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Abstract. Pre-nets have been recently proposed as a means of progidiimg-
torial algebraic semantics to Petri nets (possibly withdrescs), overcoming
some previously unsolved subtleties of the classical mddiete we develop a
functorial semantics for pre-nets following a sibling diasl approach based on
an unfolding construction. Any pre-net is mapped to an écymlanching net,
representing its behaviour, then to a prime event struetmddinally to a finitary
prime algebraic domain. Then the algebraic and unfoldimgvware reconciled:
we exploit the algebraic semantics to define a functor froencitegory of pre-
nets to the category of domains that is shown to be natursdimorphic to the
unfolding-based functor. All the results are extended & nuets with read arcs.

Introduction

P/T Petri nets [Rei85] are one of the most widely known modétoncurrency. Since
their introduction, almost fifty years ago [Pet62], the agpival simplicity of the model
and its intuitive graphical presentation have attractediiterest of both theoreticians
and practitioners. Nevertheless, the concurrent sensauitieetri nets still presents sev-
eral aspects that cannot be considered fully encompaskedaiim of this paper is to
point out the missing fragments of the overall picture anfilltas many gaps as possi-
ble, providing neat mathematical constructions.

We concentrate on the semantic interpretation arising th@rso-calledndividual
token philosophyiTPh) as opposed to theollective token philosopHEZ TPh). The two
terminologies have been introduced in [GP95] to distinigtlee interpretation of to-
kens in the same place as anonymous and indistinguishaoleresCTPh), from the
view of tokens as resources uniquely characterised by hiories and causal depen-
dencies (TPh). On the one hand, theTPh, taking the paradigm of multiset rewriting
to the extreme consequence is somehow simpler: repeateemie in a multiset are
completely equivalent and cannot be distinguished one fittenother. On the other
hand, theCTPh is less amenable to the full variety of concurrent semangiméworks
that can be studied in th&@Ph. Roughly these can be classified in process-oriented,
unfolding, algebraic, and logical:
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— The processapproach focuses on non-sequential / concurrent modelsropue-
tations and on their composition. Several notions of (deieistic) process have
been proposed that rely on different abstractions in modgiesources, executed
events and concurrent computations [BD87,GR83,DMM9&®8as

— Theunfolding approaclis built on top of nondeterministic processes to account for
a broader view of computations, which includes concurreoaysality and con-
flict. Starting from the seminal work of Winskel [Win87], wdfi focuses on the
simpler class ofafenets, several authors have contributed to the generalisati
the approach to the full class of P/T Petri nets [MMS92, MM&8MS96], show-
ing that a chain of adjunctions (coreflections in the caseatd sr semi-weighted
nets) leads frol®TNetsto PES for PTNetsthe category of P/T Petri nets aR&S
the category of prime event structures, which is equivatettie categorypom of
coherent finitary prime algebraic domains (for this reaslo@,unfolding approach
is sometimes referred to aglanotational semantigs

— The algebraic approachoriginally proposed in [MM90] for thecTPh under the
statement “Petri nets are monoid”, recasts the proces®ag@pin universal alge-
bras: The idea is to characterise the concurrent model opatation as the initial
model in a suitable algebra of decorated computations.

— The logical view tries to recast the algebraic approach into deduction thgor
whose sentences denote concurrent execution strateglestase theorems se-
lect admissible computations [BMMSO01].

Category theory has been shown instrumental in all the adyopeaches: processes
come naturally equipped with notion of a parallel and a satiaskecomposition, which
provides the structure of monoidal categoryadjunctions and coreflections are cate-
gorical notion used in the unfolding semantics to guaratiaeall constructions are
as good as possible; P/T Petri nets are essentially graphstuictured nodes, and, as
such, can be naturally equipped with structure-preserfrgrgomorphism, which can
also be seen as simulation morphisms; initiality in the latgie semantics is again a
categorical notion for selecting the best candidate mdufellly, the logical view ex-
ploits the fact that adjunctions between the categoriesadets of two theories, like
the theory of Petri nets and the theory of concurrent modalsbe more conveniently
expressed as theory morphisms (whose existence is eapievie).

When categories are involved, a central property of the séimeonstructions, wit-
nessing their appropriatenessfusictoriality, i.e., the fact that simulation morphisms
between nets are preserved at the level of computatiomgbedic, logical and deno-
tational models. A second crucial propertyisiversality in the sense of constructions
expressed as adjunctions. In fact, we remind that when dusietre left/right adjoints
they preserve colimits/limits yielding good compositiitygproperties.

For thelTPh the unfolding approach is completely stable and satisfgchostead,
the application of the algebraic approach tolfffeh presents several problems basically
related to the fact that the monoidal operation on compuiatis commutative only
up to a symmetry natural isomorphism. As a consequence aihgreiction proposed
in [DMM96] fails to preserves some ordinary simulation miaigms between nets. The
situation is improved in [MMS97b] up to a pseudo-functogahstruction [Sas98].
Correspondingly, different notions of deterministic peeses, which differ just in the
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decoration of minimal and maximal places have been propasédoncrete” models.
The lack of functoriality has also discouraged the formiataof a logical semantics.

The problem intuitively resides in the dichotomy betweea thultiset view of a
state and the need of distinguishing uniquely its elementsack their causal history.
A relevant advance of the theory has been the introductigmeshet§BMMS99] (see
also [BMMSO01] for an extensive discussion), a variant ofimady nets where a to-
tal ordering is imposed on the places occurring in the pré-@ost-set of transitions.
Any pre-net can be seen as a concrete “implementation” oP#td net obtained by
forgetting about the ordering of places in pre- and post-4é$ing strings rather than
multisets allows to uniquely characterise each elementdpasition. Thus pre-nets
allow to obtain a satisfactory algebraic treatment, whiaeeconstruction of the model
of computation yields an adjunction between the categoprefets and the category
of models (symmetric monoidal categories [Mac71]) andritloa expressed as a theory
morphism, accounting for the algebraic and logical viewstally, the construction of
the model of computation for all pre-nets implementing thme Petri net yields the
same result, hence we can define the semantics of a nie¢ algebraic semantics of
any of its pre-net implementations. Still the picture isamplete, since some classical
approaches to the semantics of Petri nets have not beenpletec for pre-nets.

In this paper we complete the theory of pre-nets by showiag th

— Concrete notions of deterministic occurrence pre-netso@ipde-net processes can
be defined in analogy with Petri nets. Finite processes fosgmametric monoidal
category which turns out to be isomorphic via a symmetric omdal functor to the
algebraic model of computation, thus reconciling the psscand algebraic view
in a fully functorial construction (a result not possible Retri nets). Moreover, a
graphical presentation is introduced for pre-net processe

— A domain semantics for pre-nets can be defined by genemlsioonstruction
proposed for ordinary nets in [MMS96]. Given a pre-Rethe comma category
(u] Z(R)), whereu is the initial state oR and Z(R) its algebraic model, is a pre-
order whose ideal completion is a prime algebraic domainugRty this domain
consists of the set of deterministic processes of the neilpwead with a kind of
prefix ordering.

— An unfolding semantics can be defined which associates tgpeswet, first an
acyclic pre-net representing all its possible computationa single branching
structure, then an event structure and finally a prime algjeliomain.

— Since the unfolding is essentially a nondeterministic psscthat completely de-
scribes the behaviour of a pre-net, a clear link betweentifi@ding and the alge-
braic approach is called for. The result showing that the @laroriginating from
the algebraic model of computation and the one extractad fre unfolding are
isomorphic, can now be stated in a satisfactory categdraalework: the two con-
structions can be expressedragurally isomorphic functorgwhile the analogous
result for ordinary Petri nets [MMS96] holds only at the leoEobjects).

— Finally, the pre-net and Petri net framework are recondilg@xplaining how the
domain semantics of a net and of its pre-net implementatiomselated.

We remark that, although in the case of pre-nets all the oactsin are functorial,
one link is still missing, because the functor that abssréioe unfolding of a pre-net
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to a prime event structure is not characterised as a unh@gatruction. Whether the
mentioned construction can be defined as a right adjoint dsrzonon-trivial question.
We strongly conjecture that the answer is negative, buigheft as an open problem.

Along the years, Petri nets have been generalised in sevayal to increase their
expressivity. In the last part of the paper we focus on a mildsignificant extension,
i.e., the addition ofead arcs which allows to provide a faithful representation of read-
only accesses to resources. Nets with read arcs, cale@xtual netin [MR95], have
been used to model a variety of applications and phenomanh,as transaction seri-
alizability in databases [DFMR94], concurrent constraimtgramming [MR94], asyn-
chronous systems [Vog97], and analysis of cryptograplatogols [CWO01].

Pre-nets have been already shown to be useful to define algehtac semantics
for contextual nets [BMMSO02]. Here, relying on some pregiovwork on the different
semantic approaches for nets with read arcs, we discussieomhiole theory developed
in this paper for ordinary pre-nets generalises in the presef read arcs.

Synopsis.The rest of the paper is structured as follows. Section levevithe basics

of pre-nets and their algebraic semantics. Section 2 deéine®cess semantics for
pre-nets and compares it to the algebraic semantics. 82 titevelops the unfolding

semantics of pre-nets. Section 5 extends our results toviditsead arcs. Finally, Sec-
tion 6 summarises the results in the paper and some operiansest/e assume that the
reader has some familiarity with P/T Petri net theory andgaty theory.

1 Pre-nets and their algebraic semantics

In this section we recall the basics of pre-nets [BMMS99,B8MM], discussing their
algebraic semantics and the relation with ordinary P/TiRets.

Notation. Given a setX, we denote byX® the free monoid oveK (finite strings of
elements ofX) with the empty stringg as the unit, and bX® the free commutative
monoid oveiX (finite multisets oveK) with unit the empty seb. We writep: X© — X%
for the function mapping any string to the underlying mitis~urthermore, given a
function f : X — Y® we denote byf® : X® — Y@ its obvious monoidal extension.
Similarly, giveng: X — Y® we denote byg® : X® — Y® its commutative monoidal
extension. Givem € X® oru € X¥ we denote byu] the underlying subset of defined
in the obvious way. When set relations are used over stridgrauitisets, we implicitly
refer to the underlying set. E.g., farv € X® (or X%) by x € u we mearx € [u] and
similarly unv meangu] N [v].

Recall that &P/T Petri netis a tupleN = (do,01,S,T), whereSis a set ofplaces
T is a set oftransitions anddp,d1 : T — S” are functions assigning multisets called
source and target, respectively, to each transitiomakkednet is a paifN, m) where
N is a P/T Petri net anch € S®. A Petri net morphism = (fs, f;) : N — N’ is a pair
wherefs: S” — S% is a monoid homomorphism, arfd: T — T’ is a function such that
0/ o fy = fso0;, for anyt € T andi € {0,1}. The category of P/T Petri nets (as objects)
and Petri net morphisms (as arrows) is denotedPéfri. A morphism of marked P/T
netsf : (N,m) — (N’, ) is subject to the additional requirement of preservatiothef
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Fig. 1. The P/T Petri neNg and (one of) its pre-net implementati&g.

initial marking, i.e.,fs(m) = m'. The category of marked P/T Petri nets (as objects) and
marked Petri net morphisms (as arrows) is denoteBddyi..

A pre-netis roughly a Petri net where the resources (tokens in plaredjnearly
ordered. In other words, the state as well as the pre- andcpaslitions of transitions
are strings rather than multisets of places.

Definition 1 (pre-net). Apre-nets a tuple R=({o,(1,S,T), where S is a set gilaces
T is a set oftransitionsandlo, 1 : T — S® are functions assigning, respectively, source
and target to transitions. Mnarkedpre-net is a pair(R, u) with R a pre-net and & S*.

The pictorial representation of Petri nets has certairdy@dl an important role in
their large diffusion as a specification framework. Thispiriaal presentation (places
represented as circles, transition as boxes, pre- andspostultirelation as weighted
arcs, tokens as black bullets) can be extended to pre-netsldyting the following
conventions: (1) weighted arcs are replaced by arcs labellth the ordered list of
positionsin which the place appears in the pre- / post-set of the tiansiwith lists
of length greater than one enclosed in curly brackets; (R¢rte are represented as
numbers denoting their positions in the current state. Aange of pre-neRy can
be found in the right part of Fig. 1. It will be used throughtlue paper to illustrate
definitions and concepts. From the inscript{dn3} of the arc froma toty, we see thata
firing of tp requires two tokens from, to be taken as first and third consumed resources,
while the second token to be consumedgnust be taken frons, as imposed by the
inscription 2 of the arc frona to tp (we remark that 2 denotes a position, not the number
of tokens to be consumed). Moreover, from the inscriptiosédie the circles foa, b
andc, we note that the initial marking ¥ is the stringu = abcg i.e., that thea occurs
in the first and fourth positions af, b in the second, andin the third.

As for P/T Petri nets, the notion of pre-net morphism natyises from an alge-
braic view, where places and transitions play the role afssamd operators.

Definition 2 (pre-net morphism). A pre-net morphism from R (£o,{1,ST)to R =
(€5,¢41,S,T') is a pair f= (fs, fy) where §: S® — S¥ is a monoid homomorphism,
and t: T — T’ is a function such thaf] o fy = fso ¢;, for i € {0,1}. We denote by
PreNetthe category of pre-nets and their morphisms with the ols/cmmposition.
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A marked pre-net morphism fro(R, u) to (R',u’) is a pre-net morphism fR— R
such that §(u) = u'. We denote bfPreNet, the category of marked pre-nets and their
morphisms with the obvious composition.

Pre-nets can be seen as a specification formalism (slightlye¢ concrete than Petri
nets. In particular any pre-nBtcan be thought of as an “implementation” of the Petri
net which is obtained frorR replacing any string by the corresponding multiset. This
construction is formalised below.

Definition 3. The functor4 : PreNet— Petri is defined as follows:

— any pre-net R= ({o,{1,S,T) is mapped ta4(R) = (00,01,S,T), whereg;(t) =
M(Ci(t)) foreachte T and i€ {0,1};

— any pre-net morphism fR — R is mapped ta4(f) = (g7, f;), where g(s) =
H(fs(s)) for each s= S.

We denote bya, : PreNet, — Petri, the obvious extension of to marked nets.

For instance, referring to Fig. 1, the ordinary PetriNgtn the left part is implemented
by Ry, i.e., we haved, (Ry) = Np. The transitionp : 2a®c— c®d € Np is implemented
astp:aca— cd € Ry, andt; : bdc— chee Np asty : bc— ece Ry. Clearly alternative
implementations would have been possible exploiting diffielinearizations.

Intuitively, a computation of a pre-net consists of “exjtlicteps, namely firings
of transitions which consume and produce resources, andhgdlitit” steps which
rearrange the order of the resources to allow the applicatidgransitions. All the se-
guences of implicit steps that implement the same pernmmtaif a given state are
indistinguishable. Formally, the model of computation @fra-net is the free symmet-
ric strict monoidal category generated by the pre-net, yimensetries playing the role
of the above mentioned implicit steps. L8EMC be the category of symmetric strict
monoidal categories (as objects) and symmetric monoidualtéus (as arrows), and let
SSMC® denote the full subcategory containing only the categasiesse monoid of
objects is freely generated. Then the algebraic model ofpeaation of a pre-neR is
its imageZ(R) throughZ : PreNet— SSMC", the left adjoint to the obvious forgetful
functor fromSSMC® to PreNet A more illustrative definition is given below.

Definition 4. Given a pre-net R= ({o,{1,S T), the model of computatio&(R) is a
symmetric monoidal category whose objects are the eleno¢®sand whose arrows
are generated by the rules in Fig. 2, quotiented out by theragiof monoidal categories
and the coherence axioms makipg the symmetry natural isomorphism (all axioms
are collected in Fig. 3).

Recall that pointedcategory is a paifC, Oc), whereC is a category an@c is an
object inC. A pointed functor F. (C,0O¢) — (D,Op) is a functor : C — D such that
F(Oc) = Op. The construction of the model of computation extends tdeethpre-nets
and to the categor$SMC? of pointed strictly symmetric monoidal categories.

Definition 5. Given a marked pre-n€R, u), the model of computatiorz, ((R,u)) is
the pointed categoryz(R), u).
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e S? uves? teT Qo(t)=u Gt)=v
idy:u—ue Z(R) Yuv:uv—vue Z(R) t:u—ve Z(R)
a:u—v, o:u—VezR) a:u—v, B:v—we Z(R)
a®a jud —w e Z(R) a;B:u—we Z(R)

Fig. 2. Inference rules foz(R).

For anyu,v,w € S® and
foranya:u—vB:v—-wd:w—za v —-V.p:V -w.a”: v —V' € Z(R):

UNIT: ide@a=a=0®idg,

ASSOCIATIVITY: (aed)2d” =a (o' @a”) (a;B);0=0;(B;d)
IDENTITIES: a;idy =0 =idy;a idy®@idy = idyy

FUNCTORIALITY: (a;B) @ (o/;p) = (a@a’); Bep)

NATURALITY : (a@a’); Yy =Yuu; (0’ @a)

COHERENCE Yuyw = (Yuy ®@idw); (idy @ Yuw) Yuvs Yu = iduy

Fig. 3. Axioms for Z(R).

Notice thatZ, extends to a left adjoint functor froPreNet, to SSMC?.

Given a pre-neR and two states,v € S® we say thav is reachable fronu if there
is an arroma : u — vin Z(R). If (R u) is a marked pre-net we say thats reachable
if it is reachable fromu. One can easily see thatis reachable iR u) if and only
if p(v) is reachable in4.((R,u)). More generally, given any P/T n#&, all its pre-
net implementations have essentially the same behaviotingi sense that they have
isomorphic models of computation. Hence the semantid¢é o&n be recovered by an
arbitrarily chosen pre-net implementation.

Theorem 1. For any pair of pre-nets R and'Rf 4(R) ~ 4(R) thenZ(R) ~ Z(R) via
a symmetric monoidal functor.

Moreover, the categorg(R) can be quotiented out by suitable axioms to recover
all the algebraic computational models®{R) in the literature (e.g. concatenable pro-
cesses, commutative processes). Analogous results Hstdimahe marked case.

2 Concatenable processes for pre-nets

In this section we introduce a notion of (concatenable) @ssdor pre-nets. A process
is intended to provide a static representation of a conotio@mputation, which makes
explicit the events occurring in the computation and thewsal dependencies. The
appropriateness of our notion of pre-net process will benfdised by showing that
for any pre-net the category of concatenable processesn®iphic to its model of
computation via a symmetric monoidal functor.
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2.1 Safe and occurrence pre-nets

Let Rbe a pre-net. A state € S® is calledsafeif any place occurs at most oncetin
i.e., if u(u) is a safe marking. A marked pre-net is called safe if the smand target of
all transitions as well as all the reachable states are safe.

Definition 6 (causality, conflict, concurrency)Let R= ({o,{1,S T) be a pre-net. The
causality relations the least transitive relatiortirC (SUT) x (SUT) such that

() if s € (p(t) then s<rt; (i) ifs € {si(t) thent<rs.

Given a place or transition x SUT, we denote byx| the set ofcausef x in T,
defined agx| = {t e T |t <gx} C T, where<g s the reflexive closure ofg.
Theconflict relation % C (SUT) x (SUT) is defined as the least relation such that

() if Zo(t) NTo(t') £ Othentat’; (i) if x#rx and X <g X’ then ¥gx".

A set of places XC S isconcurrentwritten cqX) if for any ss € X neither s< ¢
nor s#s, andUycx | X] is finite.

Definition 7 (occurrence pre-net).Anoccurrence pre-nét a safe pre-net R such that
(i) causality<g is a partial order and, for any transition t, the set of causglsis finite;
(ii) there are no backward conflicts, i.e., for anytt’, {1(t) N ¢y (t") = O; (iii) conflict
#r is irreflexive. An occurrence pre-net deterministicif it has no forward conflicts,
i.e., forany t£t/, {o(t)Np(t") = 0.

We denote byreOcc. the full subcategory oPreNet. whose objects are occur-
rence pre-nets.

Itis immediate to verify that the relations of causality axahflict in a pre-neR are
the same as in the implemented Petri A¢R). HenceR is a safe (occurrence) pre-net
if and only if the corresponding Petri nét(R) is a safe (occurrence) net. This implies
that 4, restricts to a well-defined functor froPreOcc. to Occ,, the full subcategory
of Petri, where objects are occurrence nets.

2.2 Processes of a pre-net

An interesting feature of Petri nets is the fact that a netgss can still be represented
as a special Petri net (decorated with a morphism to ther@digiet) [GR83]. This is
true also for pre-nets.

Let us call a pre-net morphist: R — R elementarnyif for anyse S, fs(s) € S
(places are sent to single places rather than to strings).

Definition 8 (process).Let R= ({o,{1,S,T) be a pre-net. Aprocesf R is an ele-
mentary pre-net morphism: O — R where O is an occurrence pre-net and for any
t,t’ € To, if fi(t) = fi(t') andlo(t) = o(t') then t=1t’ (irredundancy).

The processtis finite / deterministic if the underlying occurrence pret@ is finite
/ deterministic. For a finite deterministic processve denote bynin(m) (resp.,max(11))
the set of places of O which are minimal (resp., maximal}.w.
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A concatenable process of a pre-net is a deterministic fimdeess of the net with
explicit source and target states, i.e., with a total ordgim the minimal and maximal
places of the underlying occurrence pre-net.

Definition 9 (concatenable process)A concatenable process of a pre-net R is a triple
d= (0,7 1), whereTtis a deterministic finite process of R aodt € S are string of
places in $ such that

H(o) = min(m) and K1) = max(1).
We denote byo(d) the stringry’ (o) and by{s(d) the stringr’(t).

An isomorphism of (concatenable) procesd@ndd’ is an isomorphism of the under-
lying pre-nets consistent with the mapping to the origimalpet and with the lineariza-
tions of minimal and maximal places. The isomorphism cldssamncatenable process
o is written 8] and called ambstractconcatenable process.

Concatenable processes- (0,1, T) of pre-nets can be graphically represented by
slightly adjusting the visual modelling of ordinary Petropesses: (1) places (and tran-
sitions) are labelled by their images through2) minimal and (resp. maximal) places
carry also as superscript (resp., subscript) their positia> (resp.,1); (3) arcs are la-
belled by the (unique) position in which the place appeatisempre- and post-set of the
transition (again, we remark that arc labels stand for ot not for weights).

In Fig. 4 some simple processes are illustrated (for ouringhexampleRp) that
correspond to single transitions, place identities anchpégations.

Given two concatenable proceses= (01,14, T1) anddy = (G2, Th, T2), such that
(1(81) = Lp(d2) their concatenation is defined as the process obtained lyggte
maximal places ofyy and the minimal places af, according to their orderings.

Definition 10 (sequential composition)Letd; = (01,T,T1) andd, = (02, Tk, T2) be
concatenable processes of a pre-net R suchdb@;) = {o(d2). SupposeinT, =0

and § NS = max(ty) = min(Ty), with 11 = 02. In other wordsd; andd, overlap only
onmax(Ty ) = min(Ty), and such places carry the same ordering in the interfagesd
0. Then their sequential compositidi; &, is the concatenable proceds- (01,11, 12),

where the processis the (componentwise) uniontf and .

The above construction induces a well-defined operatior@iiential composition
between abstract concatenable processes. In partidlad, and[0;] are abstract con-
catenable processes such thgd1) = {o(d2) then we can always find, € [d,] such
that 81;8, is defined. Moreover the result of the composition seen atradislevel,
namely[8:;,], does not depend on the particular choice of the represesgat

Definition 11. We denote bP(R) the category having the elements 6f & objects
and abstract concatenable processes of R as arrows, witfooswomposition as in
Definition 10 and obvious identities.

The categoryP?(R) is a symmetric strict monoidal category. In fact (1) pafalle
composition® is readily defined for processés = (01,T,11) anddy = (02, T, T2)
such thatfliNT, = S NS =0, asd; ® 62 = (0102, T, T1T2), WhereTtis the compo-
nentwise union ofy and 1p; (2) parallel composition induces a well-defined tensor
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d o d b% id d%
10 = 10y = I0q =
o "0 "0
% ¢ o

Yoca= (3) OO

1 2 3
) ds by

"0 O O

Fig. 4. Textual and graphical representation of simple pre-netgsses.

P1=ida®Ybca = O
ORONOR®
al 2 a b
Q. Q OO
P2 =to®idp = p3 =t ®idg =
ol e
C1 dy

Fig. 5. Tensor product of simple processes.

product between abstract concatenable processes; (Jrthertproduct is associative
(but not commutative!) and it has the empty processy, €) as unit; (4) the component
Yuv Of the symmetry natural isomorphism is defined by the abistlass of processes
(oy0v, T, 0,0y) With no transitions and such that' (o) = uandm®(oy) = v.

In Fig. 5 the processes of Fig. 4 are composed via tensor ptedu the larger
processeg; : abca— acah p, : acab— cdbandps: bcd — ecd Finally, in Fig. 6, the
processes illustrated so far are composed sequentiafly imbca— cdb, ps : cdb—
ecdandp: abca— ecd

The next theorem shows that pre-net processes provide aojgie description
of the concurrent computations of a pre-fetin the sense that concatenable pre-net
processes can be seen as concrete representatives obile ey (R).

Theorem 2. The category??P(R) is isomorphic to the model of computatiaiiR) via
a symmetric monoidal functor.

The theorem above is proved by observing that, b&i®gR) a symmetric monoidal
category, a functor frork : Z(R) — PP (R) can be easily defined by mapping genera-
tors to generators. A functor in the converse directionefingd by identifying a normal
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al c3 a¢ b}
3 al c3 a b?
Pa=p1;p2 = O\
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g 0
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P= PaiPs = Q/ ‘\Q
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Ps = Yed,bs P3 =

2 €1 C2

C2

Fig. 6. Sequential composition of processes.

form for the processes i?P(R) which, roughly, corresponds to a maximally concur-
rent computation. As a technical remark, the proofis muctpgr w.r.t. analogous ones
for (concatenable, strongly concatenable) process cagsgassociated to Petri nets, as
we can (arbitrarily) fix the normal form expression in suchaywhat all isomorphic
processes have exactly the same normal form (whereas inneetrthe normal form
can be fixed only up-to isomorphism).

3 Unfolding of pre-nets

A deterministic process describes a single deterministioputation of the net. The
unfolding approach, originally devised in [NPW81], asstes to a system a single
denotational structure representing, in an unambiguoys &lathe events occurring
in any possible computation and their dependencies. Thistste expresses not only
the causal ordering between the events, but also gives diciergpresentation of the
branching (choice) points of the computations.

In this section we develop a functorial unfolding semanfiicpre-nets, discussing
the difficulties which arise in trying to express this funcas a universal construction.

3.1 Unfolding construction

Given a marked pre-néR, u) the unfolding construction unwind&into an occurrence
pre-net, starting from the initial statefiring transitions in all possible way and record-
ing the corresponding occurrences.
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1<i<|y veS¥safe co([v]) teT ng(v)="o(t)
u=(0u,i)eS nsu)=uy t=Mmt)eT nmt')=t )=V

t'=(Mt)eT" C(t)=wyp...wWy
w = ({t'}w,i)eS nsw)=w ') =w,...w,

Fig. 7. Inference rules for the unfoldinglp((R,u)) of a pre-neR.

Definition 12 (unfolding). Let (R, u) be a marked pre-net. The unfoldifigy((R,u)) =
((26,24,8,T’),u) and thefolding morphismng = (N, Ns) : Up(R) — R are the oc-
currence pre-net and (elementary) pre-net morphism iridelstdefined by the rules in
Fig. 7, with U = (0,us,1) ... (0, [u]) (where y denotes the ith element of the string
u, and|u| is the length of u).

Observe that items in the unfolding are enriched with theirsal histories. Any
places = (x,w;,i) records its generator (x is empty when the place is in the initial
state, otherwisa is a singleton), the place; in the original pre-net and a numbier
which allow to distinguish multiple occurrences of tokemstie same place, having the
same history. Any transitioti = (v,t) represents a firing dfthat consumes the string
of resources.

The unfolding of our running examplgy, with initial stateabca is depicted in
Fig. 8. The morphismg, : Up((Ro,abca) — Ry is implicitly represented by labelling
each place and transitiorwith its imageng,(x). For some items in the unfolding also
the concrete identity is provided. For instanee= (0, a,4) represents the occurrence of
ain the fourth position of the initial markindg = (asCsas,to) represent an occurrence
of tp, which fires using the fourth, third and second resourceeriritial state.

The unfolding construction can be characterised as a s@l/eonstruction estab-
lishing a coreflection between the categoResOcc. andPreNet.

Theorem 3. The unfolding construction induces a functtp : PreNet, — PreOcg,,
right adjoint to the inclusiorfp, : PreOcc, — PreNet,, with counitn : Ipo U, — 1.

3.2 Event structure and domain semantics

The unfolding semantics for a pre-net can be naturally ab&td to a prime event struc-
ture semanticRrime event structurg®E9 are a simple event based model of (concur-
rent) computations in which events are considered as atanddnstantaneous steps,
which can appear only once in a computation. An event canrasdy after some other
events (itscauseyhave taken place and the execution of an event can inhé#tkcu-
tion of other events. This is formalised via two binary relas: causality modelled by

a partial order relation, ancbnflict modelled by a symmetric and irreflexive relation,
hereditary w.r.t. causality.

Definition 13 (prime event structures).A prime event structuréPeg is a tuple P=
(E,<,#), where E is a set ofventsand <, # are binary relations on E calledausality
and conflict, respectively, such that:



Pre-nets, contexts and unfolding 13

a1 =(0,a,1) ay = (0,a,4) cz3=(0,c,3) by = (0,b,2)

- et
2 1
e
oy
)

({t}.c.2

Fig. 8. The unfolding of(Rgy,abca.

1. the relation< is a partial order and|e| = {€ € E : € < e} is finite for all ec E;
2. the relationt# is irreflexive, symmetric and hereditary with respecktpi.e., gt
and é < €' implies e#¢’ for alle,€,€’ € E;

Let Py = (Eo, <o,#p) and P, = (E1, <1,#;) be twoPESs. APESmorphismf : Py —
Py is a partial function f: Eg — E; such that for all @, €, € Eo, assuming that (fep)
and f(e}) are defined:

1. [f(eo)] € f(|en));
2. (a) f(eo) = f(€h) N eo# € = eothoey; (b) f(eo)#1f(€h) = eotoeh;

The category of prime event structures arelsmorphisms is denoted BES.

Given an occurrence pre-net the corresponaiagcan be obtained by forgetting
about the places, keeping the transitions and the dependelations among them.
The transformation is functorial since the transition comgnt of a morphism between
occurrence pre-nets satisfies the requirements todzesanorphism between the un-
derlyingPESs.

Definition 14 (from occurrence pre-nets toPESS). Let £, : PreOcc, — PESbe the
functor defined on objects #,(R) = (T, <gr,#r) for any occurrence pre-net R and on
arrows byEy(f) = f; for each occurrence pre-net morphismRy — Ry.

Winskel in his seminal work [Win87] shows thaEss are intimately connected
with another classical semantical model, iggime algebraic, finitely coherent, finitary
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by P
PreNet, 1 PreOcc. PES 1 Dom
Up Ty L

Fig. 9. Denotational semantics of pre-nets.

partial orders hereafter referred to simply ammains[Ber78]. Formally, an equiva-
lence is established between the catedeBf of prime event structures and the cate-
goryDom of domains and additive, stable, immediate precedencgeprimg functions:

P

%
PES z Dom

The functorL associates to eadtEsthe domain of its configurations, while the functor
? maps each domain to RES having its prime elements as events. Relying on this
classical result, theessemantics defined in this section for pre-nets can be euithgl
interpreted as a domain semantics. The situation is sureathin Fig. 9.

Interestingly, a clear relation can be established betwkenfunctorial domain
semantics of a Petri néN as defined in [MMS96] and the domain semantics of its
pre-net implementations defined here. Recall that, gesegrgMWinskel's work on safe
nets [Win87], the semantics for ordinary P/T Petri nets i?M8B6] is given as a chain
of adjunctions from the category of nets to the category ofigios. The diagram below
summarises these results.

PTNets, il DecOcc

_—
© ol
FlE|D
5 N P
Safe. 1 Occ, 1 PES 1L Dom
u ‘E L

The domain associated to a Petri net by the above constnuzaio be obtained from
that of any of its pre-net implementations by equating alekents which correspond
to occurrences of the same transition with different linesgions of the same resources
(which may differ for the order of tokens in the same placeynfally this is expressed
as a natural transformation between the two semantics:

Theorem 4. There is a natural transformatioQ: Lo Epo Up — Lo Eo F o Ugo A.

As a consequence (as it happens for the algebraic modelsmgfidation) the domains
associated to the pre-net implementations of a given nedlbiomorphic, i.e., for all
R R, if A(R) ~ A(R) thenL o Eyo Uy(R) ~ Lo Epo Up(R).

Unfortunately, in the case of pre-nets finding a left adjinthe functorE, appears
to be quite problematic. Intuitively, the left adjoint shdéreely generate an occurrence
pre-net from anyPESin a way which guarantees the existence and uniqueness of a
representation ofEsSmorphisms inPreOcc.. Places could be freely generated as for
ordinary Petri nets, but then it would be impossible to fixwed&r order on the pre- and
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post-sets of transitions in a “universal” way. Our conjeetis thatZ, is not a right
adjoint functor.

An idea which seems promising in view of a universal charézdgon of the men-
tioned construction is to abandon the purely algebraic épre-nets, considering an
alternative notion of pre-net morphism, based on a weakedition which requires
the preservation of pre- and post-sets of transitions oplytaua permutation. The
permutation should be explicitly mentioned in the morphisself, i.e., a morphism
f : R— R would be enriched with a family of permutatio§eX, oy}t such that
o f&(C(t)) — Ei(fi(t)) for any transitiort in R.

4 Reconciling the unfolding and algebraic semantics of preets

The unfolding of a marked pre-net can be seen as a maximaletenmainistic pro-
cess, representing all its possible computations. Henteriitural to expect that a
tight relationship can be established between the unfgldird the algebraic / process
approach. In this section we show that the domain producedg the unfolding con-
struction can be obtained, equivalently, by means of a turatconstruction based

on the model of computation. The correspondence holds agesdtal level, namely
the functorL o E,0 Up (see Fig. 9) and the new functor based on the algebraic se-
mantics are naturally isomorphic. This improves the armalsgesult existing for Petri
nets [MMS96], which only holds at the object level.

Let (R u) be a marked pre-net and consider the comma categoty??(R))
(which, by Theorem 2, is isomorphic ta | Z(R))). Objects are concatenable pro-
cesses oR with source inu, and an arrow exists from a procegsto & if o, = 01;0
for some procesa. It can be shown thgu | PP(R)) is a preorder, i.e., ifu | PP(R))
there is at most one arrow between any two objects Jsetlenote the corresponding
preorder relation i.ed; <r 0, if there exist® such thad;;d = &.

An alternative characterisation gfr, enforces the intuitive idea that it is a gener-
alisation of the prefix ordering over processes. First, wadrte introduce the notion of
left injection for concatenable processes.

Definition 15 (leftinjection). Letd; :u—v; (i € {1,2}) be two objectsifu | PP(R)),
with & = (0j, T, Tj). Aleft injectiont : &; — & is @ morphism of pre-nets Ry, — Ry,
(where R; is the pre-net underlying;), such that

1. 1 preserves the ordering of minimal places, nanw@ly= 12 (01);
2. 1isrigid on transitions, namely fobin Ry, and & in Ry, ift, <i1(t1) thenf =1(t)
for some} in Ry, (the image of a lower set is a lower set).

The name “injection” comes from the fact that any morphisbhetween marked de-
terministic occurrence nets results to be injective ongdaand transitions. The word
“left” is related to the fact thatis required to preserve only the string of minimal places.

Lemma 1. Letdi :u—v; (i € {1,2}) be objects iNm | PP(R)), with & = (i, Tg, Tj).
Thend; <g & iff there exists a left injection: d; — .
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SSMC, # PreOrd il

PreNet, Ip PreOrd

U PreOcc. = PES—— Dom
P

Fig. 10.Reconciling the algebraic and unfolding semantics of @s-n

By exploiting the above characterisation and the fact ttigtis a right adjoint
we can conclude that the ideal completion of the preofder PP (R)), denoted by
IdI({u | PP(R))), is isomorphic to the domair(E,(Up(R))) obtained from the un-
folding of the pre-neR.

To gain some intuition observe that the elements of the gdastider induced by
the preordefu | PP(R)) are classes of concatenable processes which are “left somo
phic”, i.e., isomorphic via a left injection. Intuitivelyhe partial order consists of pro-
cesses starting from a fixed initial state and ordered byxpi®iince processes are finite,
taking the ideal completion of the partial order induced g preordefu | PP(R))
(which produces the same result as taking directly the id@alpletion of(u | PP(R)))
is necessary for moving from finite computations to arbyti@res.

Theorem 5 (unfolding vs. concatenable processed)et (R,u) be a marked pre-net.
ThenldI((u | PP(R))) is isomorphic to the domain(Ep(Up(R))).

The above results admits a nice categorical formulatiocesall the involved con-
structions can be seen as functors. PetOrd be the category of preorders and mono-
tone functions, and Idétlat : Cat — PreOrd be the functor mapping any category to the
underlying preorder (whepe< y if and only if there was an arrodv: x — yin the origi-
nal category). Lef: SSMC, — PreOrd be the functor mapping any pointed symmetric
strict monoidal categoryC, Oc) to Flat((O¢ | C)). Finally let PreOrd — PreOrd be
the ideal completion functor, mapping any preorder to italdcompletion. Then the
following result holds (see Fig. 10).

Theorem 6. There is a natural isomorphism: Idlo A\ 0P, — Lo Epo U,.

5 Adding read arcs

Several extensions of ordinary Petri nets have been prdpogbe literature to enrich
the expressiveness of the basic model. A mild generalisattich has been shown to
be quite useful is the addition of the so-called arcswhich allow a transition to
check for the presence of a token in a place without removViaddken itself. Observe
that a read arc cannot be safely replaced by a self-loops #iecformer allows a greater
amount of concurrency in the system: a resource can be rgedatel by several tran-
sitions at the same time, concurrently. For instance censidain the nel in Fig. 1,
and compare it to the ndk in Fig. 11, where placeis connected to transitiomgandt;
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Fig. 11. Ordinary nets do not allow for concurrent read-only operati

by read arcs (denoted by undirected lines), meaningtiegiresent a resource accessed
in a read-only manner. While iN; the transitiongg andt; can fire concurrently, in the
netNo where read arcs are replaced by self-loops, the two transitire serialised.
Formally acontextual Petri nets a tupleN = (dg,01,02,S T), where(do,01,S,T)
is an ordinary Petri net anth : T — S” associates to each transition its context. Notice
that, as a single token can be read concurrently by différansitions, it can be read
also with multiplicity greater than 1 by the same transitidence a transitioncan use,
to fire, any marking ranging frordg(t) & [02(t)] to do(t) & d2(t), i.e., it is sufficient
that any context place contains at least one token. The mofionarked contextual
netand of (marked) contextual net morphism are defined as stesgireserving graph
homomorphisms in the obvious way, yielding the categdtiestri andCPetri,.
Correspondingly, we consider an extension of pre-nets reld arcs.

Definition 16 (contextual pre-net).A contextual pre-netis a tupleR({o,{1,(2,ST)
such that{{p,{1,S T) is a pre-netand, : T — S? is thecontextfunction.

The notion of pre-net morphism can be extended to contepieahets in the ob-
vious way, requiring for any transition the preservatiomha context, besides pre- and
post-conditions. Also the extension to marked pre-netsnimédiate. We denote by
CPreNetand byCPreNet, the corresponding categories.

The algebraic semantics of contextual pre-nets has beesiaped in [BMMSO02]
taking as models the so-callasatch-share categoriea kind of symmetric monoidal
category equipped with two additional (non-natural) tfansations. LetZ¢(R) denote
the model of computation for a contextual pre-Retas defined in such paper (as a
special case, in the absence of contefigR) = Z(R)). The construction can be ex-
pressed as an adjunction and it is defined in terms of theorgisms between suitable
equational theories. Due to space limitation, we canna fyilt details here.

The results developed in this paper for Petri nets and pte-generalise to the
contextual case. In the following we sketch the basic nati@onstructions and the
results involved in the extension.

First, as it happens for ordinary contextual nets [BCMMi¢, dependencies among
events in a contextual pre-net computation cannot be caghtampletely by two binary
relations representing causality and symmetric conflidtilg\causalitycan be defined
essentially as in the ordinary case, due to the possibifir@serving part of the state
in a step of computation, aasymmetridorm of conflict arises between transitions. In
fact lett,t’ be transitions such thdp(t) = s= {o(t'). Then the firing oft’ preventg
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Fig. 12.Inference rules for the unfoldingl:((R, u)) of a contextual pre-ndR.

to be fired, since it consumes the shared resourselitstead the firing of just reads

a resource irs and thug’ can fire afteit. This kind of dependency is represented by
introducing amasymmetric conflictelation / on transitions, which models the previ-
ous situation as ,” t’. An ordinary symmetric conflict, arising when two transitio
andt’ have a common precondition, is represented as an asymmetrilict in both
directions, i.e.t /'t’ t. Finally, since< represents a global order of execution, while
/" determines an order of execution only locally to each comtan, it is natural to
impose " to be an extension cf.

The notion oftoncurrencys updated to take into account the presence of asymmet-
ric conflict: a set of placeX C Sis concurrenfwrittenco(X), if for anys,s € X it does
not holds< ¢, | X| is finite and, is acyclic on[ X .

Then the contextual occurrence pre-nets can be naturdihyede

Definition 17 (occurrence contextual pre-net)An occurrence contextual pre-nist
a safe pre-net R such that (i) causalitys is a partial order; (i) R has no backward
conflicts; (iii) for any transition t, the set of causgy is finite and asymmetric conflict
/'R is acyclic on|t]. An occurrence contextual pre-netdeterministicif it has no
forward conflicts.

We denote bZPreOcc. full subcategory oCPreNet, having marked occurrence
contextual pre-nets as objects.

In the unfolding construction below just notice that thes®trule takes a context
Ve which is not required to be safe, consistently with the faet single token can be
read with multiplicity greater than 1.

Definition 18 (contextual unfolding).Let (R,u) be a marked contextual pre-net. The
unfolding U ((R,u)) = (25,24, 5,S, T),u) and thefolding morphismmg = (¢, Ns) :
U:(R) — R are the occurrence pre-net and (elementary) contextuahgt morphism
inductively defined by the rules in Fig. 12, with=a1 (0, uy, 1) ... (0, uyy, [u]).

Also in this case the unfolding extends to a functégy: CPreNet, — CPreOcc.
which is right adjoint to the inclusion @&€PreOcc. into CPreNet,. The unfolding can
be abstracted to an event based model, calégtnmetric event structu(ees’s), intro-
duced in [BCMO01] as a generalisation of Winske&ss where conflict is allowed to be
non-symmetric. As proved in the mentioned paper, the cayaf\ES's coreflects into
Dom allowing to recover a domain semantics. The situation isreansed in Fig. 13.
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CPreNet, 1 CPreQOcc, AES 1 Dom
Ue 23 L

Fig. 13. Denotational semantics of contextual pre-nets.

Algebraic Process Logical Unfolding Reconciliation
P/T nets CTPh [MM90] [BD87] [BMMSO01]
P/T nets ITPh | [DMM96,Sas98]| [GR83,DMM96,Sas98 [Wing87,MMS97a] [MMS96]
pre-nets ITPh [BMMSO01] Section 2 [BMMSO01] Section 3 Section 4

Fig. 14.Net semantics.

The algebraic and unfolding approach to the semantics degtral pre-nets can
be reconciled, along the same schema followed for pre-té¢jring a commutative
functorial diagram which generalises Fig. 10 in the presaricead arcs.

6 Conclusions

We have shown that a functorial unfolding semantics for mets can be developed
along the lines of the seminal work of Winskel. The semari@xpressed as a chain
of functors leading from the categoBreNet, to the categorfpom, throughPreOcc.
andPES. A different construction of a domain for any pre-net can bfrebd by relying
on the algebraic semantics of pre-nets, already defineeilit¢nature. Differently from
what happens for Petri nets, this latter construction caexipeessed as a functor from
PreNet. to Dom. The unfolding and algebraic constructions can be recedail a fully
satisfactory categorical setting, by showing that theesponding functors are naturally
isomorphic. The proof relies on the introduction of a coteretion of process for pre-
nets, and on a characterisation of the algebraic semantiesms such processes.

Figure 14 summarises our results, connecting them to theki@©TPh andITPh)
net semantics. Each column is devoted to a specific semaanimuil (see the classi-
fication in the Introduction). The last column refers to thasgbility of relating the
algebraic and unfolding views. The entries are either egfees to the literature where
the corresponding construction has been presented, otep®ito the sections of our
contribution. Empty cells stands for unfeasible constangt. Italic text refers to non-
functorial constructions, i.e., constructions that aréngel just at the object level, but
cannot deal with simulation morphisms. Regular entriesdstdor functorial construc-
tions, and bold entries for adjunctions. Note that, in theeoaf pre-nets, all construc-
tions are feasible and functorial. Finally, we mention thlhtonstructions and results
for pre-nets are extended to work in the presence of read arcs
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