely replaced by a self-loop, since the former allows a greater
amount of concurrency in the system: a resource can be read inparallel by several tran-
sitions at the same time, concurrently. For instance consider again the netN0 in Fig. 1,
and compare it to the netN1 in Fig. 11, where placec is connected to transitionst0 andt1

Pre-nets, contexts and unfolding 17

••

a

2

•

b

t0 •

c

t1

d e

N1

Fig. 11.Ordinary nets do not allow for concurrent read-only operations.

by read arcs (denoted by undirected lines), meaning thatc represent a resource accessed
in a read-only manner. While inN1 the transitionst0 andt1 can fire concurrently, in the
netN0 where read arcs are replaced by self-loops, the two transitions are serialised.

Formally acontextual Petri netis a tupleN = 〈∂0,∂1,∂2,S,T〉, where〈∂0,∂1,S,T〉
is an ordinary Petri net and∂2 : T → S⊕ associates to each transition its context. Notice
that, as a single token can be read concurrently by differenttransitions, it can be read
also with multiplicity greater than 1 by the same transition. Hence a transitiont can use,
to fire, any marking ranging from∂0(t)⊕ [[∂2(t)]] to ∂0(t)⊕ ∂2(t), i.e., it is sufficient
that any context place contains at least one token. The notion of marked contextual
netand of (marked) contextual net morphism are defined as structure-preserving graph
homomorphisms in the obvious way, yielding the categoriesCPetri andCPetri∗.

Correspondingly, we consider an extension of pre-nets withread arcs.

Definition 16 (contextual pre-net).A contextual pre-net is a tuple R= 〈ζ0,ζ1,ζ2,S,T〉
such that〈ζ0,ζ1,S,T〉 is a pre-net andζ2 : T → S⊗ is thecontextfunction.

The notion of pre-net morphism can be extended to contextualpre-nets in the ob-
vious way, requiring for any transition the preservation ofthe context, besides pre- and
post-conditions. Also the extension to marked pre-nets is immediate. We denote by
CPreNetand byCPreNet∗ the corresponding categories.

The algebraic semantics of contextual pre-nets has been developed in [BMMS02]
taking as models the so-calledmatch-share categories, a kind of symmetric monoidal
category equipped with two additional (non-natural) transformations. LetZc(R) denote
the model of computation for a contextual pre-netR, as defined in such paper (as a
special case, in the absence of contexts,Zc(R) = Z(R)). The construction can be ex-
pressed as an adjunction and it is defined in terms of theory morphisms between suitable
equational theories. Due to space limitation, we cannot give full details here.

The results developed in this paper for Petri nets and pre-nets generalise to the
contextual case. In the following we sketch the basic notions, constructions and the
results involved in the extension.

First, as it happens for ordinary contextual nets [BCM01], the dependencies among
events in a contextual pre-net computation cannot be captured completely by two binary
relations representing causality and symmetric conflict. While causalitycan be defined
essentially as in the ordinary case, due to the possibility of preserving part of the state
in a step of computation, anasymmetricform of conflict arises between transitions. In
fact let t, t ′ be transitions such thatζ2(t) = s= ζ0(t ′). Then the firing oft ′ preventst

18 P. Baldan, R. Bruni and U. Montanari

1≤ i ≤ |u|

u′i = 〈 /0,ui , i〉 ∈ S′ ηs(u′i) = ui

vp,vc ∈ S′⊗ vp safe vp∩vc = /0 co([[vp ·vc]]) t ∈ T η⊗
s (vp) = ζ0(t) η⊗

s (vc) = ζ2(t)

t ′ = 〈vp,vc,t〉 ∈ T ′ ηt(t ′) = t ζ′0(t
′) = vp ζ′2(t

′) = vc

t ′ = 〈v,t〉 ∈ T ′ ζ1(t) = w1 . . .wn

w′
i = 〈t ′,wi , i〉 ∈ S′ ηs(w′

i) = wi ζ′1(t
′) = w′

1 . . .w′
n

Fig. 12. Inference rules for the unfoldingUc(〈R,u〉) of a contextual pre-netR.

to be fired, since it consumes the shared resource ins. Instead the firing oft just reads
a resource ins and thust ′ can fire aftert. This kind of dependency is represented by
introducing anasymmetric conflictrelationր on transitions, which models the previ-
ous situation ast ր t ′. An ordinary symmetric conflict, arising when two transition t
andt ′ have a common precondition, is represented as an asymmetricconflict in both
directions, i.e.,t ր t ′ ր t. Finally, since< represents a global order of execution, while
ր determines an order of execution only locally to each computation, it is natural to
imposeր to be an extension of<.

The notion ofconcurrencyis updated to take into account the presence of asymmet-
ric conflict: a set of placesX ⊆ Sis concurrent, writtenco(X), if for anys,s′ ∈X it does
not holds< s′, ⌊X⌋ is finite andր is acyclic on⌊X⌋.

Then the contextual occurrence pre-nets can be naturally defined.

Definition 17 (occurrence contextual pre-net).An occurrence contextual pre-netis
a safe pre-net R such that (i) causality<R is a partial order; (ii) R has no backward
conflicts; (iii) for any transition t, the set of causes⌊t⌋ is finite and asymmetric conflict
րR is acyclic on⌊t⌋. An occurrence contextual pre-net isdeterministicif it has no
forward conflicts.

We denote byCPreOcc∗ full subcategory ofCPreNet∗ having marked occurrence
contextual pre-nets as objects.

In the unfolding construction below just notice that the second rule takes a context
vc which is not required to be safe, consistently with the fact that single token can be
read with multiplicity greater than 1.

Definition 18 (contextual unfolding).Let 〈R,u〉 be a marked contextual pre-net. The
unfoldingUc(〈R,u〉) = ((ζ′0,ζ′1,ζ′2,S′,T ′),u′) and thefolding morphismηR = 〈ηt ,ηs〉 :
Uc(R) → R are the occurrence pre-net and (elementary) contextual pre-net morphism
inductively defined by the rules in Fig. 12, with u′ = 〈 /0,u1,1〉 . . .〈 /0,u|u|, |u|〉.

Also in this case the unfolding extends to a functorUc : CPreNet∗ → CPreOcc∗
which is right adjoint to the inclusion ofCPreOcc∗ into CPreNet∗. The unfolding can
be abstracted to an event based model, calledasymmetric event structure(AES’s), intro-
duced in [BCM01] as a generalisation of WinskelPES’s where conflict is allowed to be
non-symmetric. As proved in the mentioned paper, the category of AES’s coreflects into
Dom allowing to recover a domain semantics. The situation is summarised in Fig. 13.

Pre-nets, contexts and unfolding 19

CPreNet∗
Uc

⊥ CPreOcc∗
Ec

AES
L

⊥ Dom
P

Fig. 13.Denotational semantics of contextual pre-nets.

Algebraic Process Logical Unfolding Reconciliation

P/T nets CTPh [MM90] [BD87] [BMMS01]

P/T nets ITPh [DMM96,Sas98] [GR83,DMM96,Sas98] [Win87,MMS97a] [MMS96]

pre-nets ITPh [BMMS01] Section 2 [BMMS01] Section 3 Section 4

Fig. 14.Net semantics.

The algebraic and unfolding approach to the semantics of contextual pre-nets can
be reconciled, along the same schema followed for pre-net, obtaining a commutative
functorial diagram which generalises Fig. 10 in the presence of read arcs.

6 Conclusions

We have shown that a functorial unfolding semantics for pre-nets can be developed
along the lines of the seminal work of Winskel. The semanticsis expressed as a chain
of functors leading from the categoryPreNet∗ to the categoryDom, throughPreOcc∗
andPES. A different construction of a domain for any pre-net can be defined by relying
on the algebraic semantics of pre-nets, already defined in the literature. Differently from
what happens for Petri nets, this latter construction can beexpressed as a functor from
PreNet∗ to Dom. The unfolding and algebraic constructions can be reconciled in a fully
satisfactory categorical setting, by showing that the corresponding functors are naturally
isomorphic. The proof relies on the introduction of a concrete notion of process for pre-
nets, and on a characterisation of the algebraic semantics in terms such processes.

Figure 14 summarises our results, connecting them to the known (CTPh andITPh)
net semantics. Each column is devoted to a specific semantic flavour (see the classi-
fication in the Introduction). The last column refers to the possibility of relating the
algebraic and unfolding views. The entries are either references to the literature where
the corresponding construction has been presented, or pointers to the sections of our
contribution. Empty cells stands for unfeasible constructions. Italic text refers to non-
functorial constructions, i.e., constructions that are defined just at the object level, but
cannot deal with simulation morphisms. Regular entries stands for functorial construc-
tions, and bold entries for adjunctions. Note that, in the case of pre-nets, all construc-
tions are feasible and functorial. Finally, we mention thatall constructions and results
for pre-nets are extended to work in the presence of read arcs.

References

[BCM01] P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asymmetric event
structures and processes.Inform. and Comput., 1(171):1–49, 2001.

20 P. Baldan, R. Bruni and U. Montanari

[BD87] E. Best and R. Devillers. Sequential and concurrent behaviour in Petri net theory.
Theoret. Comput. Sci., 55:87–136, 1987.

[Ber78] G. Berry. Stable models of typed lambda-calculi. InProceedings of ICALP’78,
vol. 62 ofLect. Notes in Comput. Sci., pages 72–89. Springer-Verlag, 1978.

[BMMS99] R. Bruni, J. Meseguer, U. Montanari, and V. Sassone. Functorial semantics for Petri
nets under the individual token philosophy. InProceedings of CTCS’99, vol. 29 of
Elect. Notes in Th. Comput. Sci.Elsevier Science, 1999.

[BMMS01] R. Bruni, J. Meseguer, U. Montanari, and V. Sassone. Functorial models for Petri
nets.Inform. and Comput., 170(2):207–236, 2001.

[BMMS02] R. Bruni, J. Meseguer, U. Montanari, and V. Sassone. Functorial models for contex-
tual pre-nets. Technical Report TR-02-09, University of Pisa, 2002.

[CW01] F. Crazzolara and G. Winskel. Events in security protocols. In Proceedings of
CCS’01, pages 96–105. ACM, 2001.

[DFMR94] N. De Francesco, U. Montanari, and G. Ristori. Modeling concurrent accesses to
shared data via Petri nets. InProgramming Concepts, Methods and Calculi, vol.
A-56 of IFIP Transactions, pages 403–422. North Holland, 1994.

[DMM96] P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of net compu-
tations and processes.Acta Inform., 33(7):641–667, 1996.

[GP95] R.J. van Glabbeek and G.D. Plotkin. Configuration structures. InProceedings of
LICS’95, pages 199–209. IEEE Computer Society Press, 1995.

[GR83] U. Goltz and W. Reisig. The non-sequential behaviourof Petri nets. Inform. and
Comput., 57:125–147, 1983.

[Mac71] S. MacLane.Categories for the Working Mathematician. Springer, 1971.
[MM90] J. Meseguer and U. Montanari. Petri nets are monoids.Inform. and Comput., 88:105–

155, 1990.
[MMS92] J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Petri nets. In

Proceedings of CONCUR ’92, vol. 630 ofLect. Notes in Comput. Sci., pages 286–
301. Springer-Verlag, 1992.

[MMS96] J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics for
Place/Transition Petri nets.Theoret. Comput. Sci., 153(1-2):171–210, 1996.

[MMS97a] J. Meseguer, U. Montanari, and V. Sassone. On the semantics of Place/Transition
Petri nets.Math. Struct. in Comput. Sci., 7:359–397, 1997.

[MMS97b] J. Meseguer, U. Montanari, and V. Sassone. Representation theorems for Petri nets.
In Foundations of Computer Science: Potential - Theory - Cognition, vol. 1337 of
Lect. Notes in Comput. Sci., pages 239–249. Springer, 1997.

[MR94] U. Montanari and F. Rossi. Contextual occurrence nets and concurrent constraint
programming. InGraph Transformations in Computer Science, vol. 776 ofLNCS,
pages 280–295. Springer, 1994.

[MR95] U. Montanari and F. Rossi. Contextual nets.Acta Inform., 32:545–596, 1995.
[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1.Theoret. Comput. Sci., 13:85–108, 1981.
[Pet62] C.A. Petri.Kommunikation mit Automaten. PhD thesis, Schriften des Institutes für

Instrumentelle Matematik, Bonn, 1962.
[Rei85] W. Reisig.Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-

puter Science. Springer, 1985.
[Sas98] V. Sassone. An axiomatization of the category of Petri net computations.Math.

Struct. in Comput. Sci., 8(2):117–151, 1998.
[Vog97] W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. InPro-

ceeding of ICALP’97, vol. 1256 ofLNCS, pages 538–548. Springer, 1997.
[Win87] G. Winskel. Event Structures. InPetri Nets: Applications and Relationships to Other

Models of Concurrency, vol. 255 ofLNCS, pages 325–392. Springer, 1987.

