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2 Institut für Informatik, Technische Universität München, Germany
3 Department of Mathematics, University of California, Irvine, USA

baldan@dsi.unive.it koenigb@in.tum.de bkoenig@math.uci.edu

Abstract. A technique for approximating the behaviour of graph trans-
formation systems (GTSs) by means of Petri net-like structures has been
recently defined in the literature. In this paper we introduce a monadic
second-order logic over graphs expressive enough to characterise typi-
cal graph properties, and we show how its formulae can be effectively
verified. More specifically, we provide an encoding of such graph formu-
lae into quantifier-free formulae over Petri net markings and we char-
acterise, via a type assignment system, a subclass of formulae F such
that the validity of F over a GTS G is implied by the validity of the
encoding of F over the Petri net approximation of G. This allows us to
reuse existing verification techniques, originally developed for Petri nets,
to model-check the logic, suitably enriched with temporal operators.

1 Introduction

Distributed and mobile systems can often be specified by graph transformation
systems (GTSs) in a very natural way. However, work on static analysis and
verification of GTSs is scarce. The fact that GTSs can be seen as a proper
extension of Petri nets suggests the possibility of relying on techniques already
developed in the literature for this related formalism. However, unlike Petri
nets, graph transformation systems are usually Turing-complete so that many
problems decidable for general P/T-nets become undecidable for GTSs.

A technique proposed in [1, 2] is based on the approximation of GTSs by
means of Petri net-like structures in the spirit of abstract interpretation of reac-
tive systems [10]. More precisely, an approximated unfolding construction maps
any given GTS G to a finite structure U(G), called covering (or approximated
unfolding) of G. The covering U(G) is a so-called Petri graph, i.e. a structure
consisting of a Petri net with a graphical structure over places. It provides an
over-approximation of the behaviour of G, in the sense that any graph reachable
in G can be mapped homomorphically to the graph underlying U(G) and its im-
age is a reachable marking of U(G). (Note that, since G is possibly infinite-state,
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while U(G) is finite, it would not be possible to have in U(G) isomorphic images
of all graphs reachable in G.) Therefore, given a property over graphs reflected
by graph morphisms, if it holds for all states reachable in the abstraction U(G)
then it also holds for all reachable graphs in G. In other words, if T is a temporal
logic formula containing only universal quantifiers (e.g. a formula in ACTL∗ or
in a suitable fragment of the modal µ-calculus) and where state predicates are
reflected by graph morphisms, then the validity of T over the covering U(G)
allows us to infer the validity of T for the original system [3].

However, several relevant questions remain to be answered. First of all, which
logic should we use to specify state predicates (i.e., graph properties)? How can
we identify a subclass of such predicates which is reflected by graph morphisms
and which can thus be safely checked over the approximation? And finally, given
the approximation U(G), is there a way of encoding formulae expressing graph
properties into “equivalent” formulae over Petri net markings?

As for the first point, we propose to describe state predicates, i.e., the graph
properties of interest, by means of a monadic second-order logic L2 on graphs,
where quantification is allowed over (sets of) edges. (Similar logics are considered
in [4].) Relevant graph properties can be expressed in L2, e.g., the non-existence
and non-adjacency of edges with specific labels, the absence of certain paths
(related to security properties) or cycles (related to deadlock-freedom).

Regarding the second question, we introduce a type inference system char-
acterising a subclass of formulae in the logic L2 which are reflected by graph
morphisms. Hence, given any formula F in such a class, if F can be proved for
any reachable state of the approximation U(G) then we can deduce that F holds
for any reachable graph of the original GTS G.

Finally, given the approximation U(G), we define a constructive translation of
graph formulae in L2 into formulae over markings of the Petri net underlying the
abstraction U(G). More precisely, any graph formula F is mapped to a formula F̂
over markings such that a marking satisfies F̂ if and only if the graph it represents
satisfies F . Since the graph underlying U(G) is finite and fixed after computing
the abstraction, we can perform quantifier elimination on graph formulae and,
surprisingly, encode even monadic second-order logic formulae into propositional
formulae on markings, containing only predicates of the form #s ≤ c (the number
of tokens in place s is smaller than or equal to c). We remark that the encoding
for the first-order fragment of L2 is simpler and can be defined inductively.

Altogether these results allow us to verify behavioural properties of a GTS by
reusing existing model-checking techniques for Petri nets. In fact, given a formula
T of a suitable temporal logic (e.g. a formula of ACTL∗ or of a fragment of the
modal µ-calculus without � and negation), where state predicates are reflected by
graph morphisms, then, by the construction mentioned above and using general
results from abstract interpretation [10], T can be translated into a formula
which can be checked over the Petri net underlying U(G). We recall that general
temporal state-based logics over Petri nets, i.e., logics where basic predicates
have the form #s ≤ c, are not decidable in general, but important fragments of
such logics are [8, 7, 9].
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For the sake of simplicity, although the approximation method of [1, 2] was
originally designed for hypergraphs, in this paper we concentrate on directed
graphs. The extension to general hypergraphs requires some changes to the graph
logic L2. This rises some technical difficulties which are, while not being insur-
mountable, a hindrance to the clear and easy presentation of our results.

In the rest of the paper we will first summarise the approximation technique
for GTSs in [1], shortly mentioning some results from [2]. Then, we will define
the monadic second-order logic L2 over graphs and we will introduce the type
system characterising a subclass of formulae in L2 which are reflected by graph
morphisms, and which can thus be checked on the covering. Finally we will show
how to encode these formulae into quantifier-free state-based formulae on the
markings of Petri nets, starting from the simpler case of first-order formulae.

2 Approximated Unfolding Construction

In this section we sketch the algorithm, introduced in [1], for the construction
of a finite approximation of the unfolding of a graph transformation system.
We first define graphs and structure-preserving morphisms on graphs. We will
assume that Λ denotes a fixed and finite set of labels. Note that multiple edges
between nodes are allowed.

Definition 1 (Graph, graph morphism). A graph G = (VG, EG, sG, tG, lG)
consists of a set VG of nodes, a set EG of edges, a source and a target function
sG, tG:EG → VG and a function lG:EG → Λ labelling the edges.

A graph morphism ϕ:G1 → G2 is a pair of mappings ϕV :VG1
→ VG2

and
ϕE :EG1 → EG2 such that ϕV ◦ sG1 = sG2 ◦ ϕE , ϕV ◦ tG1 = tG2 ◦ ϕE and
lG1 = lG2 ◦ϕE for each edge e ∈ EG1 . A morphism ϕ will be called edge-bijective
if ϕE is a bijection. The subscripts in ϕE and ϕV will be usually omitted.

We next define the notion of a graph transformation system and the corre-
sponding rewriting relation.

Definition 2 (Graph transformation system). A graph transformation sys-
tem (GTS) (G0,R) consists of an initial graph G0 and a set R of rewriting rules
of the form r = (L,R, α), where L, R are graphs, called left-hand side and
right-hand side, respectively, and α:VL → VR is an injective function.

A match of a rewriting rule r in a graph G is a morphism ϕ:L→ G which is
injective on edges. We can apply r to a match in G obtaining a new graph H,
written G

r⇒ H. The target graph H is defined as follows

VH = VG ] (VR − α(VL)) EH = (EG − ϕ(EL)) ] ER
and, defining ϕ : VR → VH by ϕ(α(v)) = ϕ(v) if v ∈ VL and ϕ(v) = v otherwise,
the source, target and labelling functions are given by

e ∈ EG − ϕ(EL) ⇒ sH(e) = sG(e), tH(e) = tG(e), lH(e) = lG(e)

e ∈ ER ⇒ sH(e) = ϕ(sR(e)), tH(e) = ϕ(tR(e)), lH(e) = lR(e)
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Intuitively, the application of r to G at the match ϕ first removes from G the
image of the edges of L. Then the graph G is extended by adding the new nodes
in R (i.e., the nodes in VR−α(VL)) and the edges of R. Observe that the (images
of) the nodes in L are preserved, i.e., not affected by the rewriting step.

Example 1. Consider a system where processes compete for resources R1 and R2.
A process needs both resources in order to perform some task. The system is
represented as a GTS Sys as follows. We consider edges labelled byR1, R2, R

f
1 , R

f
2

standing for assigned and free resources, respectively, and P1, P2 and P3 denoting
a process waiting for resource R1, a process waiting for resource R2 and a process
holding both resources, respectively. Furthermore, edges labelled by D1 and D2

connect the target node of a process and the source node of a resource when the
process is asking for the resource. When the target node of a resource coincides
with the source node of a process, this means that the resource is assigned to
the process. The initial scenario for Sys is represented in Fig. 1, with a single
process P1 asking for both resources.

P1

Rf
2

Rf
1

D1

D2

Fig. 1. Start graph of Sys with a process and resources.

The rewriting rules of Sys are defined with the aim of avoiding deadlocks
in the form of vicious cycles. There are three kind of rules, depicted in Fig. 2:
(1) a process Pi can acquire a free resource Rfj whenever i = j and become
Pi+1, (2) P3 can release its resources and (3) processes of the form P1 can fork
creating more processes of the same kind with demand for the same resources.
The natural numbers 1, 2, 3, . . . which decorate nodes in the left-hand side and
right-hand side of rules implicitly represent the mapping α.

Observe that an additional rule, analogous to rule 1, but with i = 1 and
j = 2, would possibly lead to a vicious cycle with circular demand for resources,
in two steps (see Fig. 3).

Some basic notation concerning multisets is needed to deal with Petri nets.
Given a set A we will denote by A⊕ the free commutative monoid over A, whose
elements will be called multisets over A. In the sequel we will sometime identify
A⊕ with the set of functions m:A→ N such that the set {a ∈ A | m(a) 6= 0} is
finite. E.g., in particular, m(a) denotes the multiplicity of an element a in the
multiset m. Sometimes a multiset will be also identified with the underlying set,
writing, e.g., a ∈ m for m(a) 6= 0. Given a function f :A→ B, by f⊕:A⊕ → B⊕

we denote its monoidal extension, i.e., f⊕(m)(b) =
∑
f(a)=bm(a) for every b ∈ B.
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Fig. 2. Rewriting rules of the GTS Sys.
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i = 1, j = 1

1

i = 1, j = 2
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2
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1

P1

D1

D2

P1

P1Rf
2

Rf
1

P1Rf
2

R1

R2

R1

D2

D1

D2

D1

D2

D1

D2

D2

D1

P2 P2

P2

Fig. 3. Vicious cycle representing a deadlock.
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In order to approximate graph transformation systems we use Petri graphs,
introduced in [1], which are basically Petri nets, specifying the operational be-
haviour, with added graph structure.

Definition 3 (Petri graphs). Let G = (G0,R) be a GTS. A Petri graph P
(over G) is a tuple (G,N,m0) where

– G is a graph;
– N = (EG, TN ,

•(), ()•, pN ) is a Petri net, where the set of places EG is the
edge set, TN is the set of transitions, •(), ()•:TN → E⊕G specify the post-set
and pre-set of each transition and pN :TN → R is the labelling function;

– m0 ∈ (EG)⊕ is the initial marking of the Petri graph, satisfying m0 =
ι⊕(EG0

) for a suitable graph morphism ι : G0 → G (i.e., m0 must properly
correspond to the initial state of the GTS G).

A marking m ∈ E⊕G will be called reachable (coverable) in P if it is reachable
(coverable) from the initial marking in the Petri net underlying P .

Remark. The definition of Petri graph is slightly different from the original one
in [1], in that we omit some graph morphisms associated to transitions (the µ-
component) and to the initial marking, and the so-called irredundancy condition.
Both are needed for the actual construction of the Petri graph from a GTS, but
they play no role in the results of this paper.

A marking m of a Petri graph can be seen as an abstract representation of a
graph in the following sense.

Definition 4. Let (G,N,m0) be a Petri graph and let m ∈ E⊕G be a marking
of N . The graph generated by m, denoted by graph(m), is the graph H defined
as follows: VH = {v ∈ VG | ∃e ∈ m: (sG(e) = v ∨ tG(e) = v)}, EH = {(e, i) | e ∈
m ∧ 1 ≤ i ≤ m(e)}, sH((e, i)) = sG(e), tH((e, i)) = tG(e) and lH((e, i)) = lG(e).

Alternatively the graph graph(m) can be defined as the unique graph H, up to
isomorphism, such that there exists a morphism ψ:H → G injective on nodes
with ψ⊕(EH) = m. An example of a Petri net marking with the corresponding
generated graph can be found in Fig. 4.

B

A

A

A

A

morphism
ϕ

morphism
ψ

G′

A

B

...

...

B

e1 e2

graph(m′) Petri graph P = (G,N) with marking m′

Fig. 4. A pair (G′,m′) contained in a simulation.

Given a GTS (G0,R), with some minor constraints on the format of rewrit-
ing rules (see [1, 2]), we can construct a Petri graph approximation of (G0,R),
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called covering and denoted by U(G0,R). The covering is produced by the
last step of the following (terminating) algorithm which generates a sequence
Pi = (Gi, Ni,mi) of Petri graphs.

1. P0 = (G0, N0,m0), where the net N0 contains no transitions and m0 = EG0
.

2. As long as one of the following steps is applicable, transform Pi into Pi+1,
giving precedence to folding steps.

Unfolding. Find a rule r = (L,R, α) ∈ R and a match ϕ:L→ Gi such that
ϕ(E⊕L ) is coverable in Pi. Then extend Pi by “attaching” R to Gi according
to α and add a transition t, labelled by r, describing the application of rule r.

Folding. Find a rule r = (L,R, α) ∈ R and two matches ϕ,ϕ′:L → Gi
such that ϕ⊕(EL) and ϕ′

⊕
(EL) are coverable in Ni and the second match is

causally dependent on the transition unfolding the first match. Then merge
the two matches by setting ϕ(e) ≡ ϕ′(e) for each e ∈ EL and factoring
through the resulting equivalence relation ≡.

folding

2x

2

2

2

unfolding

P1

P1

P1

P1

D1

D2

D1

D2

D1

D2

D1

D2

P1

D1

D2

Fig. 5. An unfolding and two folding steps.

For instance an unfolding step involving rule 3 is depicted in Fig. 5. Transi-
tions are represented as black rectangles and the Petri net structure is rendered
by connecting edges (places) to transitions with dashed lines. The label k for
dashed lines represents the weight with which the target/source place occurs in
the post-set (pre-set); when the weight is 1, the label is omitted. In the resulting
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Petri graph we can find three occurrences of the left-hand side of rule 3. The
latter two are causally dependent on the first, which means that they can be
merged in two folding steps. The algorithm, starting from the start graph in
Fig. 1, terminates producing the Petri graph U(Sys) in Fig. 6, where the initial
marking is represented by tokens.

2

2

2

R1

R2

Rf
2

Rf
1

P2

P1

P3

D1

D2

Fig. 6. The Petri graph U(Sys) computed as covering of Sys.

The covering U(G0,R) is an abstraction of the original GTS (G0,R) in the
following sense.

Proposition 1 (Abstraction). Let G = (G0,R) be a graph transformation
system and let U(G) = (G,N,m0) be its covering. Furthermore let G be the set
of graphs reachable from G0 in G and let M be the set of reachable markings in
U(G). Then there exists a simulation S ⊆ G×M with the following properties:

– (G0,m0) ∈ S;

– whenever (G′,m′) ∈ S and G′
r⇒ G′′, then there exists a marking m′′ with

m′
r→ m′′ and (G′′,m′′) ∈ S;

– for every (G′,m′) ∈ S there is an edge-bijective morphism ϕ:G′ → graph(m′).

The above result will allow us to use existing results concerning abstractions of
reactive systems [3, 10]. Consider the system Sys in our running example. We
would like to verify that, according to the design intentions, Sys is deadlock-free.
This is formalised by the requirement that all reachable graphs do not contain a
vicious cycle, i.e., a cycle of edges where P2-labelled edges (processes holding a
resource and waiting for a second resource) occur twice. This graph property is
reflected by graph morphisms, hence, by using Proposition 1, if we can prove it
on the covering U(Sys), we could deduce that it holds for the original system Sys
as well. Observe that actually, in this case, even the stronger property #e ≤ 1,
where e is the edge labelled P2, holds for all reachable markings as it can be
easily verified by drawing the coverability graph of the Petri net. This is an ad
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hoc proof of the property, which instead, by the results in this paper, will follow
as an instance of a general theory.

The idea that will be concretized by the results in the paper, is the follow-
ing. Let G be a GTS and let U(G) be its covering. By Proposition 1, U(G) =
(G,N,m0) “approximates” G via a simulation consisting of pairs (G′,m′) such
that G′ can be mapped to graph(m′) (see, e.g., Fig. 4) via an edge-bijective
morphism. Given a formula on graphs F , expressing a state property in G, a
corresponding formula M(F ) on the markings of U(G) is constructed such that,
for any pair in the simulation,

m′ |= M(F ) ⇒ G′ |= F.

This will be obtained in two steps. First, we will identify formulae F which
are reflected by edge-bijective morphisms, ensuring that graph(m′) |= F implies
G′ |= F . Then, we will encode F into a propositional formula M(F ) on multisets
such that m′ |= M(F ) ⇐⇒ graph(m′) |= F .

Call F the above mentioned class of graph formulae. Now, one can consider a
temporal logic over GTSs, where basic predicates are taken from F . For suitable
fragments of such logics, e.g., the modal µ-calculus without negation and the
“possibility operator” 3, by Proposition 1 and exploiting general results in [10],
any temporal formula T over graphs can be translated to a formula M(T ) over
markings (translating the basic predicates as above), such that, if N |= M(T )
then G |= T , i.e., T is valid for the original GTS.

3 A Second-Order Monadic Logic for Graphs

We introduce the monadic second-order logic L2 for specifying graph properties.
Quantification is allowed over edges, but not over nodes (as, e.g., in [4]).

Definition 5 (Graph formula). Let X1 = {x, y, z, . . .} be a set of (first-order)
edge variables and let X2 = {X,Y, Z, . . .} be a set of (second-order) variables
representing edge sets. The set of graph formulae of the logic L2 is defined as
follows, where ` ∈ Λ

F ::= x = y | s(x) = s(y) | s(x) = t(y) | t(x) = t(y) |
lab(x) = ` | x ∈ X (Predicates)

F ∨ F | F ∧ F | F ⇒ F | ¬F (Connectives)

∀x.F | ∃x.F | ∀X.F | ∃X.F (Quantifiers)

We denote by free(F ) and Free(F ) the sets of first-order and second-order vari-
ables, respectively, occurring free in F , defined in the obvious way.

Note that, even if quantification over nodes is disallowed, formulae expressing
properties of classes of nodes can be easily stated, e.g., the property “for all non-
isolated nodes v it holds that P (v)” is formalised as “∀x.(P (s(x)) ∧ P (t(x)))”.
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Definition 6 (Quantifier depth). The first-order and second-order quantifier
depth (qd1(F ) and qd2(F ), respectively) of a graph formula F in L2 is inductively
defined as follows, where A is a predicate, op ∈ {∧,∨,⇒} and i ∈ {1, 2}.

qdi(A) = 0 qdi(¬F1) = qdi(F1) qdi(F1 opF2) = max{qdi(F1), qdi(F2)}
qd1(∀x.F1) = qd1(∃x.F1) = qd1(F1) + 1 qd2(∀x.F1) = qd2(∃x.F1) = qd2(F1)

qd1(∀X.F1) = qd1(∃X.F1) = qd1(F1) qd2(∀X.F1) = qd2(∃X.F1) = qd2(F1) + 1

The notion of satisfaction is defined in a straightforward way.

Definition 7 (Satisfaction). Let G be a graph, let F be a graph formula in
L2, let σ : free(F ) → EG and Σ : Free(F ) → P(EG) be valuations for the
free first- and second-order variables of F , respectively. The satisfaction relation
G |=σ,Σ F is defined inductively, in the usual way; for instance:

G |=σ,Σ x = y ⇐⇒ σ(x) = σ(y)

G |=σ,Σ s(x) = s(y) ⇐⇒ sG(σ(x)) = sG(σ(y))

G |=σ,Σ lab(x) = ` ⇐⇒ lG(σ(x)) = `

G |=σ,Σ x ∈ X ⇐⇒ σ(x) ∈ Σ(X)

Example 2. The formula NC ` below states that a graph does not contain a cycle
including two distinct edges labelled `, a property that will be used to express the
absence of vicious cycles in our system Sys. It is based on the formula NP(x, y),
which says that there is no path connecting the edges x and y, stating that a
set that contains at least all successors of x does not always contain y.

NP(x, y) = ¬∀X.(∀z.(t(x) = s(z) ∨ ∃w.(w ∈ X ∧ t(w) = s(z)))⇒ z ∈ X)

⇒ y ∈ X)

NC ` = ∀x.∀y.(lab(x) = ` ∧ lab(y) = ` ∧ ¬(x = y)⇒ NP(x, y) ∨NP(y, x))

The following standard argument shows that this property can not be stated
in first-order logic, a fact which motivates our choice of considering a second-
order logic: it is easy to find sentences ψn in first-order logic stating that ‘there is
no cycle of length ≤ n through two distinct edges labelled `’. Every finite subset
of the theory T = {¬NC `}∪{ψn}n∈N is satisfiable but T itself is not satisfiable.
The compactness theorem rules this out for first-order theories, so NC ` cannot
be first-order.

4 Preservation and Reflection of Graph Formulae

In this section we introduce a type system over graph formulae in L2 which
allows us to single out subclasses of formulae preserved or reflected by edge-
bijective morphisms. By Proposition 1, given a GTS G every graph reachable
in G can be mapped homomorphically via an edge-bijective morphism to the
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graph generated by a marking reachable in the covering U(G) of G. Hence a
formula reflected by all edge-bijective morphisms can be safely checked over the
approximation U(G), in the sense that if it holds in U(G), then we can deduce
that it holds also in G.

To define the notions of reflection (and preservation) of general graph for-
mulae, possibly with free variables, observe that valuations are naturally “trans-
formed” under graph morphisms. Let F be formula, let ϕ : G1 → G2 be a
graph morphism, and let σ1 : free(F ) → EG1

and Σ1 : Free(F ) → P(EG1
)

be valuations. A valuation for the first-order variables of F in G2 is naturally
given by ϕ ◦ σ1, while a valuation Σ2 for second-order variables can be defined
by Σ2(X) = ϕ(Σ1(X)) for any variable X. Abusing the notation, Σ2 will be
denoted by ϕ ◦Σ1.

Definition 8 (Reflection and Preservation). Let F be a formula in L2 and
let ϕ:G1 → G2 be a graph morphism. We say that F is preserved by ϕ if for all
valuations σ1: free(F )→ EG1 and Σ1: Free(F )→ P(EG1)

G1 |=σ1,Σ1
F ⇒ G2 |=ϕ◦σ,ϕ◦Σ1

F.

Symmetrically, F is reflected by ϕ if the above holds where ⇒ is replaced by⇐.

Observe that, in particular, a closed formula F is preserved by a graph morphism
ϕ : G1 → G2 if G1 |=∅,∅ F implies G2 |=∅,∅ F .

As mentioned above we are interested in syntactic criteria characterising
classes of graph formulae reflected, respectively preserved, by all edge-bijective
graph morphisms. For first-order predicate logic, criteria for arbitrary morphisms
can be found in [6]. Here we provide a technique which works for general second-
order monadic formulae, based on a type system assigning to every formula F
either →, meaning that F is preserved, or ←, meaning that F is reflected by
edge-bijective morphisms. The type rules are given in Fig. 7 where it is intended
that →−1=← and ←−1=→. Moreover F :↔ is a shortcut for F :→ and F :←,
while F1, F2 : d stands for F1 : d and F2 : d.

Typing predicates:

s(x) = s(y), s(x) = t(y), t(x) = t(y):→ x = y, lab(x) = `, x ∈ X:↔

Typing connectives and quantifiers:

F : d

¬F : d−1

F1, F2: d

F1 ∨ F2, F1 ∧ F2: d

F1: d−1, F2: d

F1 ⇒ F2: d

F : d

∀x.F : d

F : d

∃x.F : d

F : d

∀X.F : d

F : d

∃X.F : d

Fig. 7. The type system for preservation and reflection.
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The type system can be shown to be correct.

Proposition 2 (Correctness). Let F be a graph formula. If F :→ is provable
then F is preserved by all edge-bijective morphisms. Similarly, if F :← is provable
then F is reflected by all edge-bijective graph morphisms.

Example 3. It holds that NP(x, y):← and NC `:←, i.e., absence of paths and of
vicious cycles is reflected by edge-bijective morphisms.

Not all formulae that are preserved respectively reflected are recognised by
the above type system. The following result shows that this incompleteness is a
fundamental problem, due to the undecidability of reflection and preservation.

Proposition 3 (Undecidability of the Reflection (Preservation) Prob-
lem for formulae). The following two sets are undecidable:

ReflFO = {F | F closed first-order formula, reflected by edge-bijective

graph morphisms}
PresFO = {F | F closed first-order formula, preserved by edge-bijective

graph morphisms}

Proof. We show that ReflFO is undecidable, the proof for PresFO is provided
by the fact that a formula F is preserved if and only if ¬F is reflected.

Let Λ′ be a multi-set over elements of Λ. By G(Λ′) we denote the graph with
exactly one node v and |Λ′| edges, where each edge e satisfies sG(Λ′)(e) = v =
tG(Λ′)(e) and for every ` ∈ Λ there are exactly Λ′(`) edges. Since every graph
can be mapped edge-bijectively to one of the G(Λ′), it is fairly easy to see that a
formula F is a tautology if and only if it is contained in ReflFO and it holds for
each of the G(Λ′). Because of Corollary 1 it is not necessary to check infinitely
many graphs of the form G(Λ′), but it is possible to compute an upper bound for
the number of edges from the quantifier depth of F . If ReflFO were decidable,
this would give us a procedure to decide the first-order theory on the class of
graphs, a contradiction to a result of Trakhtenbrot [16]. ut

5 A Propositional Logic on Multisets

In order to characterise markings of Petri nets we use the following logic on
multisets. We consider a fixed universe A over which all multisets are formed.

Definition 9 (Multiset formula). The set of multiset formulae, ranged over
by M , is defined as follows, where a ∈ A and c ∈ N

M ::= #a ≤ c | ¬M | M ∨M ′ | M ∧M ′.
Let m be a multiset with elements from A. The satisfaction relation m |= M
is defined, on basic predicates, as m |= (#a ≤ c) ⇐⇒ m(a) ≤ c. Logical
connectives are dealt with as usual.

We will consider also derived predicates of the form #a ≥ c and #a = c where

(#a ≥ c) =

{
¬(#e ≤ c− 1) if c > 0
true otherwise

, (#e = c) = (#e ≤ c)∧ (#e ≥ c).
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6 Encoding First-Order Graph Logic

In this section we show how first-order graph formulae can be encoded into
“equivalent” multiset formulae. More precisely, given the fixed Petri graph P =
(G,N,m0) the aim is to find an encoding M1 of first-order graph formulae into
multiset formulae such that graph(m) |= F ⇐⇒ m |= M1(F ) for every marking
m of P and every closed first order graph formula F .

The encoding M1 is based on the following observation: every graph graph(m)
for some marking m of P can be generated from the finite “template graph”
G in the following way: some edges of G might be removed and some edges
might be multiplied, generating several parallel copies of the same template
edge. Whenever a formula has two free variables x, y and graph(m) has n parallel
copies e1, . . . , en of the same edge, it is not necessary to associate x and y with
all edges, but it is sufficient to assign e1 to x and e2 to y (first alternative) or
e1 to both x and y (second alternative). Thus, whenever we encode a formula
F , we have to keep track of the following information: a partition P on the free
variables free(F ), telling us which variables are mapped to the same edge, and
a mapping ρ from free(F ) to the edges of G, with ρ(x) = e meaning that x will
be instantiated with a copy of the template edge e. Since there might be several
different copies of the same template edge, two variables x and y in different
sets of P can be mapped by ρ to the same edge of G. Whenever we encode an
existential quantifier ∃x, we have to form a disjunction over all the possibilities
we have in choosing such an x: either x is instantiated with the same edge as
another free variable y, in this case x and y should be in the same set of the
partition P . Or x is instantiated with a new copy of an edge in G. In this case,
a new set {x} is added to P and we have to make sure that enough edges are
available by adding a suitable predicate.

We need the following notation. We will describe an equivalence relation on
a set A by a partition P ⊆ P(A) of A, where every element of P represents an
equivalence class. We will write xP y whenever x, y are in the same equivalence
class. Furthermore we assume that each equivalence P is associated with a func-
tion rep : P → A which assigns a representative to every equivalence class. The
encoding given below is independent of any specific choice of representatives.

Given a function f : A → B such that f(a) = f(a′) for all a, a′ ∈ A with
aPa′ and a fixed b ∈ B we define nP,f (b) = |{k ∈ P | f(rep(k)) = b}|, i.e.,
nP,f (b) is the number of sets in the partition P that are mapped to b.

Definition 10. Let G be a directed graph, let F be graph formula in the first-
order fragment of L2, let ρ : free(F ) → EG and let P ⊆ P(free(F )) be an
equivalence relation such that xP y implies ρ(x) = ρ(y) for all x, y ∈ free(F ).
The encoding M1 is defined as follows:

M1[¬F, ρ, P ] = ¬M1[F, ρ, P ]

M1[F1 ∨ F2, ρ, P ] = M1[F1, ρ, P ] ∨M1[F1, ρ, P ]

M1[F1 ∧ F2, ρ, P ] = M1[F1, ρ, P ] ∧M1[F1, ρ, P ]

M1[x = y, ρ, P ] =

{
true if xP y
false otherwise

13



M1[lab(x) = `, ρ, P ] =

{
true if lG(ρ(x)) = `
false otherwise

M1[s(x) = s(y), ρ, P ] =

{
true if sG(ρ(x)) = sG(ρ(y))
false otherwise

the formulae t(x) = t(y) and s(x) = t(y)

are treated analogously

M1[∃x.F, ρ, P ] =
∨
k∈P

(M1[F, ρ ∪ {x 7→ ρ(rep(k))}, P\{k} ∪ {k ∪ {x}}]) ∨

∨
e∈EG

(M1[F, ρ ∪ {x 7→ e}, P ∪ {{x}}] ∧ (#e ≥ nP,ρ(e) + 1))

M1[∀x.F, ρ, P ] =
∧
k∈P

(M1[F, ρ ∪ {x 7→ ρ(rep(k))}, P\{k} ∪ {k ∪ {x}}]) ∧

∧
e∈EG

((#e ≥ nP,ρ(e) + 1)⇒M1[F, ρ ∪ {x 7→ e}, P ∪ {{x}}])

If F is closed formula (i.e., without free variables), we defineM1(F ) = M1[F, ∅, ∅].

It is worth remarking that such an approach is similar to the model-theoretic
method of quantifier elimination, defined by Tarski in the 1950’s to show decid-
ability and completeness for theories like dense linear orderings or algebraically
closed fields (see [14]). We remark that here finiteness of graphs is essential.

We can now show that the encoding is correct in the sense explained above.
We will omit the index Σ in |=σ,Σ when talking about first-order formulae only.

Proposition 4. Let (G,N,m0) be a Petri graph, F a first-order formula in L2
and m a marking of N . Then it holds that

graph(m) |=σ F ⇐⇒ m |= M1[F, ρ, P ],

when

– ρ : free(F )→ EG;
– P is an equivalence on free(F ) such that xP y implies ρ(x) = ρ(y) for any
x, y ∈ free(F );

– σ : free(F ) → Egraph(m) satisfies xP y ⇐⇒ σ(x) = σ(y) and ϕ ◦ σ = ρ,
where ϕ: graph(m) → G denotes the projection of graph(m) over G, i.e., a
graph morphism such that ϕ((e, i)) = e ∈ EG.

Whenever F is closed the proposition above trivially gives us the expected
result. i.e., graph(m) |= F iff m |= M1(F ).

Example 4. Consider the formula F = ∃x.(lab(x) = A ∧
F2︷ ︸︸ ︷

∀y.¬(t(x) = s(y))︸ ︷︷ ︸
F1

).

The graph under consideration is the graph G on the right in Fig. 4 (contain-
ing a looping B-edge e1 and an A-edge e2). The encoding goes as follows (with
some simplifications of the formula along the way):
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M1[F, ∅, ∅]
= (M1[F1, {x 7→ e1}, {{x}}] ∧ (#e1 ≥ 1)) ∨ (M1[F1, {x 7→ e2}, {{x}}] ∧ (#e2 ≥ 1))

= (M1[lab(x) = A, {x 7→ e1}, {{x}}]︸ ︷︷ ︸
=false

∧M1[F2, {x 7→ e1}, {{x}}] ∧ (#e1 ≥ 1)) ∨

(M1[lab(x) = A, {x 7→ e2}, {{x}}]︸ ︷︷ ︸
=true

∧M1[F2, {x 7→ e2}, {{x}}] ∧ (#e2 ≥ 1))

≡ M1[¬(t(x) = s(y)), {x, y 7→ e2}, {{x, y}}]︸ ︷︷ ︸
=true

∧

(#e1 ≥ 1⇒M1[¬(t(x) = s(y)), {x 7→ e2, y 7→ e1}, {{x}, {y}}]︸ ︷︷ ︸
=false

) ∧

(#e2 ≥ 2⇒M1[¬(t(x) = s(y)), {x, y 7→ e2}, {{x}, {y}}]︸ ︷︷ ︸
=true

) ∧ (#e2 ≥ 1)

≡ ¬(#e1 ≥ 1) ∧ (#e2 ≥ 1)

7 Encoding Monadic Second-Order Graph Logic

In this section we show that also general monadic second-order graph formulae
in L2 can be encoded into multiset formulae. Differently from the first-order
case, the encoding is not defined inductively, but, still, quantifier elimination is
possible. We start with an easy but useful lemma.

Lemma 1 (Edge Permutations). Let σ,Σ be valuations such that G |=σ,Σ F .
Furthermore let π : G→ G be an automorphism such that sG(e) = sG(π(e)) and
tG(e) = tG(π(e)). Then G |=π◦σ,π◦Σ F .

The encoding uses the fact that multiple copies of an edge are distinguished
only by their identity, but have the same source and target nodes and the same
label. Hence whenever we want to encode a first-order quantifier, we only have
to check all the edges that have already appeared so far and a fresh copy of every
edge in G. From this, as we will see, one can infer that for checking the validity
of a formula F it is sufficient to consider only up to qd1(F ) · 2qd2(F ) copies of
every edge in the template graph G.

The following proposition basically states that if there are enough parallel
edges which belong to the same sets of the form Σ(X), where Σ is a second-
order valuation and X a second-order variable, then one of these edges can be
removed—provided that it is not in the range of the first-order valuation σ—
without changing the validity of a formula F .

Proposition 5. Let G be a graph, F a graph formula in L2, let σ,Σ be valua-
tions for the free variables in F and let e ∈ EG be a fixed edge. Assume that

(1) the edge e is not in the range of σ and
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(2) |EGΣ(e)| > (qd1(F ) + |dom(σ)|) · 2qd2(F ) where

EGΣ(e) = {e′ ∈ EG | sG(e) = sG(e′), tG(e) = tG(e′), lG(e) = lG(e′),

∀X ∈ dom(Σ).(e ∈ Σ(X) ⇐⇒ e′ ∈ Σ(X))}

Then G |=σ,Σ F ⇐⇒ G \ {e} |=σ,Σe F , where G \ {e} is obtained by removing
the edge e from graph G and Σe(X) = Σ(X)− {e}.

From Proposition 5 we infer the following corollary.

Corollary 1. Let F be a closed graph formula in L2. Let furthermore G be a
graph and m ∈ E⊕G be a multiset over (the set of edges of) G. Then
graph(m) |= F if and only if graph(m′) |= F , where m′ ∈ E⊕G is defined by
m′(e) = min{m(e), qd1(F ) · 2qd2(F )}.

Proof. If F has no free variables then E
graph(m)
Σ (e) = {(e, i) | 1 ≤ i ≤ m(e)}.

Using Proposition 5, we can thus reduce the number of copies for every edge to
the number qd1(F ) · 2qd2(F ), without changing the truth value of F . ut

The following corollary shows that every graph-statement of full monadic
second-order logic can be encoded into a multiset formula.

Corollary 2. Let G be a fixed template graph. A closed graph formula F in L2
can be encoded into a logical formula M2(F ) on multisets as follows. For any
multiset k ∈ E⊕G , let Ck be the conjunction over the following formulae:

– #e = k(e) for every e ∈ EG satisfying k(e) < qd1(F ) · 2qd2(F ) and
– #e ≥ k(e) for every e ∈ EG satisfying k(e) = qd1(F ) · 2qd2(F ).

Define M2(F ) to be the disjunction of all Ck such that k ∈ E⊕G , graph(k) |= F
and k(e) ≤ qd1(F ) · 2qd2(F ) for every e ∈ EG.

Then graph(m) |= F ⇐⇒ m |= M2(F ) for every m ∈ E⊕G .

Proof. Let m ∈ E⊕G be an arbitrary multiset and let m′ be a multiset defined as
in Corollary 1, i.e. m′(e) = min{m(e), qd1(F ) · 2qd2(F )}. for e ∈ EG.

If graph(m) |= F then, by Corollary 1, graph(m′) |= F . Hence, by definition
of M2, Cm′ appears as a disjunct in M2(F ). Since, clearly, m |= Cm′ , we conclude
that m |= M2(F ).

Vice versa, let m |= M2(F ). Then m |= Ck for some k ∈ E⊕G and graph(k) |=
F . By the shape of Ck, it is immediate to see that this implies k = m′. Therefore
graph(m′) |= F , and thus, by Corollary 1, graph(m) |= F . ut

To conclude let us show how the general schema outlined at the end of
Section 2 applies to our running example. We want to verify that Sys satisfies
a safety property, i.e., the absence of vicious cycles, including two distinct P2

processes, in all reachable graphs. Let 2Lµ be a fragment of the µ-calculus
without negation and “possibility operator” 3 (see [10]), where basic predicates
are formulae F taken from our graph logic L2, which can be typed as “reflected

16



by graph morphisms”, i.e., such that F :← is provable. The property of interest
can be expressed in 2Lµ as:

TNC = µϕ.(NCP2 ∧2ϕ )

where NC` is the formula considered in a previous example. Then TNC can
be translated into a formula over markings, by translating its graph formula
components according to the techniques described in Sections 6 and 7. This
will lead to the formula M2(TNC) = µϕ.(M2(NCP2) ∧ 2ϕ ). By the results in
this paper and by the results in [2], for T in 2Lµ, if U(Sys) |= M2(T ) then
Sys |= T . Therefore the formula TNC can be checked by verifying M2(TNC) on
the Petri net component of the approximated unfolding. In this case it can be
easily verified that M2(TNC) actually holds in U(Sys) and thus we conclude that
Sys satisfies the desired property.

8 Conclusion

We have presented a logic for specifying graph properties, useful for the veri-
fication of graph transformation systems. A type system allows us to identify
formulae of this logic reflected by edge-bijective morphisms, which can therefore
be verified on the covering, i.e., on the finite Petri graph approximation of a
GTS. Furthermore we have shown how, given a fixed approximation of the orig-
inal system, we can perform quantifier-elimination and encode these formulae
into boolean combination of atomic predicates on multisets. Combined with the
approximated unfolding algorithm of [1], this gives a method for the verifica-
tion and analysis of graph transformation systems. This form of abstraction is
different from the usual forms of abstract interpretation since it abstracts the
structure of a system rather than its data. Maybe the closest relation is shape
analysis, abstracting the data structures of a program [11, 15].

We would like to add some remarks concerning the practicability of this
approach: we are currently developing an implementation of the approximated
unfolding algorithm, which inputs and outputs graphs in the Graph Exchange
Language (GXL) format, based on XML. It remains to be seen up to which size
of a GTS the computation of the approximation is still feasible.

Furthermore encoding a formula into multiset logic may result in a blowup
of the size of the formula which is at least exponential. However, provided that
formulae are rather small if compared to the size of the system or its approx-
imation, this blowup should be manageable. It is also conceivable to simplify
a formula during its encoding (see the example at the end of Section 6). The
encoding itself is not yet implemented, but we plan to do so in the future.

Finally the Petri net produced by the approximated unfolding algorithm and
the formula itself have to be analysed by a model checker or a similar tool, based
on the procedures described in [8, 7, 9]. Note that formulae on multisets can not
be combined with the temporal operators of CTL∗ in an arbitrary way. First,
we have to make sure that the resulting formula is still reflected, with respect to
the simulation, hence no existential path quantification is allowed. Furthermore,
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arbitrary combinations of the temporal operators “eventually” and “generally”
might make the model-checking problem undecidable. However, important frag-
ments are still decidable, for example a property like “all reachable graphs satisfy
F”, where F is a multiset formula, can be checked. As far as we know, there
is not much tool support for model-checking unbounded Petri nets, but these
algorithms usually rely on the computation of the coverability graph of a Petri
net, which is a well-studied problem [13].

Currently we are mainly interested in proving safety properties, liveness prop-
erties require some more care (see [12]). Another interesting line of future re-
search is to adopt techniques used for the analysis of transition systems specified
by integer constraints [5].
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A Proofs

Proposition 2. Let F be a graph formula. If F :→ is provable then F is pre-
served by all edge-bijective morphisms. Similarly, if F :← then F is reflected by
all edge-bijective morphisms.

Proof. The proof goes by induction on the rules needed to prove F : d. We only
prove two cases, the other cases can be shown similarly.

– We assume that F has the form x ∈ X. Hence F is typed by the axiom
x ∈ X:←. Now let ϕ:G1 → G2 be an edge-bijective morphism and let σ1

and Σ1 be valuations. Assume that G2 |=ϕ◦σ1,ϕ◦Σ1 x ∈ X. This implies that
ϕ(σ1(x)) ∈ ϕ(Σ1(X)). Since ϕ is an edge-bijective morphism it follows that
σ(x) ∈ Σ1(X) and we conclude that G1 |=σ1,Σ1

x ∈ X.
– We assume that F has the form ∀X.F ′. Then F is typed in the following

way:
F ′:→
∀X.F ′:→

Let ϕ:G1 → G2 be an edge-bijective morphism and let σ1 and Σ1 be valua-
tions. Assume that G1 |=σ1,Σ1 ∀X.F ′. This implies that for all E1 ⊆ EG1 it
holds that G1 |=σ1,Σ1∪{X 7→E1} F

′. For any E2 ⊆ EG2
we can infer

G1 |=σ,Σ1∪{X 7→ϕ−1(E2)} F
′.

By induction hypothesis we have that G2 |=ϕ◦σ1,ϕ◦Σ1∪{X 7→E2} F
′ for all

E2 ⊆ EG2
and we obtain G2 |=ϕ◦σ1,ϕ◦Σ1

F ′.

ut

Proposition 4. Let (G,N,m0) be a Petri graph, F a first-order formula on
graphs and m a marking of N . Then it holds that

graph(m) |=σ F ⇐⇒ m |= M1[F, ρ, P ]

when
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– ρ : free(F )→ EG;
– P is an equivalence on free(F ) such that xP y implies ρ(x) = ρ(y) for any
x, y ∈ free(F );

– σ : free(F ) → Egraph(m) satisfies xP y ⇐⇒ σ(x) = σ(y) and ϕ ◦ σ = ρ,
where ϕ: graph(m) → G denotes the projection graph(m) over G, i.e., a
graph morphism such that ϕ((e, i)) = e ∈ EG.

Proof. We assume that we have a fixed marking m and a logical formula F on
graphs. We first show the direction from left to right and afterwards the direction
from right to left.

⇒: We proceed by induction on the structure of F .

F = (x = y): since it holds that graph(m) |=σ x = y we can conclude that
σ(x) = σ(y) which implies xP y and therefore ρ(x) = ρ(y).
Furthermore we can conclude that M1[x = y, ρ, P ] = true and therefore
m |= M1[x = y, ρ, P ].

F = (lab(x) = `): since it holds that graph(m) |=σ lab(x) = `, it follows that
lG(ρ(x)) = lG(ϕ(σ(x))) = lgraph(m)(σ(x)) = `. Therefore we know that
M1[lab(x) = `, ρ, P ] = true and it holds that m |= M1[lab(x) = `, ρ, P ].

F = (s(x) = s(y)): we assume that graph(m) |=σ s(x) = s(y). So we have
sgraph(m)(σ(x)) = sgraph(m)(σ(y)) and since ϕ is a graph morphism it
holds that sG(ρ(x)) = sG(ϕ(σ(x))) = sG(ϕ(σ(y))) = sG(ρ(y)).
So M1[s(x) = s(y), ρ, P ] = true and m |= M1[s(x) = s(y), ρ, P ] holds.

F = ¬F ′: we assume that graph(m) |=σ ¬F ′ holds. Now graph(m) 6|=σ F
′

and from the induction hypothesis it follows that m 6|= M1[F ′, ρ, P ].
Therefore m |= ¬M1[F ′, ρ, P ].

F = F1 ∨ F2: we assume that graph(m) |=σ F1∨F2 holds. This implies that
graph(m) |=σ F1 or graph(m) |=σ F2. We assume that the first condition
holds, the other case can be handled analogously.
From the induction hypothesis it follows that m |= M1[F1, ρ, P ]. There-
fore m |= M1[F1, ρ, P ] ∨M1[F2, ρ, P ].

F = F1 ∧ F2: analogous to the case of ∨.
F = ∃x.F ′: we assume that graph(m) |=σ ∃x.F ′ holds. This implies that

there exists an edge e ∈ Egraph(m) such that graph(m) |=σ∪{x7→e} F
′

holds (see Definition 7).
We distinguish the following two cases:

– there is no w ∈ free(F ) such that σ(w) = e. We define ρ′, σ′, P ′ as
follows: 4

• ρ′ : free(F ′) = free(F ) ∪ {x} → EG with ρ′ = ρ ∪ {x 7→ ϕ(e)}.
• σ′ : free(F ′) = free(F )∪{x} → Egraph(m) with σ′ = σ∪{x 7→ e}.
• P ′ is an equivalence on free(F ′) with P ′ = P ∪ {{x}}.

4 We assume that in a formula of the form ∃x.F ′ respectively ∀x.F ′ the variable x
occurs free in F ′. Otherwise we could just remove the quantifier.
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We show that ρ′, σ′ and P ′ satisfy the conditions stated in the propo-
sition. First, it obviously holds that ϕ ◦ σ′ = ρ′.
Now let y P ′ z for y, z ∈ free(F ′). It might either be the case that
y, z ∈ free(F ) which implies that y P z and therefore σ(y) = σ(z)
and σ′(y) = σ′(z). Or it might be the case that y = x = z and it
immediately follows that σ′(y) = σ′(z).
Now let σ′(y) = σ′(z). Because of the construction of σ and because
of the fact that no element of free(F ) maps to e, it follows that
either y, z ∈ free(F ) and σ(y) = σ(z) and therefore y P z and y P ′ z,
or y = x = z, σ′(y) = e = σ′(z) and therefore also y P ′ z.
From this it follows immediately that y P ′ z implies ρ′(y) = ρ′(z).
Since graph(m) |=σ′ F

′ holds we can infer from the induction hy-
pothesis that m |= M1[F ′, ρ′, P ′] is true.
Furthermore it holds that

m(ϕ(e))

= |{e′ ∈ Egraph(m) | ϕ(e′) = ϕ(e)}|
≥ |{e′ ∈ Egraph(m) | ϕ(e′) = ϕ(e) ∧ ∃y ∈ free(F ): (σ(y) = e′)}|+ 1

= |{k ∈ P | ϕ(σ(rep(k))) = ϕ(e)}|+ 1 = nP,ρ(ϕ(e)) + 1

This implies that m |= (#ϕ(e) ≥ nP,ρ(ϕ(e)) + 1).
Since ϕ(e) is an element of EG it follows from the considerations
above that at least one element of the second part of the disjunc-
tion in the formula M1[∃x.F ′, ρ, σ] is true. And this implies m |=
M1[∃x.F ′, ρ, σ].

– there exists a variable w ∈ free(F ) such that σ(w) = e. Let k be the
equivalence class of P that contains w. We define ρ′ and σ′ as above
and P ′ = P\{k} ∪ {k ∪ {x}}.
As before it holds that ϕ ◦ σ′ = ρ′.
Now let y P ′ z. If y, z ∈ free(F ), then it follows that y P z, that
furthermore σ(y) = σ(z) and therefore σ′(y) = σ′(z). If y = x and
z ∈ free(F ), then it holds that z is in the equivalence class of w
wrt. P and we can conclude that σ′(y) = ϕ(e) = σ′(w) = σ′(z). If
y = x = z, then σ′(y) = σ′(z) follows immediately.
We assume that σ′(y) = σ′(z). If y, z ∈ free(F ) then it follows that
σ(y) = σ(z) and therefore y P z, which implies y P ′ z. If, however,
y = x and z ∈ free(F ), then it follows that σ(z) = σ′(z) = ϕ(e) =
σ(w). This implies that z P w P ′ y and therefore y P ′ z. If y = x = z,
then it follows immediately that y P ′ z.
From the fact that ϕ◦σ′ = ρ′ and the considerations above, it follows
that y P ′ z implies ρ′(y) = ρ′(z).
Since graph(m) |=σ′ F

′ holds, it follows from the induction hypoth-
esis that m |= M1[F ′, ρ′, P ′] is true. Since furthermore ρ(rep(k)) =
ρ(w) = ϕ(σ(w)) = ϕ(e), it follows that at least one of the elements
of the first disjunction in the formula M1[∃x.F ′, ρ, P ] is true and
therefore m |= M1[∃x.F, ρ, P ] holds.
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⇐: Again we proceed by induction on the structure of F .
F = (x = y): we assume that m |= M1[x = y, ρ, P ]. Therefore we can con-

clude that xP y, since otherwise M1[x = y, ρ, P ] = false. This implies
that σ(x) = σ(y) and we can conclude that graph(m) |=σ x = y.

F = lab(x) = `): we assume that m |= M1[lab(x) = `, ρ, P ]. This implies
that labG(ρ(x)) = `, since otherwise M1[lab(x,A), ρ, P ] = false.
So it holds that labgraph(m)(σ(x)) = labG(ϕ(σ(x))) = labG(ρ(x)) = `
and we can infer that graph(m) |=σ lab(x) = `.

F = (s(x) = s(y)): since m |= M1[s(x) = s(y), ρ, P ], it holds that s(ρ(x)) =
s(ρ(y)), since otherwise M1[s(x) = s(y), ρ, P ] = false.
We can infer that ϕ(s(σ(x))) = ϕ(s(σ(y))) and since ϕ is injective
on nodes this implies that s(σ(x)) = s(σ(y)). Therefore graph(m) |=σ

s(x) = s(y).
F = ¬F ′: we assume that m |= M1[¬F ′, ρ, P ] = ¬M1[F ′, ρ, P ], which im-

plies that m 6|= M1[F ′, ρ, P ]. From the induction hypothesis it follows
that graph(m) 6|=σ F

′ and therefore also graph(m) |=σ ¬F ′.
F = F1 ∨ F2: we assume that m |= M1[F1 ∨ F2, ρ, P ] = M1[F1, ρ, P ] ∨

M1[F2, ρ, P ], which implies that m |= M1[F1, ρ, P ] or m |= M1[F2, ρ, P ].
We assume that the first condition holds, the other case can be handled
analogously.
From the induction hypothesis it follows that graph(m) |=σ F1 and there-
fore also graph(m) |=σ F1 ∨ F2.

F = ∃x.F ′: we assume that m |= M1[∃x.F ′, ρ, P ] which means that at least
one of the elements in the disjunction is true. We consider the following
two (overlapping) cases:
– it holds that m |= M1[F ′, ρ ∪ {x 7→ ρ(rep(k))}, P\{k} ∪ {k ∪ {x}}].

We set ρ′ = ρ ∪ {x 7→ ρ(rep(k))}, P ′ = P\{k} ∪ {k ∪ {x}} and
σ′ = σ ∪ {x 7→ σ(rep(k))}.
It is immediately clear that ϕ ◦ σ′ = ρ′.
Now let y P ′ z. It might either be the case that y, z ∈ free(F ) and
therefore y P z which implies σ(y) = σ(z) and also σ′(y) = σ′(z). Or
it holds that y = x and z ∈ free(F ) which means that z is an element
of the equivalence class k, which implies that σ′(y) = σ(rep(k)) =
σ(z) = σ′(z). If, however y = x = z, then it follows immediately that
σ′(y) = σ′(z).
Now let σ′(y) = σ′(z). If y, z ∈ free(F ), then it follows that σ(y) =
σ(z), which implies that y P z and also y P ′ z. If y = x and z ∈
free(F ), then it holds σ(z) = σ′(z) = σ′(y) = σ(rep(k)), which
implies that z is in the equivalence class k and therefore y P ′ z. If,
however, y = x = z, then it follows immediately that y P ′ z.
Induction hypothesis implies that graph(m) |=σ∪{x 7→σ(rep(k))} F ′,
which in turn implies that graph(m) |=σ ∃x.F .

– if holds that m |= M1[F, ρ∪{x 7→ e}, P ∪{{x}}]∧(#e ≥ nP,ρ(e)+1).
We set ρ′ = ρ ∪ {x 7→ e}, P ′ = P ∪ {{x}} and define σ′ as follows:
since m |= (#e ≥ nP,ρ(e) + 1), it holds that

|{e′ ∈ Egraph(m) | ϕ(e′) = e}|
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= m(e) > nP,ρ(e) = |{k ∈ P | ρ(rep(k)) = e}|
= |{ê ∈ Egraph(m) | ϕ(e′) = e ∧ ∃y ∈ free(F ).(σ(y) = ê)}|

This implies that there exists at least one edge e′ ∈ Egraph(m) such
that ϕ(e′) = e and for any y ∈ free(F ) it holds that σ(y) 6= e′.
We can now define σ′ = σ∪{x 7→ e′} and it is immediate to see that
ϕ ◦ σ′ = ρ′.
Now let y P ′ z. We first assume that y, z ∈ free(F ), which implies
that y P z and therefore σ(y) = σ(z) and also σ′(y) = σ′(z). If
y = x = z, then it follows immediately that σ′(y) = σ′(z).
We now assume that σ′(y) = σ′(z). If y, z ∈ free(F ), then it holds
that σ(y) = σ(z), which implies that y P z and therefore y P ′ z. If
y = x then also z = x, since otherwise σ′(y) = e′ 6= σ(z) which is a
contradiction. So if y = x = z it trivially holds that y P ′ z.
From the fact that ϕ◦σ′ = ρ′ and the considerations above it follows
immediately that y P ′ z implies ρ(y) = ρ(z).
Since m |= M1[F, ρ′, P ′] it follows from the induction hypothesis that
graph(m) |=σ∪{x 7→e′} F

′ which implies that graph(m) |=σ ∃x.F ′.

The cases F = F1∧F2 and F = ∀x.F ′ can be treated analogously to cases shown
above or can be shown by using deMorgan laws. ut

Proposition 5. Let G be a graph, F a logical formula, σ,Σ valuations for the
free variables in F and e ∈ EG be a fixed edge. If it holds that

(1) the edge e is not in the range of σ
(2) and |EGΣ(e)| > (qd1(F ) + |dom(σ)|) · 2qd2(F ) where

EGΣ(e) = {e′ ∈ EG | sG(e) = sG(e′), tG(e) = tG(e′), lG(e) = lG(e′),

∀X ∈ dom(Σ).(e ∈ Σ(X) ⇐⇒ e′ ∈ Σ(X))}

then
G |=σ,Σ F ⇐⇒ G\{e} |=σ,Σe

F

and Σe(X) = Σ(X)− {e}.

Proof. We go by structural induction on F .

F = (x = y): It holds that

G |=σ,Σ x = y ⇐⇒ σ(x) = σ(y) ⇐⇒ G\{e} |=σ,Σ\{e} x = y,

since e is not in the range of σ.
F = (s(x) = t(y)): It holds that

G |=σ,Σ s(x) = t(y) ⇐⇒ sG(σ(x)) = tG(σ(y))

⇐⇒ sG\{e}(σ(x)) = tG\{e}(σ(y)) ⇐⇒ G\{e} |=σ,Σ\{e} s(x) = t(y).
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F = lab(x ,A): It holds that

G |=σ,Σ lab(x,A) ⇐⇒ lG(σ(x)) = A ⇐⇒ lG\{e}(σ(x)) = A

⇐⇒ G\{e} |=σ,Σ\{e} lab(x,A).

F = x ∈ X: It holds that

G |=σ,Σ x ∈ X ⇐⇒ σ(x) ∈ Σ(X) ⇐⇒ σ(x) ∈ Σ(X)\{e}
⇐⇒ σ(x) ∈ (Σ\{e})(X) ⇐⇒ G\{e} |=σ,Σ\{e} x ∈ X.

F = ¬F1: It holds that

G |=σ,Σ ¬F1 ⇐⇒ G 6|=σ,Σ F1 ⇐⇒ G\{e} 6|=σ,Σ\{e} F1

⇐⇒ G\{e} |=σ,Σ\{e} ¬F1

with the induction hypothesis and with the fact that F and F1 have the
same quantifier depth.

F = F1 ∧ F2: It holds that

G |=σ,Σ F1 ∧ F2 ⇐⇒ G |=σ,Σ F1 and G |=σ,Σ F2 ⇐⇒

G\{e} |=σ,Σ\{e} F1 and G\{e} |=σ,Σ\{e} F2 ⇐⇒ G |=σ,Σ\{e} F1 ∧ F2

with induction hypothesis and the fact that qd1(F1) ≤ qd1(F ), qd1(F2) ≤
qd1(F ), qd2(F1) ≤ qd2(F ) and qd2(F2) ≤ qd2(F ).

F = ∀x.F1: G |=σ,Σ ∀x.F1 holds if and only if for all e′ ∈ EG we have that
G |=σ∪{x 7→e′},Σ F1 (Condition (A)).
Let us first observe that Condition (2) is satisfied for the formula F1: i.e. for
all e′ ∈ EG we have

|EGΣ(e)| > (qd1(F ) + |dom(σ)|) · 2qd2(F ) =

(qd1(F1) + |dom(σ ∪ {x 7→ e′})|) · 2qd2(F1).

We have to show that (A) is equivalent to G\{e} |=σ∪{x 7→e′},Σ\{e} F1 for all
e′ ∈ EG\{e} (Condition (B)).

– We first assume that (A) holds and we show that G\{e} |=σ∪{x 7→ē},Σ\{e}
F1 for a fixed ē ∈ EG\{e}.
From (A) it follows that G |=σ∪{x 7→ē},Σ F1 is satisfied and since e is not
in the range of σ and Condition (2) is also satisfied, it follows from the
induction hypothesis that G\{e} |=σ∪{x7→ē},Σ\{e} F1.

– We now assume that (B) holds and we show that G |=σ∪{x 7→ē},Σ F1 for
a fixed ē ∈ EG.
We distinguish the following two cases:
• If ē 6= e, Condition (B) implies that G\{e} |=σ∪{x 7→ē},Σ\{e} F1. Then

it follows with the induction hypothesis that G |=σ∪{x 7→ē},Σ F1.
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• Now let ē = e and we assume that G 6|=σ∪{x 7→ē},Σ F1. Since

|EGΣ(e)| > (qd1(F1) + |dom(σ ∪ {x 7→ e})|) · 2qd2(F1)

and therefore |EGΣ(e)| > |dom(σ ∪ {x 7→ ē})|, it follows that there is
an edge ê ∈ EGΣ(e), which is not in the range of σ ∪ {x 7→ e}, i.e. ê
is not in the range of σ and e 6= ê.
Let π be a permutation on EG that exchanges e and ê and is the
identity otherwise. Lemma 1 implies that G 6|=π◦(σ∪{x7→e}),π◦Σ F1.
And since π ◦ (σ ∪ {x 7→ e}) = σ ∪ {x 7→ ê} and π ◦ Σ = Σ5, this
implies G 6|=σ∪{x 7→ê},Σ F1.
Since now e is not in the range of σ ∪ {x 7→ ê} and Condition (2) is
also satisfied, it follows with the induction hypothesis that

G\{e} 6|=σ∪{x7→ê},Σ\{e} F1,

which is a contradiction to Condition (B).

F = ∀X.F1: G |=σ,Σ ∀X.F1 holds if and only if for all E ⊆ EG we have that
G |=σ,Σ∪{X 7→E} F1 (Condition (A)).
We have to show that (A) is equivalent to G\{e} |=σ,Σ\{e}∪{X 7→E} F1 for all
E ⊆ EG\{e} (Condition (B)).

– First assume that (A) holds and show G\{e} |=σ,Σ\{e}∪{X 7→Ē} F1 for a

fixed Ē ⊆ EG\{e}.
We distinguish the following two cases:
• It holds that |EG

Σ∪{X 7→Ē}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1).

We know that G |=σ,Σ∪{X 7→Ē} F1 and we can apply the induction
hypothesis and obtain G\{e} |=σ,Σ\{e}∪{X 7→Ē\{e}} F1. And since

e 6∈ Ē, it follows that G\{e} |=σ,Σ\{e}∪{X 7→Ē} F1.

• It holds that |EG
Σ∪{X 7→Ē}(e)| ≤ (qd1(F1)+|dom(σ)|)·2qd2(F1). Notice

the following:

EGΣ(e) > (qd1(F ) + |dom(σ)|) · 2qd2(F ) =

(qd1(F1) + |dom(σ)|) · 2qd2(F1) · 2,

so we are given that

|EGΣ(e)\EGΣ∪{X 7→Ē}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1).

Since e 6∈ Ē, it holds that

EGΣ∪{X 7→Ē∪{e}}(e) = [EGΣ(e)\EGΣ∪{X 7→Ē}(e)] ∪ {e}.

Hence

|EGΣ∪{X 7→Ē∪{e}}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1).

5 sloppy for {π(d) | d ∈ Σ(X)} = Σ(X). This is true because ê was chosen from the
set EGΣ(e).
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Since Condition (A) implies that G |=σ,Σ∪{X 7→Ē∪{e}} F1 and Condi-
tion (2) is satisfied, the induction hypothesis implies

G\{e} |=σ,Σ\{e}∪{X 7→Ē} F1.

– We now assume that (B) holds and we show that G |=σ,Σ∪{X 7→Ē} F1 for

a fixed Ē ⊆ EG.
We distinguish the following two cases:
• It holds that |EG

Σ∪{X 7→Ē}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1).

We know that G\{e} |=σ,Σ\{e}∪{X 7→Ē\{e}} F1 and we can apply the
induction hypothesis and obtain G |=σ,Σ∪{X 7→Ē} F1.

• It holds that |EG
Σ∪{X 7→Ē}(e)| ≤ (qd1(F1) + |dom(σ)|) · 2qd2(F1) and

we assume that G 6|=σ,Σ∪{X 7→Ē} F1.
Since

EGΣ(e) > (qd1(F ) + |dom(σ)|) · 2qd2(F )

= (qd1(F1) + |dom(σ)|) · 2qd2(F1) · 2,

it holds that

|EGΣ(e)\EGΣ∪{X 7→Ē}(e)| > (qd1(F1)+ |dom(σ)|) ·2qd2(F1) > |dom(σ)|.

Therefore, there is an edge ê ∈ EGΣ(e)\EG
Σ∪{X 7→Ē}(e), which is not

in the range of σ. We pick a permutation π which exchanges e and
ê and is the identity otherwise.
Since π ◦ σ = σ and π ◦ (Σ ∪ {X 7→ Ē}) = Σ ∪ {X 7→ π(Ē)}, it
follows from Lemma 1 that G 6|=σ,Σ∪{X 7→π(Ē)} F1.
Furthermore

EGΣ∪{X 7→π(Ē)}(e) = [EGΣ(e)\EGΣ∪{X 7→Ē}(e)]\{ê} ∪ {e}

and therefore

|EGΣ∪{X 7→π(Ē)}(e)| > (qd1(F1) + |dom(σ)|) · 2qd2(F1),

so Condition (2) is satisfied and we can apply the induction hypoth-
esis. It follows that

G\{e} 6|=σ,Σ\{e}∪{X 7→π(Ē)\{e}} F1,

which is a contradiction to Condition (B).

ut
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