
A Static Analysis Technique
for Graph Transformation Systems?

Paolo Baldan, Andrea Corradini, and Barbara König

Dipartimento di Informatica, Università di Pisa, Italia
{baldan,andrea,koenigb}@di.unipi.it

Abstract. In this paper we introduce a static analysis technique for
graph transformation systems. We present an algorithm which, given a
graph transformation system and a start graph, produces a finite struc-
ture consisting of a hypergraph decorated with transitions (Petri graph)
which can be seen as an approximation of the Winskel style unfolding
of the graph transformation system. The fact that any reachable graph
has an homomorphic image in the Petri graph and the additional causal
information provided by transitions allow us to prove several interest-
ing properties of the original system. As an application of the proposed
technique we show how it can be used to verify the absence of deadlocks
in an infinite-state Dining Philosophers system.

1 Introduction

Graphs are very useful to describe complex structures in a direct and intuitive
way. Graph Transformation Systems (GTSs) [18] add to the static description
given by graphs a further dimension which models graph evolution via the appli-
cation of rules, usually having local effects only. GTSs have been recognized to
have fruitful applications in various fields of Computer Science [5], and specifi-
cally in the modelling and specification of concurrent and distributed systems [6].

As a high-level specification formalism for concurrent systems, GTSs are
known to be more expressive than (Place/Transition) Petri nets, which can be
seen, indeed, as GTSs acting on discrete graphs only (i.e., multisets of tokens) [3].
However, even if the theory of GTSs is nowadays well developed and a number
of tools for the support of specifications based on this formalism have been
developed, GTSs are not yet used as widely as Petri nets. One reason for this
could be the lack of analysis techniques, which have been proven to be extremely
effective for Petri nets. Verification and validation techniques play an important
role during the design of the specification of a complex system, as they offer the
designer the possibility to raise confidence in the quality of the specification, for
example by allowing the early detection of logical errors.

While several static analysis techniques have been proposed for Petri nets,
ranging from the calculus of invariants [16] to model checking based on finite

? Research partially supported by the EC TMR Network GETGRATS, by the ESPRIT
Working Group APPLIGRAPH, and by the MURST project TOSCA.

complete prefixes [13],1 the rich literature on GTSs does not contain many con-
tributions to the static analysis of such systems (see [11, 12]).

In this paper we present an original analysis technique for a class of (hy-
per)graph transformation systems, which, given a system and a start hyper-
graph, extracts from them an approximated unfolding, which is a finite structure
(called Petri graph) consisting of a hypergraph and of a P/T net over it. Both
the graphical and Petri net components of the approximated unfolding can be
used to analyze the original system. For example, we will show that every hyper-
graph reachable from the start graph can be mapped homomorphically to the
(graphical component of the) approximated unfolding. Therefore, if a property
over graphs is reflected by graph morphisms, then if it holds on the approxi-
mated unfolding it also holds on all reachable graphs. Among these properties
we mention the non-existence and non-adjacency of edges with specific labels, the
absence of certain paths (for checking security properties) or cycles (for checking
deadlock-freedom). Furthermore, the transitions of the Petri net component of
the approximated unfolding can be seen as (approximated) occurrences of rules
of the original graph transformation system, and indeed every reachable graph
of the GTS corresponds (in a sense formalized later) to a reachable marking
of the net. This allows one to prove other properties directly on the Petri net
component, including upper and lower bounds on the number of times an edge
with a certain label is present in a reachable graph and certain causal dependen-
cies among rule applications. Notice that in general the net component of the
approximated unfolding is neither safe nor acyclic; roughly one can say that, at
least for certain properties, the analysis of a graph transformation system can be
reduced to the analysis of a Petri net, which is a computationally less powerful
model and for which the existing analysis techniques can be used.

The construction of the approximated unfolding of a graph transformation
system is similar in spirit to the construction of the finite complete prefix [13] of
a net, but more complex. Both are based on the unfolding construction, which
in the case of nets [15] unwinds a Petri net into a branching occurrence net (a
particularly simple Petri net satisfying suitable acyclicity and conflict freeness
requirements), behaviourally equivalent to the original net. The unfolding cannot
be used “directly” for verification purposes, since it is usually infinite. In the case
of bounded nets, McMillan has observed in [13] that it is possible to truncate the
unfolding in such a way that the resulting finite structure, the finite complete
prefix, contains as much information as the unfolding itself, and can therefore be
used for checking efficiently behavioural properties ([8, 9, 19]).

The unfolding construction has been generalized to graph transformation
systems [17, 2, 1], and the technique we propose makes use of unfolding steps for
generating the (finite) approximated unfolding, but the analogy with the finite
prefix construction of nets ends here. In fact the GTSs we consider are not finite-
state in general, hence, we must abandon the idea of finding a complete finite
part of the unfolding, where every state reachable in the considered GTS has

1 We use the term “static analysis” in a quite wide meaning, as for example it is used
in the community of the Static Analysis Symposia.

2

an isomorphic image. Even if we relax the last requirement, by asking only that
every reachable state has an homomorphic image in the constructed unfolding,
since the states of the systems we consider are more structured (graphs versus
multisets), it is not possible to rudely truncate the unfolding construction: at
certain stages we have to merge parts of the unfolding already constructed.
Because of this merging, the resulting structure is not acyclic (unlike the finite
complete prefixes), and part of the information on the causality and concurrency
of the system is lost. For what concerns state reachability, every state reachable
in the original system is also reachable in the approximated unfolding, but we
loose the converse implication (which instead holds for the finite complete prefix).

Technically, the algorithm that computes the approximated unfolding of a
GTS is defined through two basic transformations, called unfolding and folding
operations, which are applied as long as possible to the (Petri graph representing
the) start graph of the system. Since both folding and unfolding are applied only
if certain conditions are satisfied, the algorithm can be shown to terminate, a fact
which guarantees that the resulting Petri graph is finite. Furthermore, although
the proposed algorithm is non-deterministic, a local confluence property of the
unfolding and folding transformations ensures that the approximated unfolding
of a GTS is uniquely determined.

The paper is organized as follows. In Section 2 we introduce the class of GTSs
on which our static analysis technique will be defined, as well as Petri graphs
and some basic operations on them. The algorithm computing the approximated
unfolding of a GTS is presented in Section 3, while Section 4 collects the main
results about the algorithm, namely its termination, its confluence, and the fact
that every reachable graph can be mapped to a reachable subgraph of the ap-
proximated unfolding. Section 5 illustrates the proposed method by applying
it to the classical dining philosophers, both in a finite- and in an infinite-state
variant. Section 6 concludes and hints at possible developments of the ideas
presented in the paper.

2 Hypergraph rewriting, Petri nets and Petri graphs

In this section we first introduce the class of (hyper)graph transformation sys-
tems considered in the paper. Then, after recalling some basic notions for Petri
nets, we will define Petri graphs, the structure combining hypergraphs and Petri
nets, which will be used to approximate the behaviour of GTSs.

2.1 Graph transformation systems

In the following, given a set A we denote by A∗ the set of finite strings of elements
of A. Furthermore, if f : A→ B is a function then we denote by f∗ : A∗ → B∗

its extension to strings. Throughout the paper Λ denotes a fixed set of labels and
each label l ∈ Λ is associated with an arity ar(l) ∈ N.

Definition 1 (hypergraph). A (Λ-)hypergraph G is a tuple (VG, EG, cG, lG),
where VG is a finite set of nodes, EG is a finite set of edges, cG : EG → VG

∗

3

is a connection function and lG : EG → Λ is the labelling function for edges
satisfying ar(lG(e)) = |cG(e)| for every e ∈ EG. Nodes are not labelled.

A node v ∈ VG is called isolated if it is not connected to any edge, i.e. if
there are no edges e ∈ EG and u,w ∈ VG∗ such that cG(e) = uvw.

Let G,G′ be (Λ-)hypergraphs. A hypergraph morphism ϕ : G → G′ consists
of a pair of total functions 〈ϕV : VG → VG′ , ϕE : EG → EG′〉 such that for
every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV

∗(cG(e)) = cG′(ϕE(e)).

In the sequel, when dealing with hypergraph morphisms we will often omit
the subscripts V and E when referring to the components of a morphism ϕ.

Definition 2 (rewriting rule). A rewriting rule r is a triple (L,R, α), where
L and R are hypergraphs, called left-hand side and right-hand side, respectively,
and α : VL → VR is an injective mapping.

A rule r = (L,R, α) is called basic if lL is injective, i.e., different edges in
the left-hand side L have different labels, no node in L is isolated and no node
in VR − α(VL) is isolated in R.

In the following we will consider only basic rules. This restriction is not strictly
needed, but makes the presentation simpler. For example, a morphism of a left-
hand side into a hypergraph is completely determined by the image of its edges.
Furthermore, to simplify the notation we will assume, without loss of generality,
that VL ⊆ VR, EL ∩ ER = ∅ and that the mapping α is the identity.

Intuitively, a rule r = (L,R, α) specifies that an occurrence of the left-hand
side L can be “replaced” by R, according to the following definition.

Definition 3 (hypergraph rewriting). Let r = (L,R, α) be a rewriting rule.
A match of r in a hypergraph G is any morphism ϕ : L → G. In this case
we write G ⇒r,ϕ H or simply G ⇒r H, where H is defined as follows: VH =
VG] (VR − VL), EH = (EG − ϕ(EL))] ER, and if ϕ : VR → VH is the obvious
extension of ϕ then

cH(e) =

{
cG(e) if e ∈ EG − ϕ(EL)
ϕ∗(cR(e)) if e ∈ ER

, lH(e) =

{
lG(e) if e ∈ EG − ϕ(EL)
lR(e) if e ∈ ER

Given a graph transformation system (GTS), i.e., a finite set of rules R, we
write G ⇒R H if G ⇒r H for some r ∈ R. Furthermore we will denote the
transitive closure of ⇒R by ⇒∗R. A GTS with a start graph (R, GR) is called a
graph grammar.

The application of the rule r to G at the match ϕ first removes from G the image
of the edges of L. Then the graph G is extended by adding the new nodes in R
(i.e., the nodes in VR − VL) and the edges of R. Observe that the (images of)
the nodes in L are “preserved”, i.e., not affected by the rewriting step.

The reader which is familiar with the double-pushout (DPO) approach [4] to
graph rewriting would have recognized that our rules (L,R, α) can be seen as

DPO rules (L ←↩ VL
α
↪→ R) and that our notion of rewriting is equivalent to a

DPO construction. Hence compared to general DPO rules L
ϕL← K

ϕR→ R we have

4

that (i) K is discrete, i.e., it contains no edges, (ii) no two edges in the left-hand
side L have the same label, (iii) the morphism ϕL is surjective on nodes, (iv) VL
and VR − ϕR(VK) do not contain isolated nodes.

2.2 Petri nets

In this subsection we fix some basic notation for Petri nets [16, 14]. Given a set A
we will denote by A⊕ the free commutative monoid over A, whose elements will
be called multisets over A. Given a function f : A → B, by f⊕ : A⊕ → B⊕ we
denote its monoidal extension. On multisets m,m′ ∈ A⊕, we use some common
relations and operations, like inclusion, defined by m ≤ m′ when there exists
m′′ ∈ A⊕ such that m⊕m′′ = m′ and difference, which, in the same situation,
is defined by m′−m = m′′. Furthermore, for m ∈ A⊕ and a ∈ A we write a ∈ m
for a ≤ m. Often we will confuse a subset X ⊆ A with the multiset

⊕
x∈X x.

Definition 4 (Petri net). Let A be a finite set of action labels. An A-labelled
Petri net is a tuple N = (S, T, •(), ()•, p) where S is a set of places, T is a set of
transitions, •(), ()• : T → S⊕ assign to each transition its pre-set and post-set
and p : T → A assigns an action label to each transition.

The Petri net is called irredundant if there are no distinct transitions with
the same label and pre-set, i.e., if for any t, t′ ∈ T

p(t) = p(t′) ∧ •t = •t′ ⇒ t = t′. (1)

A marked Petri net is pair (N,mN), where N is a Petri net and mN ∈ S⊕
is the initial marking.

The irredundancy condition (1) requires that two distinct transitions differ
for the label or for the pre-set. This condition, in the case of branching processes,
allows one to interpret each transition as an occurrence of firing of a transition
in the original net, uniquely determined by its causal history (see [7]). Similarly,
here it aims at avoiding the presence of multiple events which are indistinguish-
able for what regards the behaviour of the system. Hereafter all the considered
Petri nets will be implicitly assumed irredundant, unless stated otherwise.

Definition 5 (causality relation). Let N be a (marked) Petri net. The causal-
ity relation <N over N is the least transitive relation such that, for any t ∈ T ,
s ∈ S, we have (i) s <N t if s ∈ •t and (ii) t <N s if s ∈ t•. For any x ∈ S ∪ T
we define its sets of causes bxc = {y ∈ S ∪ T | y <N x}.

Observe that, since we want to use Petri nets to represent the causality structure
of a system only in an approximated way, no assumptions are made concerning
the acyclicity of the net.

2.3 Petri graphs

We next introduce the structure that we intend to use to approximate graph
transformation systems, the so-called Petri graphs, which consist of an hyper-
graph and of a Petri net whose places are the edges of the graph.

5

Definition 6 (Petri graph). Let R be a GTS. A Petri graph (over R) is a
tuple P = (G,N, µ) where G is a hypergraph, N = (EG, TN ,

•(), ()•, pN) is an
R-labelled Petri net where the places are the edges of G, and µ associates to
each transition t ∈ TN , with pN (t) = (L,R, α), a hypergraph morphism µ(t) :
L ∪R→ G such that

•t = µ(t)
⊕

(EL) ∧ t• = µ(t)
⊕

(ER) (2)

A Petri graph for a graph grammar (R, GR) is a pair (P, ι) where P = (G,N, µ)
is a Petri graph for R and ι : GR → G is a graph morphism. The multiset
ι⊕(EGR) is called the initial marking of the Petri graph. A marking m ∈ EG⊕
will be called reachable (coverable) in (P, ι) if it is reachable (coverable) in the
underlying Petri net.

Condition (2) requires that each transition in the net can be viewed as an “occur-
rence” of a rule in R. More precisely, if pN (t) = (L,R, α) and µ(t) : L ∪R→ G
is the morphism associated to the transition, then µ(t)|L : L → G must be a
match of the rule in G such that the image of the edges of L in G coincides with
the pre-set of t. Observe that, due to the assumption on the rules (no multiple
labels and no isolated node in the left-hand side) the morphism µ(t)|L (if it ex-
ists) is completely determined by •t. Then, the result of applying the rule to
the considered match must be already in graph G, and the corresponding edges
must coincide with the post-set of t. This is formalized by the condition over the
image through µ(t) of the edges of R (note that the set ER is seen as a multiset
and µ(t) as a multiset function to take care of multiplicities).

Every hypergraph G can be considered as a Petri graph [G] = (G,N, µ) for
R, by taking N as the net with SN = EG and no transitions. Similarly, GR can
be seen as Petri graph for (R, GR) by taking as ι : GR → GR the identity.

We now introduce a merging operation on Petri graphs which constructs the
quotient of a Petri graph through an equivalence induced by a suitable relation.

Definition 7 (consistent and closed relation on a Petri graph). Let
P = (G,N, µ) be a Petri graph and let _ be a relation on VG ∪ EG ∪ TN
(assume the sets VG, EG, TN to be disjoint). We say that _ is consistent when
(i) if x _ x′ then x, x′ ∈ X for some X ∈ {VG, EG, TN}, (ii) for all e, e′ ∈ EG
if e _ e′ then lG(e) = lG(e′) and (iii) for all t, t′ ∈ TN , if t _ t′ then
pN (t) = pN (t′).

A consistent relation _ over P is called closed if for all t, t′ ∈ TN , e, e′ ∈ EG

pN (t) = pN (t′) = (L,R, α) ∧ (∀e ∈ EL : µ(t)(e) _ µ(t′)(e)) ⇒ t _ t′ (3)

t _ t′ ⇒ ∀e ∈ EL ∪ ER : µ(t)(e) _ µ(t′)(e) (4)

e _ e′ ∧ cG(e) = v1 . . . vm ∧ cG(e′) = v′1 . . . v
′
m ⇒ ∀1 ≤ i ≤ m : vi _ v′i (5)

To ensure that the quotient of a Petri graph with respect to a relation is
well-defined and irredundant, the relation must be closed. Hence the simple
observation below is essential for defining the merging operation.

Fact. Given any consistent relation _ over a Petri graph P there exists a least
equivalence relation ≈ including _ and closed.

6

Definition 8 (Petri graph merging). Let P = (G,N, µ) be a Petri graph and
let _ be a consistent relation over P . Then the merging of P w.r.t. _, denoted
by P//_, is the Petri graph (G′, N ′, µ′) defined as follows. Let ≈ be the least
equivalence relation extending _ and closed in the sense of Definition 7. Then

G′ = (VG/≈, EG/≈, cG′ , lG′),

where cG′([e]≈) = [v1]≈ . . . [vn]≈ and lG′([e]≈) = lG(e) whenever e ∈ EG and
cG(e) = v1 . . . vn. Furthermore N ′ = (EG′ , TN/≈,

•(), ()•, pN ′), where •[t]≈ =⊕
e∈ •t[e]≈, [t]≈

• =
⊕

e∈t• [e]≈ and pN ′([t]≈) = pN (t) whenever t ∈ TN . For
each t ∈ TN the morphism µ′([t]≈) is defined by µ([t]≈)(x) = [µ(t)(x)]≈ for any
graph item x in the rule pN (t).

Given a graph morphism h : H → G we will denote by h//_ : H → G′ the
corresponding morphism, defined by h//_(x) = [h(x)]≈ for any x ∈ VH ∪ EH .

The merging operation can be extended to sets of Petri graphs. Let Pi =
(Gi, Ni, µi), with i ∈ {1, . . . , n}, be Petri graphs and assume that the sets VGi ,
EGi

, TNi
are pairwise disjoint. Then the componentwise union P = P1∪ . . .∪Pn

is a Petri graph. A relation _ over P1, . . . , Pn is called consistent (closed) if it is
a consistent (closed) relation over P . Given a consistent relation over P1, . . . , Pn,
we define the merging {P1, . . . , Pn}//_ = P//_.

3 Algorithm computing the approximated unfolding

In this section we describe an algorithm which computes the approximated un-
folding of a graph grammar. Given a graph grammar, the algorithm produces a
finite Petri graph such that every graph reachable in the grammar corresponds,
in a sense formalized later, to a marking which is reachable in the Petri graph.

Let (R, GR) be a graph grammar. Its ordinary unfolding [17, 2] is constructed
inductively beginning from the start graph and then applying at each step in
all possible ways the rules, without deleting the left-hand side, and recording
each occurrence of a rule and each new graph item generated in the rewriting
process. As a result one obtains an acyclic branching graph grammar describing
the behaviour of (R, GR). In particular every reachable graph embeds in (a
concurrent subgraph of) the graph produced by the unfolding construction.

The unfolding is usually infinite, also in the case of finite-state systems. Here,
to ensure that the our algorithm produces a finite structure, we consider—besides
the unfolding rule, which extends the graph by simulating the application of
a rule without deleting its left-hand side—a folding rule, which allows us to
“merge” two occurrences of the left-hand side of a rule whenever they are, in a
sense made precise later, one causally dependent on the other.

Definition 9 (folding operation). Let P = (G,N, µ) be a Petri graph for a
GTS R. Let r = (L,R, α) ∈ R be a rule and let ϕ′, ϕ : L → G be matches of r
in G. Let _ be the relation over P defined as follows: for every e ∈ EL

ϕ′(e) _ ϕ(e).

7

The folding of P at the matches ϕ′, ϕ is the Petri graph fold(P, r, ϕ′, ϕ) = P//_.
If (P, ι) is a Petri graph for a graph grammar (R, GR), in the same situation,
we define fold((P, ι), r, ϕ′, ϕ) = (P//_, ι//_).

To introduce the unfolding operation, we first need to fix some notation. If t
is a transition and r = (L,R, α) is a rule we will write P (t, r) to denote the Petri
graph (L ∪ R,N, µ) where N = (EL∪R, {t}, •t = EL, t

• = ER, pN (t) = r) and
µ(t) = idL∪R. Whenever we can find a match of rule r in a given Petri graph, the
unfolding operation extends the Petri graph by merging P (t, r) at the match.

Definition 10 (unfolding operation). Let P = (G,N, µ) be a Petri graph for
a GTS R. Let r = (L,R, α) ∈ R be a rule and let ϕ : L→ G be a match of r in
G. Let _ be the relation over {P, P (t, r)} defined as follows: for every e ∈ EL

ϕ(e) _ e.

The unfolding of P with rule r at match ϕ is the Petri graph unf(P, r, ϕ) =
{P, P (t, r)}//_. If (P, ι) is a Petri graph for a graph grammar (R, GR), in the
same situation, we define unf((P, ι), r, ϕ) = ({P, P (t, r)}//_, ι//_).

We can now describe the algorithm which produces the approximated un-
folding of a given graph grammar. The algorithm generates a sequence of Petri
graphs, beginning from the start graph and applying, non-deterministically, at
each step, a folding or unfolding operation, until none of such steps is admitted.

Definition 11 (approximated unfolding). Let (R, GR) be a graph grammar.
The algorithm generates a sequence (Pi, ιi)i∈N of Petri graphs as follows.

(Step 0) Initialize (P0, ι0) = ([GR], idGR).

(Step i + 1) Let (Pi, ιi), with Pi = (Gi, Ni, µi), be the Petri graph produced at
step i. Choose non-deterministically one of the following actions

? Folding: Find a rule r = (L,R, α) in R and two matches ϕ′, ϕ : L → Gi of r
such that

– ϕ⊕(EL) is a coverable marking in Pi;
– there exists a transition t ∈ TNi

such that

pNi(t) = r ∧ •t = ϕ′
⊕

(EL) ∧ ∀e ∈ ϕ⊕(EL) : (e ∈ •t ∨ t <Ni
e). (6)

Then set (Pi+1, ιi+1) = fold((Pi, ιi), r, ϕ
′, ϕ).

? Unfolding: Find a rule r = (L,R, α) in R and a match ϕ : L→ Gi such that

– ϕ⊕(EL) is a coverable marking in Pi;
– there is no transition t ∈ TNi

such that •t = ϕ⊕(EL) and pNi
(t) = r;

– there is no other match ϕ′ : L→ Gi satisfying condition (6).

Then set (Pi+1, ιi+1) = unf((Pi, ιi), r, ϕ).

If no folding or unfolding step can be performed, the algorithm terminates.
The resulting Petri graph (Pi, ιi) is called the approximated unfolding of (R, GR)
and denoted by U(R, GR).

8

Condition (6) basically states that we can fold two matches of a rule r whenever
the first one has been already unfolded producing a transition t, and the second
match depends on the first one, in the sense that any edge in the second match
is already in the first one or causally depends on t. Roughly, the idea is that
we should not unfold a left-hand side again, if we have already done the same
unfolding step in its past, since this might lead to infinitely many steps. There are
some similarities, to be further investigated, with the work in [10] where the sets
of descendants and of normal forms of term rewriting systems are approximated
by constructing an approximation automaton.

The coverability of a marking can be decided by computing the coverability
tree of the net, as described in [16]. If this gets too costly, the condition of
coverability can be relaxed or checked in an approximated way, a choice which
does not compromise the result of correctness (see Proposition 12), but only
reduces the “precision” of the algorithm: it will generate a worse approximation,
where less properties of the given GTS can be proved.

4 Correctness, termination and confluence of the
algorithm

We show that the algorithm described in the previous section is correct, namely
that every reachable graph of a grammar is represented in the approximated
unfolding produced by the algorithm. Furthermore the algorithm is terminating
and confluent. Hence, by a classical result, its result is uniquely determined.

Correctness. We first show that the computed Petri graph is an appropriate
approximation of the given graph grammar, in the sense that for any graph
reachable in the graph grammar, there is a morphism into the approximated
unfolding such that the image of its edge set corresponds to a reachable marking.

Proposition 12. Let (R, GR) be a graph grammar and assume that the al-
gorithm computing the approximated unfolding terminates producing the Petri
graph U(R, GR) = ((U,N, µ), ι).

Then for every graph G with GR ⇒∗R G there exists a morphism ϕG : G→ U
and the marking ϕG

⊕(EG) is reachable in U(R, GR). Furthermore, if G⇒R G′

then ϕG
⊕(EG)

t→ ϕG′
⊕(EG′) for a suitable transition t in U(R, GR).

Termination. The basic result towards the proof of termination shows that it
is not possible to perform infinitely many unfolding steps, without having the
folding condition satisfied at some stage. This property is independent of the
graph structure and can be proved by considering only the causality structure of
a Petri graph, as expressed by the underlying Petri net. More formally, we show
that in any infinite Petri net, satisfying suitable acyclicity and well-foundedness
requirement, there exists a pair of transitions t, t′ (called a folding pair) such that
the pre-set of t′ is dependent on t in the sense of Condition (6) in Definition 11.
Let us start formalizing the notion of folding pair.

9

Definition 13. Let N = (S, T, •(), ()•, p) be a Petri net. A folding pair in N
is a pair of transitions t, t′ ∈ T such that t 6= t′, p(t) = p(t′) and for all s ∈ •t′
either s ∈ •t or t <N s.

The next key lemma ensures that in any infinite net obtained by applying
only unfolding steps there exists a folding pair.

Lemma 14. Let N = (S, T, •(), ()•, p) be an infinite irredundant Petri net,
labelled over a finite set A, and satisfying the following conditions:

– for any x ∈ S ∪ T the set bxc (the causes of x) is finite;
– the set Min(N) = {s | bsc = ∅} is finite, i.e., only finitely many places have

an empty set of causes;
– the relation <N is acyclic;
– the pre-set •t of each transition is a set (rather than a proper multiset);
– for t, t′ ∈ T with p(t) = p(t′) it holds that | •t| = | •t′|.

Then net N contains a folding pair.

Proof (Sketch). The core of the proof shows that if Q ⊆ T is a set of transitions
with the same action label a, then either there is a folding pair in Q or we can
remove almost all elements of Q from N in a way that the resulting net remains
infinite, i.e., there exists a set Q′ ⊆ Q such that Q−Q′ is finite and and the net
obtained from N removing Q and all its causal consequences is infinite.

Then the result can be proved by induction on the number of labels that
occur infinitely often in N . ut

The above lemma ensures that in our algorithm a folding step will be even-
tually performed. We have yet to show termination of the algorithm.

Proposition 15. The algorithm computing the approximated unfolding (see Def-
inition 11) terminates for every graph grammar (R, GR).

Confluence. In order to prove that the algorithm produces a uniquely deter-
mined result, independently of the order in which folding and unfolding steps are
applied, we show that the rewriting relation on Petri graphs induced by folding
and unfolding steps is locally confluent. The following proposition only holds if
we consider irredundant Petri nets.

Proposition 16. Let us write (P, ι) 99K (P ′, ι′) whenever (P, ι) can be trans-
formed into (P ′′, ι′′) by either a folding or an unfolding step applied under the
corresponding condition (see the algorithm in Definition 11) and (P ′′, ι′′) is iso-
morphic to (P ′, ι′), i.e., equal up to injective renaming of the edges, nodes and
transitions.

Let (P, ι) 99K (Pi, ιi) for i ∈ {1, 2}. Then there is a Petri graph (P ′, ι′) such
that (Pi, ιi) 99K∗ (P ′, ι′).

Since for a rewriting system local confluence and termination imply conflu-
ence we conclude the following result.

Proposition 17. For any input (R, GR) the algorithm computing the approxi-
mated unfolding terminates with a result U(R, GR) unique up to isomorphism.

10

F

Start Graph:

F

HL HR

HL

HR

WLF ⇒

WL EL⇒

F WR
Rules⇒

F WR ⇒

F⇒ HX X ∈ {L,R}

F

ER

FEX(HungryX)

(EatR)

(WaitR)

(EatL)

(WaitL)

Fig. 1. A graph grammar modelling the dining philosophers (finite-state version).

5 The approximated unfolding at work: checking absence
of deadlocks for dining philosophers

In order to illustrate our method, in this section we show how it can be applied
to a well-known example, the dining philosophers system, which is presented in
two versions, finite- and infinite-state.

Let us start with the classical finite-state version of the problem. Assume that
sitting at the table are a left-handed philosopher and a right-handed philosopher
with two forks between them. Our method is also applicable to instances of the
problem with a greater number of philosophers. The restriction to two philoso-
phers only avoids that the involved graphs become very large and hard to draw.

A philosopher, modelled by a binary edge, cycles through statesHX (hungry),
WX (waiting for the second fork), EX (eating) where X ∈ {L,R} depending on
whether the philosopher is left- or right-handed. The thinking state is omitted.
A fork is also represented by a binary edge labelled F . The system is described
by the set of rewriting rules and by the start graph depicted in Fig. 1. A rule
(L,R, α) is drawn in the form L⇒ R, where edges are depicted by square boxes
which are connected to a source node (the first node) and a target node (the
second node). The mapping α is indicated by dashed arrows.

The algorithm in Definition 11 produces the Petri graph (a) in Fig. 2. Tran-
sitions are depicted by small rectangles and the connection to their pre-sets and
post-sets is indicated by dashed arrows.

The algorithm terminates after six unfolding steps and four folding steps.
Two unfolding steps which apply rules (WaitL) and (EatL), respectively, to
edge HL with the corresponding forks, give rise to edge EL. Then a further
unfolding step using rule (HungryL) unfolds this edge into a graph consisting of
two edges labelled F and one edge labelled HL. But this graph consists of two

11

F

F

HL HREL ER

WL WR

HL

HR

WL

EL

F

ER

WR

(a) (b)

Fig. 2. Approximated unfoldings as Petri graphs: (a) dining philosophers, finite-state
version; (b) dining philosophers, infinite-state version.

left-hand sides of previously applied rules and the edges are causally dependent
on the corresponding transitions. Hence two folding steps can be applied, that
merge the three edges (F , HL and F) of the newly unfolded graph with the
original edges from which they were derived. A symmetric reasoning applies for
edge HR.

We would like to prove that no deadlocks can occur in the system. First
observe that any reachable graph is a cycle and, since an eating philosopher
can always be reduced, a deadlocked state is necessarily a cycle including only
hungry and waiting philosophers, where no forks are to the left of a left-handed
hungry or a right-handed waiting philosopher and no forks are to the right of
a right-handed hungry and a left-handed waiting philosopher. The absence of
cycles is a property reflected by graph morphisms. Thus we can try to verify the
absence of deadlocked states by analyzing cycles in the hypergraph associated to
the approximated unfolding. To this aim we consider such graph as a finite-state
automaton over the alphabet Σ = {F,HX ,WX , EX | X ∈ {L,R}}—with nodes
as states and edges as transitions—and declare one of the four nodes as the
initial and final state, thereby obtaining the languages Lnw (northwest node),
Lne (northeast node), Lsw (southwest node), Lse (southeast node). In this way
we obtain all possible cycles of forks and philosophers as a regular language.
By declaring, e.g., the northeast node as initial and final node we obtain the
following language:

Lne = (((FHL +WL)(ERHL)∗F + EL)(WRHL(ERHL)∗F)∗HR)∗.

An additional analysis of the Petri net would of course reveal that only a small
finite subset of Lne will ever occur, but here this is not needed for the analysis.

12

The language of all cycles allowing for the application of a rewrite rule is

Llhs = Σ∗ELΣ
∗ +Σ∗ERΣ

∗ +Σ∗FHLΣ
∗ +HLΣ

∗F +Σ∗HRFΣ
∗ +

FΣ∗HR +Σ∗WLFΣ
∗ + FΣ∗WL +Σ∗FWRΣ

∗ +WRΣ
∗F.

The language of all cycles which may occur but which do not allow the
application of any rewriting rule can be now computed as (Lnw ∪ Lne ∪ Lsw ∪
Lse) − Llhs = λ, i.e., the empty word. It is immediately clear that the circle
of philosophers will never disappear entirely and thus we can conclude that no
deadlocks will ever occur.

It is worth observing that if we forget about the graphical structure of the
Petri graph, considering only the underlying Petri net, then we obtain a clas-
sical Petri net model of the dining philosophers. Therefore, in this case, the
absence of deadlocks can be proved also by analyzing the Petri net underlying
the approximated unfolding with classical Petri net techniques.

Now, in order to make things more interesting, we extend the example to an
infinite-state system by adding a rule (RepX) which allows an eating philosopher
to reproduce, creating another hungry philosopher with an adjacent fork.

(RepX) X ∈ {L,R}EX FHX⇒EX

Observe that we can reuse the unfolding of the finite-state case and continue by
unfolding the edges ER and EL using the two new rules. A sequence of further
unfolding and folding steps causes the causes the two pairs of opposite nodes in
the square to collapse, ending up with Petri graph (b) in Fig. 2.

Again we would like to prove that no deadlocks can occur. By declaring the
left-hand node as initial and final state, we obtain the following language:

Lleft = (W ∗R((HL +HR)W ∗L(F + EL + ER))∗)∗

while using the right-hand node in the same role, we obtain the language:

Lright = (W ∗L((F + EL + ER)W ∗R(HL +HR))∗)∗.

The language of all cycles which may occur but which do not allow the applica-
tion of a rewriting rule can be now computed as (Lleft∪Lright)−Llhs = W ∗L+W ∗R.
Then, an analysis of the Petri net underlying the approximated unfolding reveals
that actually no marking which consists of tokens exclusively in WL or of tokens
exclusively in WR is reachable from the initial marking which consists of two
tokens on F and one token on HL and HR each. Hence the system will never
reach a deadlock.

Observe that in this case the analysis of the underlying Petri net by itself
is not sufficient. In fact the Petri net can deadlock: we start from the initial
marking and after the firing of two transitions we obtain a marking with one
token on WR and one token on WL, where no further firing is possible.

13

6 Conclusion

We have presented a static analysis technique for graph transformation systems
which produces a finite structure, called Petri graph, combining hypergraphs
and Petri nets, which approximates the graphs which are reachable in the orig-
inal grammar. Such a structure can be used to check safety properties, like the
absence of deadlocks, in the original system.

An interesting question which has only been brushed in the paper, concerns
the techniques which should be used to extract information from a computed
Petri graph. It is certainly possible to reuse most of the well-established analysis
techniques developed for Petri nets in the literature, such as coverability trees.
However, as observed in the example, also the graphical structure underlying
a Petri graph might play an essential role when establishing a property of the
system. Since every graph reachable in the original grammar can be mapped to
the approximated unfolding through a graph morphism, all properties which are
reflected by graph morphisms can be checked on the approximated unfolding.
We are currently investigating a syntactical characterization of such a class of
properties. Other interesting issues are the use of methods from formal language
theory (as hinted at in the example) and of model checking techniques.

Another question is the following: what can we do when we fail to prove
a property? Obviously, it might still be the case that the considered property
holds of the system, but this fact cannot be derived from the approximated
unfolding where we have lost too much information by over-approximating. A
partial solution could be to refine the description of the system, by computing a
better approximation of the “complete” unfolding. This can be done by delaying
folding steps and unfolding the Petri graph a bit further, “freezing” some parts of
the approximated unfolding in order to avoid that a folding step leads to confuse
them with other parts. A sequence of subsequently better approximations should
converge to the whole, usually infinite, unfolding. In connection to this it would
be interesting to determine which kind of systems can be “approximated” in an
exact way—maybe by variations of the folding condition—one candidate being
certainly Petri nets.

It is our aim to extend the proposed analysis technique to more general forms
of graph rewriting, e.g., to the general double-pushout approach. In this case,
since also edges might be preserved by a rewriting rule, the Petri net underlying
a Petri graph cannot be simply an ordinary net, but it will be necessary to resort
to contextual nets as in [1].

Acknowledgements: We are grateful to Javier Esparza for his insightful sug-
gestions and to Alin Stefanescu and Stefan Schwoon who helped us with the
finite-automaton tool used to compute the languages in Section 5. We are also
grateful to anonymous referees for their valuable comments.

14

References

1. P. Baldan. Modelling concurrent computations: from contextual Petri nets to graph
grammars. PhD thesis, Department of Computer Science, University of Pisa, 2000.
Available as technical report n. TD-1/00.

2. P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In W. Thomas, editor, Proceedings of FoSSaCS ’99,
volume 1578 of LNCS, pages 73–89. Springer Verlag, 1999.

3. A. Corradini. Concurrent Graph and Term Graph Rewriting. In U. Montanari
and V. Sassone, editors, Proceedings CONCUR’96, volume 1119 of LNCS, pages
438–464. Springer Verlag, 1996.

4. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Proceedings of the 1st International Work-
shop on Graph-Grammars and Their Application to Computer Science and Biology,
volume 73 of LNCS, pages 1–69. Springer Verlag, 1979.

5. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999.

6. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol.3: Concurrency,
Parallellism, and Distribution. World Scientific, 1999.

7. J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591,
1991.

8. J. Esparza. Model checking using net unfoldings. Science of Computer Program-
ming, 23(2–3):151–195, 1994.

9. J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding
algorithm. In T. Margaria and B. Steffen, editors, Proc. of TACAS’96, volume
1055 of LNCS, pages 87–106. Springer-Verlag, 1966.

10. T. Genet. Decidable approximations of sets of descendants and sets of normal
forms. In T. Nipkow, editor, Proceedings 9th International Conference on Rewrit-
ing Techniques and Applications, volume 1379 of LNCS, pages 151–165. Springer
Verlag, 1998.

11. M. Koch. Integration of Graph Transformation and Temporal Logic for the Speci-
fication of Distributed Systems. PhD thesis, Technische Universität Berlin, 2000.

12. B. König. A general framework for types in graph rewriting. In Proc. of FST TCS
2000, volume 1974 of LNCS, pages 373–384. Springer-Verlag, 2000.

13. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
14. J. Meseguer and U. Montanari. Petri nets are monoids. Information and Compu-

tation, 88:105–155, 1990.
15. M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,

Part 1. Theoretical Computer Science, 13:85–108, 1981.
16. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer Verlag, 1985.
17. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.

PhD thesis, Technische Universität Berlin, 1996.
18. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, Volume 1: Foundations. World Scientific, 1997.
19. W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for nets with

read arcs. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages 501–516.
Springer-Verlag, 1998.

15

