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Abstract

Introduced at the end of the nineties, the Rewriting Calculus (ρ-calculus, for short) is a simple calculus
that fully integrates term-rewriting and λ-calculus. The rewrite rules, acting as elaborated abstractions,
their application and the obtained structured results are first class objects of the calculus. The evaluation
mechanism, generalizing beta-reduction, strongly relies on term matching in various theories.
In this paper we propose an extension of the ρ-calculus, handling graph like structures rather than simple
terms. The transformations are performed by explicit application of rewrite rules as first class entities.
The possibility of expressing sharing and cycles allows one to represent and compute over regular infinite
entities.
The calculus over terms is naturally generalized by using unification constraints in addition to the standard
ρ-calculus matching constraints. This therefore provides us with the basics for a natural extension of an
explicit substitution calculus to term graphs. Several examples illustrating the introduced concepts are
given.
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Introduction

Main interests for term rewriting steam from functional and rewrite based languages

as well as from theorem proving. In particular, we can describe the behaviour of a

functional or rewrite based program by analyzing some properties of the associated

term rewriting system. In this framework, terms are often seen as trees but in

order to improve the efficiency of the implementation of such languages, it is of

fundamental interest to think and implement terms as graphs [BvEG+87]. In this

case, the possibility of sharing subterms allows to save space (by using multiple

pointers to the same subterm instead of duplicating the subterm) and to save time

(a redex appearing in a shared subterm will be reduced at most once and equality

tests can be done in constant time when the sharing is maximal). We can take

as example the definition of multiplication in a rewrite system R = {x ∗ 0 →
0, x ∗ s(y)→ (x ∗ y) + x}. If we represent it using graphs, we will write the second

rule by duplicating the reference to x instead of duplicating x itself (see Figure 1).
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Fig. 1. Examples of term graphs

Graph rewriting is a useful technique for the optimization of functional and

declarative languages implementation [PJ87]. Moreover, the possibility to define

cycles leads to an increased expressive power that allows one to represent easily

regular infinite data structures. For example, the circular list ones = 1 : ones,

where “:” denotes the concatenation operator, can be represented by the cyclic

graph of Figure 1. Cyclic term graph rewriting has been widely studied, both from

an operational [BvEG+87,AK96] and from a categorical/logical point of view [CG99]

(see [SPvE93] for a survey on term graph rewriting).

In this context, an abstract model generalizing λ-calculus and adding cycles and

sharing features has been proposed by Z. M. Ariola and J. W. Klop [AK97]. Their

approach consists of an equational framework that models λ-calculus extended with

explicit recursion. A λ-graph is treated as a system of recursion equations involving

λ-terms and rewriting is described as a sequence of equational transformations. This

work allows for the combination of graphical structures with the higher-order capa-

bilities of λ-calculus. A last important ingredient is still missing: pattern matching.

The possibility of discriminating using pattern matching could be encoded, in par-

ticular in λ-calculus, but it is much more attractive to directly discriminate and to

use indeed rewriting. Programs become quite compact and the encoding of data

type structures is no longer necessary.

The rewriting calculus (ρ-calculus, for short) has been introduced in the late

nineties as a natural generalization of term rewriting and of the λ-calculus [CK01].

It has been shown to be a very expressive framework e.g. to express object cal-

culi [CKL01] and it has been equipped with powerful type systems [BCKL03].

One essential component of the ρ-calculus are the matching constraints that are

generated by the generalization of the β-reduction called ρ-reduction. By making

this matching step explicit and the matching constraints first class objects of the

calculus, we can allow for an explicit handling of constraints instead of substitu-

tions [CFK04].

The first contribution of this paper consists of a new system, called the ρg-calculus,

that generalizes cyclic λ-calculus as the standard ρ-calculus generalizes the classical

λ-calculus. The ρg-calculus deals with cyclic terms with bound variables and can

express vertical sharing as well as horizontal sharing by means of a list of recur-

sion equations. In the ρg-calculus computations related to the matching are made

explicit and performed at the object-level.

We then show that the ρg-calculus can simulate the ordinary ρ-calculus. For do-

ing this, we prove that matching in the ρg-calculus behaves well w.r.t. the matching

algorithm of the ρ-calculus and that for any ρ-reduction there exists a corresponding

reduction in the ρg-calculus. We also show that the ρg-calculus is a natural exten-
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(ρ) (T1 _ T2)T3 7→ρ [T1 � T3]T2

(σ) [T1 � T3]T2 7→σ σ(T1�T3)(T2)

(δ) (T1; T2) T3 7→δ T1 T3; T2 T3

Fig. 2. Small-step semantics of ρ-calculus

sion of the cyclic λ-calculus by proving that cyclic λ-terms can be translated into

the ρg-calculus and that cyclic λ-reductions can be simulated in our system. We

therefore get a common generalization of the cyclic λ-calculus and the ρ-calculus,

providing a framework where matching, graphical structures and higher-order ca-

pabilities are primitive.

The paper is organized as follows. In the first section we briefly review the

two systems which inspired our new calculus: the standard ρ-calculus [CK01] and

the cyclic λ-calculus [AK97]. Section 2 and Section 3 describe respectively the

syntax and the small-step semantics of the ρg-calculus giving some examples of

terms and term reductions in the system. In Section 4 we show that the ρg-calculus

is a generalization of the ρ-calculus and we show how cyclic λ-reductions can be

simulated in ρg-calculus. We conclude in Section 5 by presenting some perspectives

of future work.

1 Rewriting calculus and cyclic lambda calculus

We briefly present here the two formalisms that inspired the calculus introduced in

this paper.

1.1 The rewriting calculus

The ρ-calculus was introduced to make all the basic ingredients of rewriting explicit

objects, in particular the notions of rule abstraction (_), rule application and set

of results (;). In the ρ-calculus, the usual λ-abstraction λx.t is replaced by a rule

abstraction T1 _ T2, where T1 and T2 are two arbitrary terms, and the free variables

of T1 are bound in T2.

The set of ρ-terms is defined as follows:

T ::= X | K | T _ T | [T � T ]T | T T | T ; T

The symbols T,U, L,R, . . . range over the set T of terms, the symbols x, y, z, . . .

range over the set X of variables, the symbols a, b, c, . . . , f, g, h range over a set K
of constants.

The small-step reduction semantics is defined by the evaluation rules presented

in Figure 2. The application of a rewrite rule (abstraction) to a term evaluates via

rule (ρ) to the application of the corresponding constraint to the right-hand side of

the rewrite rule. Such a construction is called a delayed matching constraint. The

body of the constrained term will be evaluated or delayed according to the result

of the corresponding matching problem. If a solution exists, the delayed matching

3



Bertolissi, Baldan, Cirstea, Kirchner

constraint evaluates to σ(T2), where σ is the solution of the matching between T1

and T3. The matching power of the ρ-calculus can be regulated using arbitrary

theories. Here we consider the ρ-calculus with the empty theory (i.e. syntactic

matching) that is decidable and has a unique solution.

Starting from these top-level rules we define, as usually, the context closure

denoted 7→ρσδ. The many-step evaluation 7→→ρσδ is defined as the reflexive-transitive

closure of 7→ρσδ.

1.2 The cyclic lambda calculus

The cyclic λ-calculus introduced by Ariola and Klop consists of an equational frame-

work for term graph rewriting with cycles. It extends the λ-calculus by adding a

letrec construct, in a way that the new terms, called λ-graphs, are represented as

systems of (possibly nested) recursion equations on standard λ-terms. If the system

is used without restrictions on the rules, the confluence is lost. The authors restore

it by controlling the operations on the recursion equations. The resulting calculus,

called λφ [AK97], is powerful enough to incorporate the classical λ-calculus [Bar84]

and also the λµ-calculus [Par92] and the λσ-calculus with names [ACCL91] ex-

tended with horizontal and vertical sharing respectively. The syntax of λφ is the

following:

t ::= x | f(t1, . . . tn) | t0 t1 | λx.t | 〈t0 | x1 = t1, . . . , xn = tn〉

The set of λφ-terms is composed of the ordinary λ-terms (i.e. variables, functions

of fixed arity, applications, abstractions) and of new terms built using the letrec

construct: 〈t0 | x1 = t1, . . . , xn = tn〉, where we suppose the recursion variables

xi, i = 1, . . . , n, all distinct. We denote by E an unordered sequence of equations

x1 = t1, . . . , xn = tn and by ε the empty sequence. Terms are denoted by the

symbols t, s, . . ., variables are denoted by the symbols x, y, z, . . . and constants by

the symbols a, b, c, . . . , f, g, h. A context Ctx{ } is a term with a single hole � in

the place of a subterm. Filling the context Ctx{�} with a term t yields the term

Ctx{t}. Variables are bound either by the lambda abstraction, or by a recursion

equation. We denote by ≤ the least pre-order on recursion variables such that x ≥ y
if x = Ctx{y}, for some context Ctx{ }. We write x > y if x ≥ y and x 6≡ y, where

≡ is the equivalence induced by the pre-order, i.e. x ≡ y if x ≥ y ≥ x (variables

x and y occur in a cycle). We write E ⊥ (E′, t), E is orthogonal to a sequence of

equations E′ and a term t, if the recursion bound variables of E do not intersect

the set of free variables of E′ and t. The notation x =◦ x is an abbreviation for the

sequence of recursion equations x = x1, . . . , xn = x.

The reduction rules of the basic λφ0-calculus are given in Figure 3. Some ex-

tensions of this basic set of rules can be considered [AK97] by adding either box

distribution rules (λφ1) or box merging and elimination rules (λφ2). In the following

we will concentrate our attention on the basic system of Figure 3. In the β-rule,

the variable x bound by λ becomes bound by a recursion equation after the reduc-

tion. The two substitution rules are used to make a copy of a graph associated to a

recursion variable. The restriction on the order of recursion variables is introduced

to ensure confluence in the case of cyclic configurations of lambda redexes. The
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(β) (λx.t1) t2 →β 〈t1 | x = t2〉
(external sub) 〈Ctx{y} | y = t, E〉 →es 〈Ctx{t} | y = t, E〉
(acyclic sub) 〈t1 | y = Ctx{x}, x = t2, E〉 →ac 〈t1 | y = Ctx{t2}, x = t2, E〉

if y > x

(black hole) 〈Ctx{x} | x =◦ x,E〉 →• 〈Ctx{•} | x =◦ x,E〉
〈t | y = Ctx{x}, x =◦ x,E〉 →• 〈t | y = Ctx{•}, x =◦ x,E〉

if y > x

(garbage collect) 〈t | E,E′〉 →gc 〈t | E〉
if E′ 6= ε and E′ ⊥ (E, t)

〈t | ε〉 →gc t

Fig. 3. Evaluation rules of the λφ0-calculus

proviso y > x in the rules acyclic sub and black hole is necessary in order to ensure

the confluence of the system. The condition E′ 6= ε in the rule garbage collect rule

avoids trivial non-terminating reductions.

We denote by 7→λφ the rewrite relation induced by the set of rules of Figure 3

and by 7→→λφ its reflexive and transitive closure.

2 The syntax of ρg-calculus

The syntax of ρg-calculus presented in Figure 4 extends the syntax of the standard

ρ-calculus and of the ρx-calculus [CFK04], i.e. the ρ-calculus with explicit matching

and substitution application. The term G1 _ G2 represents a rewrite rule (i.e.

an abstraction), where the term G1 is called the pattern. There are two differ-

ent application operators: the functional application operator is denoted simply by

concatenation (and by @ in graphical presentations), and the constraint application

operator is denoted by the “ [ ]” operator. Terms can be grouped together into

structures built using the operator “ ; ” and depending on the theory behind this

operator we can obtain, for example, a multi-set (for an associative-commutative

operator) or a set (for an associative-commutative-idempotent operator). This oper-

ator is useful for representing the (non-deterministic) application of a set of rewrite

rules and consequently, the non-deterministic results. Starting from this point of

view, term rewriting systems (and underlying strategies) can be encoded in the

ρ-calculus [CLW03] and we conjecture that this encoding can be extended to term

graph rewriting systems in ρg-calculus.

As the ρx-calculus, the ρg-calculus deals explicitly with matching constraints

of the form G � G but it introduces also a new kind of constraint, the recursion

equations. A recursion equation is a constraint of the form X = G and can be

seen as a delayed substitution, or as an environment associated to a term. In the

ρg-calculus constraints are conjunctions (built using the operator “ , ”) of match

equations and recursion equations. The empty constraint is denoted by ε. The

operator “ , ” is supposed to be associative, commutative and idempotent, with ε

as neutral element.

We assume that the application operator associates to the left, while the other

operators associate to the right. To simplify the syntax, operators have different

priorities. Here are the operators ordered from higher to lower priority: application

“ ”, “ _ ”, “ ; ”, “ [ ]” , “ � ”, “ = ” and “ , ”.

The symbols G,H, . . . range over the set G of terms, x, y, z, . . . range over the set
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Terms

G ::= X (Variables)

| K (Constants)

| G _ G (Abstraction)

| G G (Functional application)

| G;G (Structure)

| G [C] (Constraint application)

Constraints

C ::= ε (Empty constraint)

| X = G (Recursion equation)

| G � G (Match equation)

| C,C (Conjunction of constraints)

Fig. 4. Syntax of the ρg-calculus

X of variables (X ⊆ G), a, b, c, . . . , f, g, h range over a set K of constants (K ⊆ G).

The symbols E,F, . . . range over the set C of constraints. We call algebraic the

terms of the form (((f G1) G2) . . .) Gn with f ∈ K and we usually denote them by

f(G1, G2, . . . , Gn).

We denote by • (black hole) a constant, already introduced by Ariola and

Klop [AK96] using the equational approach and also by Corradini [Cor93] using

the categorical approach, to give a name to “undefined” terms that correspond to

the expression x [x = x] (self-loop). The notation x =◦ x is again an abbreviation

for the sequence x = x1, . . . , xn = x.

We use the symbol Ctx{�} for a context with exactly one hole �. We say that

a ρg-term is acyclic if it contains no recursive sequences of constraints of the form

Ctx0{x0} �� Ctx1{x1},Ctx2{x1} �� Ctx3{x2}, . . . ,Ctxm{xn} �� Ctxm+1{x0} , with

n,m ∈ N and ��∈ {=,�}. This kind of sequence is called a cycle.

The notions of free and bound variables of ρg-terms take into account the three

binders of the calculus: the abstraction, the recursion and the match. In particular,

to ease the definition, we also introduce the domain of a constraint C, denoted

DV(C), as the set of variables (potentially) defined by the recursion and matching

equations it contains. The set DV(C) includes, for any recursion equation x = G in

C, the variable x and for any match G1 � G2 in C, the set of free variables of G1.

Definition 2.1 [Free, bound, and defined variables] Given a ρg-term G, its free
variables, denoted FV(G), and its bound variables, denoted BVar(G), are recur-
sively defined below:

G BV(G) FV(G)

x ∅ {x}
k ∅ ∅
G1 G2 BV(G1) ∪ BV(G2) FV(G1) ∪ FV(G2)

G1;G2 BV(G1) ∪ BV(G2) FV(G1) ∪ FV(G2)

G1 _ G2 FV(G1) ∪ BV(G1) ∪ BV(G2) FV(G2) \ FV(G1)

G0 [C] BV(G0) ∪ BV(C) (FV(G0) ∪ FV(C)) \ DV(C)

For a given constraint C, the free variables, denoted FV(C), the bound variables,
denoted BVar(C), and the defined variables, denoted DV(C), are defined as follows:

C BV(C) FV(C) DV(C)

ε ∅ ∅ ∅
x = G0 x ∪ BV(G0) FV(G0) {x}
G1 � G2 FV(G1) ∪ BV(G1) ∪ BV(G2) FV(G2) FV(G1)

C1, C2 BV(C1) ∪ BV(C2) FV(C1) ∪ FV(C2) DV(C1) ∪ DV(C2)

The notion of α-conversion used in the λ-calculus can be naturally extended to

deal with the terms of the ρg-calculus.
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Fig. 5. Some ρg-terms

As in the cyclic λ-calculus we define an order on recursion variables, i.e., variables

bound by the recursion and match equations: we denote by ≤ the least pre-order

on recursion variables such that x ≥ y if x = Ctx{y}, for some context Ctx{ }. The

equivalence induced by the pre-order is denoted ≡ and we say that x and y are

cyclically equivalent (x ≡ y) if x ≥ y ≥ x (they lye on a common cycle). We write

x > y if x ≥ y and x 6≡ y. As we will see later on, this order gives us the possibility

of allowing substitution only upwards.

In order to support the intuition, in what follows we sometimes give a graph-

ical representation of ρg-terms not including matching constraints. This corre-

spondence is used only informally in the paper, but it could be made precise,

e.g., along the lines of the work in [Blo01] for cyclic term graphs with binders.

Roughly, any term without constraints is represented as an acyclic graph in the

obvious way, a constraint G [x1 = G1, . . . , xn = Gn] is read as a letrec construct

letrec x1 = G1, . . . , xn = Gn in G and represented through a cyclic structure.

Here the correspondence between a variable in the right-hand side of a rule and

its binding occurrence in the pattern is represented by keeping the variable names

(instead of using backpointers). This correspondence does not extend straightfor-

wardly to general ρg-terms, possibly including matching constraints, for which a

suitable graphical representation is still under investigation.

Example 2.2 [Some ρg-terms] For a graphical representation of the terms see Fig-

ure 5.

(i) In the rule (2 ∗ f(x)) _ ((y + y) [y = f(x)]) the sharing in the right-hand side

avoids the copying of the object instantiating f(x), when the rule is applied to

a ρg-term.

(ii) The ρg-term cons(head(x), x) [x = cons(0, x)] represents an infinite list of ze-

ros. Notice that the recursion variable x binds the occurrence of x in the right-

hand side cons(0, x) of the constraint and those in the term cons(head(x), x)

to which the constraint is applied.

(iii) The ρg-term f(x, y) [x = g(y), y = g(x)] is an example of twisted sharing that

can be expressed using the letrec construct. We have that x ≥ y and y ≥ x,

hence x ≡ y.

As usually, we work modulo α-conversion (such that different bound variables

have different names) and we use Barendregt’s “hygiene-convention”, i.e. free and

bound variables have different names [Bar84]. We point out that the set of bound
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variables in the subterm G of a constraint application G [E] is the domain of E

plus the bound variables of G. For example, the term x [x� a, x� b] is equivalent

modulo α-conversion to the term y [y � a, y � b]. Note also that the visibility

of a recursion variable is limited to the ρg-term appearing in the list of constraints

where the recursion variable is defined and the ρg-term to which this list is applied.

For example, in the term f(x, y) [x = g(y) [y = a]] the variable y defined in the

recursion equation bounds its occurrence in g(y) but not in f(x, y). In fact, the

term does not satisfy the naming conditions since y occurs both free and bound.

This naming conventions allows us to disregard some terms (see the examples

below) and thus to apply replacements (like for the evaluation rules in Figure 6)

quite straightforwardly, since no variable capture is possible.

Besides the naming conventions, some structural properties are required for a

ρg-term to be well-formed.

Definition 2.3 [Well-formed terms] A ρg-term is well-formed if

• each variable occurs at most once as left-hand side of a recursion equation;

• left-hand sides of abstractions and match equations are acyclic, and all their

subterms not containing constraints are algebraic.

For instance, the ρg-term (f(y) [y = g(y)] _ a) is not well-formed since the

abstraction has a cyclic left-hand side. All the ρg-terms considered in the sequel

will be implicitly well-formed, unless stated otherwise.

Example 2.4 [Free and bound variables should not have the same name]

The reduction of the ρg-term z [z = x _ y, y = x+x] (by instantiating the variable

y) can lead to a variable capture. However this term does not respect our naming

conventions: the variable capture is no longer possible if we consider the legal ρg-

term z [z = x1 _ y, y = x + x] obtained after α-conversion. In order to have the

occurrences of the variable x appearing in the second constraint bounded by the

arrow, we should use a nested constraint as in the ρg-term z [z = x _ (y [y = x+x])].

Example 2.5 [Different bound variables should have different names]

Intuitively, by the notions of free and bound variable, in a term there cannot be

any sharing between the left-hand side of rewrite rules and the rest of a ρg-term. In

other words, the left-hand side of a rewrite rule is self-contained. Sharing inside the

left-hand side is allowed. No restrictions are imposed on the right-hand side. For

example, in the ρg-term f(y, y _ g(y)) [y = x] the first occurrence of y is bound by

the recursion variable, while the scope of the y in the abstraction _ is limited to

the right-hand side of the abstraction itself. The ρg-term should be in fact written

(by α-conversion) as f(y, z _ g(z)) [y = x].

3 The small-step semantics of ρg-calculus

In the classical ρ-calculus, when reducing the application of a constraint to a term,

i.e., a delayed matching constraint, the corresponding matching problem is solved

and resulting substitutions are applied at the meta-level of the calculus. In the

ρx-calculus, this reduction is decomposed into two steps, one computing substitu-

tions and the other one describing the application of these substitutions. Matching
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Basic rules:
(ρ) (G1 _ G2) G3 →ρ G2 [G1 � G3]

(G1 _ G2) [E] G3 →ρ G2 [G1 � G3, E]

(δ) (G1;G2) G3 →δ G1 G3;G2 G3

(G1;G2) [E] G3 →δ (G1 G3;G2 G3) [E]

Matching rules:
(propagate) G1 � (G2 [E2]) →p G1 � G2, E2

(decompose) K(G1, . . . , Gn)� K(G′1, . . . , G
′
n), E →dk G1 � G′1, . . . , Gn � G′n, E

with n ≥ 0

(solved) x� G,E →s x = G,E if x 6∈ DV(E)

Graph rules:
(external sub) Ctx{y} [y = G,E] →es Ctx{G} [y = G,E]

(acyclic sub) G [G0 �� Ctx{y}, y = G1, E] →ac G [G0 �� Ctx{G1}, y = G1, E]

if x > y, ∀x ∈ FV(G0)

where��∈ {=,�}
(garbage) G [E, x = G′] →gc G [E]

if x 6∈ FV(E) ∪ FV(G)

G [ε] →gc G

(black hole) Ctx{x} [x =◦ x,E] →bh Ctx{•} [x =◦ x,E]

G [y = Ctx{x}, x =◦ x,E] →bh G [y = Ctx{•}, x =◦ x,E]

if y > x

Fig. 6. Evaluation rules

computations leading from constraints to substitutions and the application of the

substitutions are clearly separated and made explicit. In the ρg-calculus, the com-

putation of substitutions solving a matching constraint is performed explicitly and,

if the computation is successful, the result is a recursion equation added to the list of

constraints of the term. This means that the substitution is not applied immediately

to the term but kept in the environment for a possible delayed application.

The evaluation rules of the ρg-calculus presented in Figure 6 can be split into

three categories:

• Rules describing the application of abstractions and structures on ρ-terms.

• Rules describing the solving of match equations.

• Rules handling the replacements and the garbage collection.

The first two rules ρ and δ come from the ρ-calculus. The rule δ deals with the

distributivity of the application on the structures built with the “;” operator while

the rule ρ triggers the application of a rewrite rule to a ρg-term by applying the

appropriate constraint to the right-hand side of the rule. For each of these rules

an additional one taking into account the existence of possible constraints is added.

Without these rules the application of abstraction ρg-terms like x [x = f(y) _
x f(y)] f(a) (that can encode a recursive application as in Example 3.4) cannot

be reduced. Alternatively, appropriate distributivity rules could be introduced but

this approach is not considered in this paper.

The Matching rules and in particular the rule decompose are strongly related

to the theory modulo which we want to compute the solutions of the matching. In

this first version of the ρg-calculus, we have chosen to present the ρg-calculus with

an empty theory that is known to be decidable and unitary, but extensions to more

complicated theories are possible. Due to the restrictions imposed on the left-hand

sides of rewrite rules, we only need to decompose algebraic terms.
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The goal of this set of rules is to produce a constraint of the form x1 =

G1, . . . , xn = Gn starting from a matching equation. This is possible when the

left and right-hand sides of the matching equation are algebraic but some replace-

ments might be needed (as defined by the Graph rules) as soon as the terms

contain some sharing.

A matching equation containing constraints is reduced (by the propagate rule)

to a constraint containing the same matching equation without the constraints,

which are propagated to the top level. Since left-hand sides of matching equations

are acyclic, there is no need for an evaluation rule propagating the constraints from

the left-hand side of the matching equation; the possible constraints on this side of

the matching can be pushed down in the term using the substitution and garbage

collection rules. The algebraic terms are decomposed and the trivial equations are

eliminated. A match constraint x � G1 is transformed in a recursion equation

x = G1 if there exist no other constraints of the form x = G2 or x � G2 in the

list of constraints. For example, the constraint x � a, x � b cannot be reduced

showing that the original (non-linear) matching problem has no solution.

The Graph rules are inherited from the cyclic λ-calculus of Ariola and Klop.

The first two rules make a copy of a ρg-term associated to a recursion variable into a

term that is inside the scope of the corresponding constraint. This is important when

a redex should be made explicit (e.g. in x a [x = a _ b]) or when a matching equa-

tion should be solved (e.g. in a [a� x, x = a]). As already mentioned, the order on

the variables of ρg-terms allows one to make the copies only upwards. Without this

condition confluence is broken: the ρg-term z1 [z1 = x _ z2 s(x), z2 = y _ z1 s(y)]

reduces either to z1 [z1 = x _ z1 s(s(x))] or to z1 [z1 = x _ z2 s(x), z2 = y _ z2 s(s(y))]

(see [AK97] for the complete counterexample). As mentioned in the conclusions,

we conjecture that, as it happens for the cyclic λ-calculus, with some restrictions

on the shape of the rewrite rules, this is one of the key ingredients for confluence

also for the ρg-calculus.

The garbage rules get rid of recursion equations that represent non connected

parts of the ρg-term. Matching constraints are not eliminated, keeping thus the

trace of matching failures during a non successful reduction. The black hole rules

replace the undefined ρg-terms with the constant •.
As usually, we define the one step relations 7→M and 7→ρg and the many steps

relations 7→→M and 7→→ρg w.r.t. the subset of Matching rules and the whole set of

rules of Figure 6 respectively.

It would be interesting to study suitable strategies that delay the application of

the substitution rules external sub and acyclic sub to keep the sharing information

as long as possible. An idea, followed in the next two examples, consists of applying

the substitution rules only if needed for generating new redexes for basic or match-

ing rules. In addition, substitutions rules are used to “remove” trivial recursion

equations of the kind x = y.

Example 3.1 [A simple reduction with sharing] For a graphical representation see

Figure 7(a).

10
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Fig. 7. Examples of reductions

(f(x, x) [x = a] _ a) (f(y, y) [y = a])

7→ρ a [f(x, x) [x = a]� f(y, y) [y = a]]

7→→es a [f(a, a) [x = a]� f(y, y) [y = a]]

= a [f(a, a) [x = a, ε]� f(y, y) [y = a]]

7→gc a [f(a, a) [ε]� f(y, y) [y = a]]

7→gc a [f(a, a)� f(y, y) [y = a]]

7→p a [f(a, a)� f(y, y), y = a]

7→dk a [a� y, y = a] (by idempotency)

7→ac a [a� a, y = a]

7→dk a [y = a]

= a [y = a, ε]

7→gc a [ε]

7→gc a

Example 3.2 [Multiplication] If we use an infix notation for the constant “∗” the

following ρg-term corresponds to the application of the rewrite rule R = x ∗ s(y) _
(x ∗ y + x) to the term 1 ∗ s(1) where the constant 1 is shared. The result is shown

graphically in Figure 7(b).

(x ∗ s(y) _ (x ∗ y + x)) (z ∗ s(z) [z = 1])

7→ρ x ∗ y + x [x ∗ s(y)� (z ∗ s(z) [z = 1])]

7→p x ∗ y + x [x ∗ s(y)� z ∗ s(z), z = 1]

7→→dk x ∗ y + x [x� z, y � z, z = 1]

7→→s x ∗ y + x [x = z, y = z, z = 1]

7→→es (z ∗ z + z) [x = z, y = z, z = 1]

7→→gc (z ∗ z + z) [z = 1]

Example 3.3 [Non-linearity] The matching involving non-linear patterns can lead

11
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to a normal form that is either a constraint consisting only of recursion equations

(which represents a successful matching) or a constraint that contains some match-

ing equations (representing a matching failure).

f(y, y)� f(a, a)

7→dk y � a (by idempotency)

7→s y = a

f(y, y)� f(a, b)

7→dk y � a, y � b

Example 3.4 Consider the term rewrite rule RY = Y x→ x (Y x) which expresses

the behaviour of the fixed point combinator Y of the λ-calculus. Given the a term

t, we have the infinite rewrite sequence

Y t →RY t (Y t) →RY t (t (Y t)) →RY . . .

which, in a sense which can be formalized (see [KKSd91,Cor93]), converges to the

infinite term t (t (t (. . .))).

We can represent the Y -combinator in the ρg-calculus as the following term:

Y 4=x0 [x0 = x _ x (x0 x)].

If we denote R = x _ x (x0 x), we have the following reduction:

Y G

7→es (x _ x (x0 x)) [x0 = R] G

7→ρ x (x0 x) [x� G, x0 = R]

7→s x (x0 x) [x = G, x0 = R]

7→→es G (x0 G) [x = G, x0 = R]

7→gc G (x0 G) [x0 = R]

7→→ρg G(G . . . (x0 G)) [x0 = R]

7→→ρg . . .

Continuing the reduction, this will “converge” to the term of Figure 8(a).

We can have a more efficient implementation of the same term reduction using

a method introduced by Turner [Tur79] that models the rule RY by means of the

cyclic term depicted in Figure 8(b). This gives in the ρg-calculus the ρg-term

YT
4
=x _ (z [z = x z])

The reduction in this case is the following:

12
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Fig. 8. Example of reductions

YT G

7→ρ z [z = x z] [x� G]

7→s z [z = x z] [x = G]

7→es z [z = G z] [x = G]

7→→gc z [z = G z]

The resulting ρg-term is depicted in Figure 8(c). If we “unravel”, in the intuitive

sense, this cyclic ρg-term we obtain the infinite term shown in Figure 8(a).

This reduction captures the fact that a finite sequence of rewritings on cyclic

ρg-terms can correspond to an infinite term reduction sequence.

4 ρg-calculus versus ρ-calculus and cyclic λ-calculus

The set of terms of the ρ-calculus is a strict subset of the set of terms of the

ρg-calculus (modulo some syntactic conventions). The main difference for ρ-terms

is the restriction of the list of constraints to a single constraint necessarily of the

form � (delayed matching constraint).

Before proving that the ρ-calculus is simulated in the ρg-calculus we need to

show that the Matching rules of the ρg-calculus are well-behaving with respect

to the ρ-calculus matching algorithm restricted to patterns [CKL02].

Lemma 4.1 Let T be an algebraic ρ-term with FV(T ) = {x1, . . . , xn} and let T �
U be a matching problem with solution σ = {x1/U1, . . . , xn/Un}, i.e. σ(T ) = U .

Then we have T � U 7→→M x1 = U1, . . . , xn = Un.

Proof. We show by structural induction on the term T that there exists a reduction

T � U 7→→M x1 � U1, . . . , xn � Un, where the xi’s are all distinct and thus the thesis

follows.

• Basic case: The term T is a variable or a constant. The case where T = x is

trivial.

If T = a then σ = {} and U = a. In the ρg-calculus we have a� a 7→e ε and the

property obviously holds.

• Induction case: T = f(T1, . . . , Tm) with m > 0.

Since a substitution σ exists and the matching is syntactic, we have U = f(V1, . . . , Vm)

and σ(f(T1, . . . , Tm)) = f(σ(T1), . . . , σ(Tm)) with σ(Ti) = Vi, for i = 1 . . .m.

By induction hypothesis, for any i, if FV(Ti) = {xi1, . . . , xiki} ⊆ FV(T ), then

13
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Ti � Vi 7→→M xi1 � σ(xi1), . . . , xiki � σ(xiki). Joining the various reductions we

have f(T1, . . . , Tm) � f(V1, . . . , Vm) 7→dk T1 � V1, . . . , Tm � Vm 7→→M x1 �
σ(x1), . . . , xn � σ(xn).

To understand the last step note that in the list

x1
1 � σ(x1

1), . . . , x1
k1
� σ(x1

k1
), . . . , xm1 � σ(x1

m), . . . , xmkm � σ(xmkm)

constraints with the same left-hand side variable have identical right-hand sides.

Hence, by idempotency, such list coincides with x1 � σ(x1), . . . , xn � σ(xn).

2

We can show now that a reduction in the ρ-calculus can be simulated in the

ρg-calculus.

Lemma 4.2 Let T and T ′ be ρ-terms. If there exists a reduction T 7→ρσδ T ′ in the

ρ-calculus then there exists a corresponding one T 7→→ρg T ′ in the ρg-calculus.

Proof. We show that for each reduction step in the ρ-calculus we have a corre-

sponding sequence of reduction steps in the ρg-calculus.

• If T 7→ρ T ′ or T 7→δ T ′ in the ρ-calculus, then we trivially have the same reduction

in the ρg-calculus using the corresponding rules.

• If T = [T1 � T3]T2 7→σ σ(T2) = T ′ where T1 is a ρ-calculus pattern and the

substitution σ = {U1/x1, . . . , Um/xm} is solution of the matching then, in the

ρg-calculus the corresponding reduction is the following:

T = T2 [T1 � T3]

7→→M T2 [x1 = U1, . . . , xm = Um] by Lemma 4.1

7→→es {U1/x1, . . . , Um/xm}T2 [x1 = U1, . . . , xm = Um]

7→→gc {U1/x1, . . . , Um/xm}T2 [ε]

7→gc {U1/x1, . . . , Um/xm}T2 = T ′

where we denote by {U1/x1, . . . , Un/xn}T2 the term T2 in which every occurrence

of the variable xi is replaced by the term Ui, for all i = 1 . . .m.

2

In the case of matching failures, the two calculi handle errors in a slightly dif-

ferent way, even if, in both cases, matching clashes are not reduced and kept as

constraint application failures. In particular we can have a deeper decomposition of

a matching problem in the ρg-calculus than in the ρ-calculus and thus it can happen

that a ρ-term in normal form can be further reduced in the ρg-calculus.

Example 4.3 [Matching failure in ρ-calculus and ρg-calculus] In both calculi, non

successful reductions lead to a non solvable match equation in the list of constraints

of the term.

(f(a) _ b) f(c)

7→ρσδ [f(a)� f(c)]b

(f(a) _ b) f(c)

7→ρ b [f(a)� f(c)]

7→dk b [a� c]

14
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Notice that in the ρ-calculus, since the matching algorithm cannot compute a sub-

stitution solving the match equation f(a) � f(c), the (σ) rule cannot be applied

and thus the reduction is stuck. On the other hand, in the ρg-calculus the Match-

ing rules can partially decompose the match equation until the clash a � c is

reached.

The terms of λφ0 can be easily translated into terms of the ρg-calculus. The

main difference of λφ0 w.r.t. the ρg-calculus is the restriction of the list of constraints

to a list of recursion equations. Delayed matching constraints are not needed since

in the λ-calculus the matching is always trivially satisfied.

Definition 4.4 [Translation] The translation of a λφ0-term t into a ρg-term, de-

noted t, is inductively defined as follows:

x 4
= x

λx.t 4
= x _ t

t0 t1
4
= t0 t1

f(t1, . . . , tn) 4
= f(t1, . . . , tn)

〈t0| x1 = t1, . . . , xn = tn〉 4= t0 [x1 = t1, . . . , xn = tn]

We can see the evaluation rules of the ρg-calculus as the generalization of those

of the λφ0-calculus. The β-rule can be simulated using the Basic rules of the

ρg-calculus. The rest of the rules can be simulated using the corresponding ones in

the subset Graph rules of the ρg-calculus.

We show next that a reduction in the λφ0-calculus can be simulated in the

ρg-calculus.

Lemma 4.5 Let t1 and t2 be two λφ0-terms. If t1 7→λφ t2 in the cyclic λ-calculus,

then there exists a reduction t1 7→→ρg t2 in the ρg-calculus.

Proof. We proceed by analyzing each reduction axiom of λφ0.

• β-rule:

t1 = (λx.s1) s2 →β 〈s1| x = s2〉 = t2

In the ρg-calculus we have:

t1 = (x _ s1) s2 7→ρ s1 [x� s2] 7→s s1 [x = s2] = t2

• external sub rule: trivial.

• acyclic sub rule: trivial (�� stands always for = in this case).

• black hole rule: trivial.

• garbage collect rule: The proviso E ⊥ (E′, t) is equivalent to the one expressed

using the definition of free variables in the ρg-calculus. The condition E′ 6= ε

is implicit in the ρg-calculus since we eliminate one recursion equation at time.

For this reason, a single step of the garbage collect rule in λφ0 can correspond to

several steps of the corresponding garbage rule in the ρg-calculus: if 〈t|E,E′〉 →gc

〈t|E〉 then t [E,E′] 7→→gc t [E].

2
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5 Conclusions and future work

In this paper we have proposed the ρg-calculus, an extension of the ρ-calculus able

to deal with graph like structures, where sharing of subterms and cycles (which

can be used to represent regular infinite data structures) can be expressed. The

ρg-calculus has been shown to be a generalization of the cyclic λ-calculus as well as

of the standard ρ-calculus.

The work is still in a preliminary stage and there are several interesting directions

for future research.

Taking inspiration from analogous work on the cyclic λ-calculus [AK97] and on

the ρ-calculus [BCKL03], it would be interesting to understand under which restric-

tions the ρg-calculus can be made confluent. We conjecture that, if we consider a

syntactic matching, it suffices to restrict to rewrite rules and matching problems

where the left-hand side respect the so-called “Rigid Pattern Condition” [vO90]

adapted to our syntax. This condition corresponds in fact to the restrictions we

have already imposed for patterns in Section 2.

At the same time, an appealing problem is the generalization of ρg-calculus to

deal with different, non syntactic, matching theories. For example, in the case of

a matching involving cyclic graphs, the reduction of a matching constraint can be

stuck even if a solution of the matching problem actually exists. For instance, the

term g(x, x) � (g(f(z), f(f(y))) [y = f(y), z = f(z)] can be reduced to [x �
f(z), x � f(f(y)), y = f(y), z = f(z)] but it is stuck at this point. In order to

recover from this failure, we should be able to compare the right-hand sides of the

two match equations and decide if their “unravelling” is the same. In other words,

we should be able to deal with general cyclic matching. One should notice that this

is not straightforward, since, in ρg-calculus matching is internalized rather than

being carried out at metalevel.

Moreover, in this paper we have only informally scratched the problem of defining

the (cyclic term) graph associated to a term of the ρg-calculus. While for the

fragment of the ρg-calculus without matching constraints some clear suggestions

could come from existing work on cyclic term graphs with binders in [Blo01,Kah98],

the generalization to the full calculus will require further investigations.

After making this correspondence formal, a quite interesting question arises ask-

ing whether we can encode term graph rewriting into the ρg-calculus in the same

way as term rewriting systems (and their underlying strategies) can be encoded in

the ρ-calculus. Furthermore, a term of the ρg-calculus, possibly with sharing and

cycles, can be seen as a “compact” representation of a possibly infinite ρ-calculus

term, obtained by “unravelling” the original term. On the one hand, it would

be interesting to define an infinitary version of the ρ-calculus, taking inspiration,

e.g., from the work on the infinitary λ-calculus [KKSd97] and on infinitary rewrit-

ing [KKSd91,Cor93]. On the other hand, to enforce the view of the ρg-calculus

as efficient implementation of terms and rewriting in the infinitary ρ-calculus one

should have an adequacy result in the style of [KKSd94,CD97].
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