
Graph Transactions as Processes⋆

Paolo Baldan1, Andrea Corradini2, Luciana Foss2,3,⋆⋆, and Fabio Gadducci2

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
2 Dipartimento di Informatica, Università di Pisa, Italy

3 Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brasil

Abstract. Transactional graph transformation systems (t-gtss) have
been recently proposed as a mild extension of the standard dpo approach
to graph transformation, equipping it with a suitable notion of atomic

execution for computations. A typing mechanism induces a distinction
between stable and unstable items, and a transaction is defined as a
shift-equivalence class of computations such that the starting and ending
states are stable and all the intermediate states are unstable.
The paper introduces an equivalent, yet more manageable definition of
transaction based on graph processes. This presentation is used to pro-
vide a universal characterisation for the class of transactions of a given
t-gts. More specifically, we show that the functor mapping a t-gts to
a graph transformation system having as productions exactly the trans-
actions of the original t-gts is the right adjoint to an inclusion functor.

Keywords: Graph processes, refinement, transactions, zero-safe nets.

1 Introduction

Graph transformation systems (gtss) are a flexible formalism for the specifi-
cation of complex systems, that may take into account aspects such as object-
orientation, concurrency, mobility and distribution [9, 10]. In fact, graphs can be
naturally used to provide a structured representation of the states of a system,
which highlights its subcomponents and their logical or physical interconnec-
tions. Then, the events occurring in the system, which are responsible for the
evolution from one state into another, are modelled as the application of suitable
transformation rules. Such a representation is precise enough to allow the formal
analysis of the system under scrutiny, as well as amenable of an intuitive, visual
representation, which can be easily understood also by a non-expert audience.

Along the years several enrichments of the original framework have been
introduced, extending gtss with structuring concepts that are needed to master
the complexity of large specifications. Several modularity and refinement notions
have been proposed, providing basic mechanisms for encapsulation, abstraction
and information hiding (see, e.g., [11, 14, 13]).

⋆ Supported by the CNPq-CNR IQ-Mobile II, the EC RTN 2-2001-00346 SegraVis,
the EU IST-2004-16004 SEnSOria and the MIUR PRIN 2005015824 ART.

⋆⋆ Supported by CAPES and CNPq.

In a top-down approach to the specification of a complex system, one can
start describing each operation of the system as a single “abstract” rule. Then,
each abstract rule is refined to a computation, describing in a more concrete way
the activity performed and possibly the use of temporary resources. In order to
guarantee that the behaviour of the refined system is correct with respect to the
abstract specification, each computation corresponding to an abstract rule has
to be executed “atomically”, i.e., either it completes successfully, or the effects
of a partial execution should not be visible at the abstract level: in one word,
the computation refining an abstract rule must be a transaction.

The notion of transaction has been originally defined and studied in the
realm of database management systems, and only later it has been considered
in programming and specification formalisms, like process calculi, programming
languages and Petri nets. A transaction represents a unit of interaction with the
management system, that is treated in a coherent and reliable way, independently
of other transactions, and that must be either entirely completed or aborted.
Ideally, the following ACID properties should be guaranteed for each transaction

– Atomicity: either all of the tasks of a transaction are performed (and the
transaction is committed) or none of them are;

– Consistency: the database is in a legal state when the transaction begins
and when it ends;

– Isolation: no operation outside the transaction can see the data in an inter-
mediate state;

– Durability: the effects of a committed transaction are persistent.

The above properties are also meaningful for characterising transactions in speci-
fication formalisms of concurrent/distributed systems, where the interaction now
occurs with the environment: atomicity, consistency and isolation carry on with
equal relevance, while only durability does not have a clear meaning anymore
since no persistent repository of data is modelled.

Transactions can be introduced in different ways in a modelling, specification
or programming formalism. In control-centered formalisms, like process calculi
and programming languages, where the execution of computations is ruled by
expressive control mechanisms, typically new control structures are introduced
for starting/committing transactions. In data-centered formalisms, like rewriting
formalisms and (possibly High-Level) Petri nets, where the control structures are
typically poor and the emphasis is on the structure of the state that evolves dur-
ing a computation, transactions are more naturally defined indirectly, by iden-
tifying parts of the state which represent temporary (or “unstable”) resources,
only visible within a transaction. This is the approach that has been taken for
zero-safe nets [4], which is a reference model for our work on transactional gtss.

Zero-safe nets are Place/Transition Petri nets equipped with a distinguished
subset of zero places. The places model resources that are consumed or produced
by transitions and the zero places model resources that are invisible to the exte-
rior of a step. A step in a zero-safe net starts at a stable marking (i.e., containing
no zero places), evolves through unstable markings and ends in a stable marking.
Stable tokens produced in a step are “frozen” and delivered at the end.

2

Inspired by the work on zero-safe nets, transactional graph transformation
systems (t-gtss), introduced in [1], are a mild extension to the double-pushout
(dpo) approach to graph transformation, providing a simple way of expressing
transactional activities. The basic tool is a typing mechanism for graphs which
induces a distinction between stable and unstable graph items. Given a typed
graph, representing a system state, we can identify a subgraph which represent
its “stable” part, i.e., the fragment of the state which is visible from an external
observer. Transactions in a t-gts are thus abstract, “minimal” computations
starting from a completely stable graph, evolving through graphs with unstable
items and eventually ending up in a new stable state.

In this paper we elaborate further on transactional gtss. At first we obtain
an alternative characterisation of transactions as graph processes, by exploiting
the results in [2]. Next we show how the internal structure of transactions can
be abstracted away, by considering an abstract gts associated to the t-gts:
unstable items disappear and each distinct transaction becomes a single atomic
production, which rewrites the starting stable state to the final stable state.

The main result of the paper shows that the operation mapping each t-gts

to its abstract counterpart is characterised as a universal construction in the
categorical setting. More specifically, such construction is turned into a functor
between the corresponding categories of systems, which is right adjoint to the
inclusion functor in the opposite direction. The result is obtained by equipping
t-gtss with a notion of implementation morphism, allowing to map a single
production to a whole transaction. This provides a solid theoretical justification
to the notion of abstract gts associated to a t-gts: according to an intuitive
interpretation of categorical adjunctions, it states that the constructed abstract
gts is the best approximation of the given t-gts in the class of ordinary gtss.

2 Double-Pushout Rewriting

This section briefly summarises the basics of double-pushout (dpo) graph rewrit-
ing [8] for directed (multi-)graphs (but definitions and results of the paper gener-
alise easily, for example, to hypergraphs, which are used indeed in the examples).
Without loss of generality, as shown in [12], we consider rewriting with injective
matches only. Graphs are equipped with a typing morphism to a fixed type graph,
which plays an essential role when distinguishing between stable and unstable
items in a given graph.

Formally, a graph is a tuple 〈V, E, s, t〉, where V and E are the (disjoint)
sets of nodes and edges, and s, t: E → V are the source and target functions.
Sometimes, abusing the notation, G denotes the disjoint union VG ⊎ EG; e.g.
writing x ∈ G means that x is either a node or an edge of the graph G. Given a
graph T , a typed graph G over T is a graph |G|, together with a graph morphism
tG: |G| → T . A morphism between T -typed graphs f : G1 → G2 is a graph
morphism f : |G1| → |G2| respecting the typing, i.e., such that tG1

= tG2
◦f . The

category of T -typed graphs and typed graph morphisms is denoted by T -Graph.

3

Rewriting rules, called T -typed productions, are tuples q: Lq

lq
← Kq

rq

→ Rq,
where q is the name of the production, Lq, Kq and Rq are T -typed graphs
(called the left-hand side, the interface and the right-hand side of the production,
respectively), and lq, rq are injective morphisms. Without loss of generality, we
always assume that lq is an inclusion.

A rule q specifies that an occurrence of the left-hand side Lq in a larger graph
can be rewritten into the right-hand side Rq, preserving the interface Kq.

Formally, given a typed graph G, a production q, and
an injective match g: Lq → G, a direct derivation δ

from G to H using q, g exists, written δ: G
q,g
=⇒ H , if

the diagram to the right can be constructed, where
both squares are pushouts in T -Graph.

Lqq :

g

Kq

lq rq

k

Rq

h

G D
b d

H

A graph transformation system is then defined as a collection of rules, over
a fixed graph of types.

Definition 1 (graph transformation system). A T -typed graph transfor-
mation system (gts) is a tuple G = 〈T, P, π〉, where T is a graph, P is a set
of production names and π is a function mapping production names in P to
T -typed productions.

A derivation in a gts G is a sequence of direct derivations via productions of G

G0
q0,g0

=⇒ G1
q1,g1

=⇒
qn,gn
=⇒ Gn+1.

A two-steps derivation G
q1,g1

=⇒ X
q2,g2

=⇒ H as in the diagram below is called
sequential independent [8, 12] if there are two morphisms s: L2 → D1 and u: R1 →
D2 such that d1 ◦ s = g2 and b2 ◦ u = h1. Intuitively, the images in X of the
left-hand side of q2 and of the right-hand side of q1 overlap only on items that
are preserved by both derivation steps.

L1

g1

K1

l1 r1

k1

R1

u

h1

L2

s
g2

K2

l2 r2

k2

R2

h2

G D1
b1 d1

X D2
b2 d2

H

In this case, according to the Parallelism Theorem (Theorem 7.8 in [12]), we can
apply to G a suitably defined proper quotient q of the parallel rule q1+q2, obtain-
ing an equivalent direct derivation from G to H via an injective match g. Further-

more, there is an equivalent derivation G
q2,g′

2=⇒ X ′
q1,g′

1=⇒ H where the two deriva-
tion steps are “switched”. The equivalence on derivations induced by switchings
of sequential independent direct derivations is called shift-equivalence [8].

We now equip gtss with a suitable notion of morphism, allowing us to look
at them as objects of a category. This is essential to provide a characterisation of
some interesting constructions with universal properties, as shown in Section 5.
We shall use a variant of the morphisms in [6, 3], where the type graphs are
related by a partial morphism rather than by an arbitrary span.

4

A partial morphism f : G1 ⇀ G2 is a total morphism from a subgraph of

G1, called dom(f), to G2, and is equivalently depicted as G1

lf
←֓ dom(f)

rf

→ G2.
Given an object A of a category C, the slice category C↓A has all C-arrows with
target A as obiects; an arrow h: f → g in C↓A is a C-arrow h such that g◦h = f .4

Let m: A → B be an arrow in a category C with
pullbacks. Chosen a pullback square as (1) to the
right for any f : D → B, the pullback functor along
m: A → B, denoted m∗: C↓B → C↓A, maps an ob-
ject (f : D → B) ∈ C↓B to (m∗(f): m∗(D) → A) ∈
C↓A. Given arrows m: A → B and f : D → B of C,
we write g ∼= m∗(f) if there exists an arrow C → D

such that square (2) to the right is a pullback.

m∗(D)

m∗(f) (1)

D

f

A m B

C
g (2)

D

f

A m B

Definition 2 (gts morphism). Let G1 = 〈T1, P1, π1〉 and G2 = 〈T2, P2, π2〉 be
gtss. A gts morphism f :G1 → G2 is a pair f = 〈fT , fP 〉, where

- fT : T1 ⇀ T2 is a partial graph morphism;
- fP : P1 → P2 ∪ {∅} is a total function on production names, where
∅: (∅← ∅→ ∅) is the empty production;

such that productions are preserved,
i.e., for all p ∈ P1, with fP (p) = q,
there are morphisms fL

ι (p), fK
ι (p)

and fR
ι (p) such that the diagram to

the right commutes, and fX
ι (p) ∼=

t∗Xp
(lf T

) for X ∈ {L, K, R}.
The category with gtss as objects
and the corresponding morphisms
as arrows is denoted by GTS.

|Rp|

tRp

|Rq|
fR

ι (p)

tRq

|Kp|

tKp

|Kq|
fK

ι (p)

tKq
|Lp|

tLp

|Lq|
fL

ι (p)

tLq

T1 dom(fT)
lfT

rfT

T2

Chosen a pullback functor l∗fT
, the partial morphism fT : T1 ⇀ T2 induces a re-

typing functor f↔
T : T1-Graph→ T2-Graph, defined on objects as f↔

T (tG: |G| →
T1) = rfT

◦ l∗fT
(tG). The condition on morphisms involving the pullback squares

ensures that all the items in Xp whose type is preserved by fT occur in XfP (p).
Thus, gts morphisms are simulations (see e.g. [6, 3]), meaning that, for a deriva-
tion ρ in G1, (any choice of) the retyped diagram f↔

T (ρ) is a derivation in G2.

3 Transactional Graph Transformation Systems

In this section we first recall the basics of transactional gtss [1]. Next we intro-
duce the notion of morphism between such systems and we show that morphisms
preserve transactions. The basic idea underlying transactional gtss consists in
distinguishing between stable and unstable resources and defining transactions
as “minimal” computations which start and end in stable states. The distinction
between stable and unstable items in a graph is induced by specifying a subgraph
of the type graph, which is intended to represent the stable types.

4 Thus, for example, T -Graph = Graph↓T .

5

Definition 3 (transactional gts). A transactional gts (t-gts) is a pair
Z = 〈G, Ts〉, where G is a T -typed gts (the underlying gts of Z) and is: Ts →֒ T

is a subgraph of the type graph of G, called the stable type graph.

We denote by S: T -Graph → Ts-Graph the functor that maps each graph G

typed over T to its subgraph consisting of its stably-typed items only, and each
morphism to its restriction to stable items: thus S, called the stabilising functor,
is a concrete choice for the pullback functor i∗s.

The stabilising functor can be applied point-wise to any production of a given
t-gts, thus producing a gts typed over the stable type graph.

Definition 4 (stabilised gts). Given a t-gts Z = 〈〈T, P, π〉, Ts〉, the sta-
bilised gts S(Z) is given by 〈Ts, P, π′〉, where π′(q) = S(π(q)) for any q ∈ P .

By construction, there is an obvious gts morphism from a t-gts Z to its sta-
bilised gts S(Z), given by the pair 〈idTs

: T ⇀ Ts, idP 〉. Since gts morphisms
are simulations, the following result trivially holds.

Proposition 1. Let Z be a t-gts and let ρ = G0
q1,g1

=⇒ G1
q2,g2

=⇒ . . .
qn,gn
=⇒ Gn be

a derivation in G. Then S(ρ), defined as below, is a derivation in S(Z).

S(ρ) = S(G0)
q1,S(g1)

=⇒ S(G1)
q2,S(g2)

=⇒ . . .
qn,S(gn)

=⇒ S(Gn)

Let us come to the definition of transaction in a t-gts. Inspired by the approach
for Petri nets proposed in [4], and extended to nets with read arcs in [5], we
introduce stable steps, transactions and abstract transactions. In the following,
let Z = 〈G, Ts〉 be an arbitrary but fixed t-gts.

Let us first define a graph G as stable if it consists only of stable items, i.e., if
|S(G)| = |G|, and unstable otherwise. A stable step is, intuitively, a computation
which starts and ends in stable states. Moreover, stable items which are gener-
ated are “frozen”, in the sense that they can not be preserved nor consumed by
other productions inside the same step; similarly, stable items which are deleted
cannot be preserved by other productions. Therefore, the dependencies between
productions occurring in a step are induced by unstable items: this implies that
at the abstract level, where unstable items are forgotten, all such productions
are applicable in parallel.

Definition 5 (stable step and transaction). A stable step is a derivation

ρ = G0
q1,g1

=⇒ G1
q2,g2

=⇒ . . .
qn,gn
=⇒ Gn which enjoys the following properties

1. G0 and Gn are stable graphs;
2. the derivation S(ρ) is equivalent in S(G) to a direct derivation via a proper

quotient of the rule q1 + . . . + qn and a suitable match g.

A transaction is a stable step additionally satisfying

3. the match g is an isomorphism;
4. no intermediate graph Gi (i 6= 0, n) is stable.

6

By condition 3, the start graph contains exactly what the transaction needs to
reach a successful end. Notice that this condition defines what is a transaction,
but then, in a computation, a transaction can be embedded into a larger context.
By condition 4 no sub-derivation of ρ is a transaction.

Actually, since we are considering a concurrent model of computations, the
fact that all the intermediate graphs are not stable should not be related to the
specific order in which productions are applied. Rather, this property should still
hold for any shift-equivalent derivation.

When combining shift-equivalence with an equivalence which abstracts also
with respect to the concrete identities of items in the involved graphs, i.e.,
which considers graphs up to isomorphism, we obtain the so-called abstract truly-
concurrent equivalence [8]. The equivalence class of a derivation ρ with respect
to such equivalence will be denoted by [ρ]a and called an abstract trace.

We are now able to introduce the notion of abstract transaction.

Definition 6 (abstract transaction). An abstract transaction is an abstract
trace [ρ]a such that any derivation ρ′ ∈ [ρ]a is a transaction.

A simple transactional gts, presented in [1], tests the equality between integer
expressions involving natural numbers, represented as sequences S(S(. . . S(0) . . .)),
and a sum operator. Figure 1 shows some of the productions, whose number-
ing refers to the original system. The type graph and its stable subgraph, not
depicted here, can be inferred from the labeling observing that dashed items
(hyper-edges depicted as boxed and nodes depicted as circles) are not stable.

p
10.1

+

0 0 0 0 00

0

p
1

= =

p
2.3

S

1

5

3

4

=

S

1

4

3

5

=

SS

3

4 5

2

1 p
3.3

=

0 0

1

2 3

true

0

1

3

0

1

3

S

+
32

4

1

S

2 3

4

1p
12.1

++

2

54

6

=

1

3

+

2

4 5

3

1

+

2

4 5

3

=

1

+S

S

4

1

2 5 3

p
6.1

Fig. 1. Some productions of the t-gts testing equality of natural numbers

Figure 2 shows the sequence of graphs of a derivation starting from the stable
graph representing the expression S(0) + 0 = S(0), and using the productions of
Figure 1 in the given order. Intuitively, the derivation starts by making unstable
the top operator =, and then triggering the evaluation of the sum operator. The
evaluation of + does not modify the stable part of the graph: it builds the result
using unstable items, which are then consumed by the evaluation of the equality
operator. The last graph is stable, and it includes the result of the evalutation
on the node to which the original equality operator was attached.

7

It is not difficult to check that this derivation is a transaction, as it satisfies
all conditions of Definition 5; furthermore its equivalence class is an abstract
transaction, since all shift-equivalent derivations are transactions as well.

5

0

0

 9

1

=

0

7

S

2

+

4

3

S
6

0
5

0

3

S
6

0

 8

+

0

S

2

+

1

=

7

4
5

0

3

S
6

0

1

true

0

7

S

2

+

4
4

7

S

0

2

+

=

1

3

S

0

65

0

4

7

S

0

2

+

=

1

3

S

0

65

0

G 4G 3G 2G 1

5

+

0

S
 9

 8 3

S
6

0

1

=

0

7

S

2

+

4 5

0

0

S
 9

 8 3

S
6

0

1

=

0

7

S

2

+

4

G 5 G 6 G 7

Fig. 2. A sample derivation evaluating S(0) + 0 = S(0)

We now extend the definition of gts morphisms to transactional gtss, explaining
how morphisms behave with respect to the stable/unstable items.

Definition 7 (t-gts morphism). Let Z1 = 〈G1, T1s〉 and Z2 = 〈G2, T2s〉 be
t-gtss. A t-gts morphism f :Z1 → Z2 is a gts morphism f :G1 → G2 between
the underlying gtss, such that

1. for all z ∈ T1 \ T1s, we have that fT (z) is defined and fT (z) ∈ T2 \ T2s;
2. for all z ∈ T1s, if fT (z) is defined then fT (z) ∈ T2s.

The category having t-gtss as objects and the corresponding morphisms as ar-
rows is denoted by TGTS.

Note that we require that the type graph component of a morphism preserves
both stable and unstable items. Additionally it must be total on unstable items.

In order to ensure that morphisms are simulations in this more general frame-
work, we prove that t-gts morphisms preserve abstract transactions.

Proposition 2 (morphisms preserve transactions). Let f :Z1 → Z2 be a
t-gts morphism and let [ρ]a be an abstract transaction in Z1. Then [f↔

T (ρ)]a
(see the note after Definition 2) is an abstract transaction in Z2.

4 Transactions as Processes

Inspired by the classical non-sequential processes for Petri nets, graph processes
have been proposed in [7, 2] as a faithful representation of the derivations of a
gts up to shift-equivalence. A graph process for a t-gts Z is defined as an “oc-
currence grammar” O, i.e., a grammar satisfying suitable acyclicity constraints,
equipped with a t-gts morphism from O to Z.

8

The derivations in O are mapped through the morphism to derivations in
Z, which are shown to be shift-equivalent. Vice versa, from each derivation
in Z a process can be obtained by a simple colimit construction, and shift-
equivalent derivations yield isomorphic processes. Since abstract transactions
are defined as abstract traces, the corresponding processes provide a compact,
handier representation for them, that will be exploited in the next section for
the definition of implementation morphisms among t-gtss.

In the present paper a process for a t-gts Z is defined by an explicit colimit
construction for any derivation in Z. A more abstract characterisation based on
structural properties can be provided as well, as in [2], but it is not needed here.

Definition 8 (process from a derivation). Let Z = 〈〈T, P, π〉, Ts〉 be a t-

gts, and let ρ = G0
q1,m1

=⇒ G1
q2,m2

=⇒ . . .
qn,mn
=⇒ Gn be a derivation in Z. A

process φ associated to ρ is a t-gts morphism φ = 〈φT , φP 〉:Oφ → Z, where
Oφ = 〈〈Tφ, Pφ, πφ〉, Tφs

〉 is obtained as follows

– 〈Tφ, φT 〉 is a colimit object (in T -Graph) of the diagram representing deriva-
tion ρ, as depicted (for a single derivation step) in the diagram below, where
cXi

: Xi → Tφ is the induced injection for X ∈ {D, G, L, K, R};
– Tφs

→֒ Tφ = φ∗
T (Ts →֒ T);

– Pφ = {〈qi, i〉 | i ∈ {1, . . . , n}};

– πφ(〈qi, i〉) = (〈|Li|, cLi
〉

li← 〈|Ki|, cKi
〉

ri→
〈|Ri|, cRi

〉) (see the diagram to the
right); moreover, φP (〈qi, i〉) = qi, for all
i ∈ {1, . . . , n}.

qi : Li

gi

cLi

Ki

li ri

ki
cKi

Ri

hi

cRi

Gi−1

cGi−1

Di

bi di

cDi

Gi
cGi

〈Tφ, φT 〉

Intuitively, the colimit construction applied to a derivation constructs the graph
Tφ as a copy of the source graph plus the items created during the rewriting.

As an example, we show the type graph of the process associated to the
derivation of Figure 2.

The injections from the graphs of the deriva-
tion are implicitly represented by indexing
some edges with a creation index in the
bottom-left corner, and a deletion index in
the bottom-right one. The creation index is
missing in the edges that are not created,
i.e., that belong to the start graph, and
symmetrically for the deletion index. The
image of graph Gi of the derivation, with
i ∈ {1, . . . , 7}, contains all edges with cre-
ation index, if any, smaller than i, and dele-
tion index, if any, larger than or equal to i.

6

S

43 64

1 2

2 3 3 5

2 5 5 6

0

0

0

1

S

= = = true

0

+ +

+S

=

Two processes φ and φ′ for a t-gts Z are isomorphic if there exists a t-

gts isomorphism f :Oφ → Oφ′ such that φ′ ◦ f = φ. An abstract process for Z
is an isomorphism class of processes for Z and it is denoted [φ] where φ is a
representative in the class.

9

Since in a derivation all matches are assumed to be injective, it can be shown
that in the associated process all rules are injectively typed in Tφ: referring to
the diagram after Definition 8, all the morphisms cXi

to Tφ are injective for
X ∈ {G, D, L, K, R}. If x ∈ Tφ and q = 〈qi, i〉, we say that the production q

consumes x if x is in the image of cLi
and not in that of cKi

; that q creates x if
x is in the image of cRi

and not in that of cKi
; and that q preserves x if it is in

the image of cKi
. This leads to the following net-like notation

•q = cLi
(|Li| \ li(|Ki|)) q• = cRi

(|Ri| \ ri(|Ki|)) q = cKi
(|Ki|)

We say that q consumes, creates and preserves items in •q, q• and q, respectively.
Similarly, the sets of productions which consume, create and preserve x ∈ Tφ

are denoted by •x, x• and x, respectively. Min(Oφ) denotes the subgraph of Tφ

consisting of the items x such that •x = ∅, and •φ the same graph typed over T

by the restriction of φT . The graphs Max (Oφ) and φ• are defined by duality.

Definition 9 (causal relation). The causal relation of a process φ is the least
transitive and reflexive relation ≤φ over Tφ ⊎Pφ such that for all x, y ∈ Tφ ⊎Pφ

and q1, q2 ∈ Pφ: i) x ≤φ y if x ∈ •y and ii) q1 ≤φ q2 if ((q1
•∩q2)∪(q1∩•q2)) 6= ∅.

It is easy to show that the causal relation is indeed a partial order.

Definition 10 (reachable set). Let φ be a process. For any ≤φ-left-closed
P ′ ⊆ Pφ, the reachable set associated to P ′ is the set SP ′ ⊆ Tφ defined by

x ∈ SP ′ iff ∀q ∈ Pφ � (x ≤φ q ⇒ q 6∈ P ′) ∧ (q ≤φ x⇒ q ∈ P ′).

We now introduce transactional processes, i.e., processes representing abstract
transactions. For technical reasons we consider also a wider class of processes,
the unstable transactional processes, which may start and end in unstable states.

Definition 11 (transactional process). Let Z = 〈〈T, P, π〉, Ts〉 be a t-gts.
An unstable transactional process is a process φ of Z such that

1. for any x ∈ Tφs
, at most one of the sets •x, x•, x is not empty;

2. for any x ∈ Min(Oφ), there exists q ∈ Pφ such that either x ∈ •q or x ∈ q;
3. for any reachable set SP ′ associated to a non-empty P ′ ⊂ Pφ, there exists

x ∈ SP ′ such that x 6∈ Min(Oφ) ∪Max (Oφ).

If Min(Oφ)∪Max (Oφ) ⊆ Tφs
, then φ is called transactional process (t-process).

The family of abstract unstable t-processes of Z is denoted by utProc(Z) and
tProc(Z) ⊆ utProc(Z) denotes the class of all abstract t-processes of Z.

Note that if a representative of an abstract process is a(n unstable) transactional
one, then all the other members of the equivalence class are so.

Condition 1 implies that each stable item is either in the source or in the
target state of the process. Additionally, each stable item that is preserved by
at least one production cannot be generated nor consumed in the process itself:
this would induce a dependency between productions, violating the defining

10

requirements for transactions (see Definition 5). By condition 2, any item in the
source state is used in the computation. Condition 3 ensures that the process is
not decomposable into “smaller pieces”. It tells that by executing only an initial,
non-empty subset P ′ of the productions of the process, we end up in a graph SP ′

which is not entirely contained in Min(Oφ) ∪Max (Oφ), i.e., which contains at
least one unstable item. Finally, in a transactional process the source and target
states are required to be stable.

For example, the process described after Definition 8 is transactional.
From the theory of graph processes (see [2]) we know that the abstract pro-

cesses of a t-gts Z are in one-to-one correspondence with the abstract traces
of Z. More precisely, if [ρ]a is an abstract trace of Z and ρ′, ρ′′ ∈ [ρ]a are two
derivations, then the processes associated to ρ′ and ρ′′ are isomorphic. This de-
fines a function TPZ mapping the abstract traces of Z to abstract processes for
Z. Vice versa, if φ is a process for Z, and ρ, ρ′ are two derivations of Oφ, then
the retyped derivations φ↔

T (ρ) and φ↔
T (ρ′) of Z (see the observation after Defi-

nition 2) are abstract truly-concurrent equivalent, and thus belong to the same
abstract trace. This defines a function PTZ mapping the abstract processes for
Z to abstract traces of Z. Moreover, it can be proved that functions TPZ and
PTZ are inverse to each other. By the next proposition they establish an iso-
morphism between abstract transactions and abstract t-processes: hence, these
latter provide an alternative, equivalent characterisation of the former ones.

Proposition 3. Let Z be a t-gts. Then [φ] is an abstract t-process of Z iff
PTZ([φ]) is an abstract transaction.

5 The Abstract System of a Transactional GTS

As mentioned in the introduction, a t-gts can be seen at two different levels of
abstraction. It can be viewed as a standard gts, where both stable and unstable
states, and thus also the internal structure of transactions, are visible. But we can
abstract away from the unstable states and observe only complete transactions.
Intuitively, this gives rise to another gts, where abstract transactions of the
original t-gts become productions which rewrite directly the source stable state
into the target stable state. This transformation defines a mapping from the
objects of the category TGTS to those of GTS. Interestingly, equipping the
category of transactional gtss with a more general notion of morphism —called
implementation morphism—, this mapping can be turned into a functor, which
is the right adjoint to the inclusion functor in the opposite direction.

We start by introducing the abstract gts associated to a given t-gts, where
productions are abstract processes of the original t-gts corresponding to trans-
actions. For technical reasons, it is convenient to define productions as equiv-
alence classes of t-processes which, roughly speaking, are isomorphic when for-
getting the stable preserved part. We first define the span induced by a process.

Definition 12 (span underlying a process). Given a process φ for a t-gts

Z, the underlying span of φ is Π(φ) = •φ ←֓ •φ∩φ• →֒ φ• (intersection is taken
component-wise).

11

Given an ut-process φ, with Oφ = 〈〈Tφ, Pφ, πφ〉, Tφs
〉, consider the structure

r(φ), typed over the set of items Tφ − Min(Oφ) ∩ Max (Oφ) ∩ Tφs
, where any

component is restricted to such set of types (intuitively, the stable preserved
part is forgotten). Then, two ut-processes φ1 and φ2 are read-equivalent, written
φ1 ≃r φ2, if Π(φ1) ≃ Π(φ2), i.e., they have the same associated span, and
r(φ1) ≃ r(φ2). A read ut-process (rut-process) is defined as an equivalence class of
ut-processes with respect to read-equivalence, denoted as [φ]r for a representative
φ. The set of rut-processes of a t-gts Z is denoted by rutProc(Z). The set of
read t-processes (rt-processes) rtProc(Z) is defined in an analogous way.

In order to associate a concrete span to an abstract process, we need to
assume a chosen representative for any equivalence class of processes.

Definition 13 (span underlying abstract process). Let us assume for each
t-gts Z a choice function chZ , mapping each rut-process [φ]r to a concrete
representative chZ([φ]r) ∈ [φ]r. The underlying span of a rut-process [φ]r is
defined as ΠZ([φ]r) = Π(chZ([φ]r)).

We are now able to define the abstract system associated with a gts.

Definition 14 (abstract gts). Let Z = 〈G, Ts〉 be a t-gts. The abstract
gts associated to Z, denoted by A(Z), is the gts 〈Ts, rtProc(Z), ΠZ〉 where
rtProc(Z) is the set of rt-processes of Z and ΠZ is as in Definition 13.

For instance, in the abstract gts of the t-gts recalled in Section 3 the rt-process
having the type graph shown after Definition 8 is a production. The correspond-
ing span has graphs G1 and G7 as left- and right-hand side, respectively.

An implementation morphism is a t-gts morphism that maps each given
production of the source system to a read unstable transactional process of the
target system, and also provides a triple of morphisms mapping the production
underlying the process to the given production: this additional information is
needed to compose implementation morphisms correctly.

Definition 15 (t-gts implementation morphisms). For a given t-gts

Z = 〈〈T, P, π〉, Ts〉, let Ẑ = 〈〈T, rutProc(Z), ΠZ〉, Ts〉 be the t-gts having all
read ut-processes as productions. An implementation pre-morphism f :Z1 → Z2

is a triple f = 〈fT , fP , fι〉, where 〈fT , fP 〉:Z1 → Ẑ2 is a t-gts morphism and
fι is a family fι = {fι(p) | p ∈ PZ1

} such that for each p ∈ PZ1
, fι(p) =

〈fL
ι (p), fK

ι (p), fR
ι (p)〉 is a given choice of the three arrows whose existence is

required in Definition 2.

Given two pre-morphisms 〈fT , fP , fι〉, 〈fT , fP , gι〉:Z1 → Z2, let p ∈ P1 such
that fP (p) = [φ]r. Then we write gι(p) ≈ fι(p) if there are a process auto-
morphism α: chZ([φ]r) → chZ([φ]r) and a span automorphism η : ΠZ([φ]r) →
ΠZ([φ]r) which restricts to the identity over unstable items, such that gι(p) =
fι(p)◦αΠ ◦η, component-wise (αΠ stands for the restriction of αT to ΠZ([φ]r)).

An implementation morphism is an equivalence class of pre-morphisms, where
〈fT , fP , fι〉 ≈ 〈fT , fP , gι〉 if gι(p) ≈ fι(p) for all p ∈ PZ1

.

12

Roughly, implementation morphisms are classes of pre-morphisms up to the
equivalence induced on the third component by process isomorphisms (note that
the type component of an automorphism α : chZ([φ]r) → chZ([φ]r) restricts
to an automorphism over the span ΠZ([φ]r)). The third component is further
quotiented along isomorphisms of the stable subgraph: this is safe because, by the
definition of transaction, stable items are not used in composing computations.

In order to provide a correct definition of the category having t-gtss as
objects and implementation morphisms as arrows, we first have to explain how
implementation morphisms compose. This is summarised by the next lemma.
Given a t-gts Z and a production p in Z, below we denote by φidp

the process
associated (see Definition 8) to the one-step derivation which applies p to its
left-hand side Lp with the identity match.

Lemma 1 (composition and identity for implementation morphisms).

Given a t-gts Z, let Ẑ be as in Definition 15. Then, the properties below hold.

1. Any t-gts morphism f :Z1 → Ẑ2 extends to a t-gts morphism f̂ : Ẑ1 → Ẑ2.
2. Given implementation morphisms f :Z1 → Z2 and g:Z2 → Z3, let their

composition g ◦ f : Z1 → Z3 be the t-gts morphism ĝ ◦ f :Z1 → Ẑ3. Then
composition is associative.

3. For each t-gts Z, let idZ = 〈idZT , idZP , idZ ι〉:Z → Ẑ be defined as
– the type graph component idZT is the identity;
– each production p is mapped by idZP to the abstract process [φidp

]r;
– for each production p, idZ ι(p) is a triple of isomorphisms mapping the

span ΠZ([φidp
]r) to Lp ←֓ Kp →֒ Rp and making the two resulting

squares commute.
Then idZ is well-defined (any choice of idZ ι determines the same implemen-
tation morphism) and it is the identity on Z.

The proof of the lemma is long and involuted, and we give only some hints.
Most interesting is the proof of point 1. Let f :Z1 → Ẑ2 be a t-gts morphism
and φ a process for Z1. Thus φ has a set of productions mapped injectively into
its type graph Tφ. Any such production p is mapped by fP to a process of Z2,
equipped with morphisms from its minimal and maximal graphs to the left- and
right-hand sides of p (given by the component fι). Then the process f̂P (φ) is
obtained by “gluing” (with a colimit construction) all the processes which are
images of productions in φ along the intersections in Tφ determined by the fι

component.
The lemma allows to introduce a category with implementation morphims.

Definition 16 (category TGTSimp). We denote by TGTSimp the category
having transactional gtss as objects and implementation morphisms as arrows.

Additionally, exploiting point 1 in Lemma 1 we can show that the extension
f̂ : Ẑ1 → Ẑ2 maps stable processes to stable processes, i.e., rt-processes of Z1

are mapped to rt-processes of Z2. This in turn can be used to prove that the
abstraction function for t-gts can be seen as a functor.

13

Proposition 4 (abstraction functor). Function A, mapping a t-gts to its
abstract gts, can be extended to a functor A:TGTSimp → GTS.

Quite obviously, a gts G = 〈T, P, π〉 can be seen as a t-gts I(G) = 〈〈T, P, π〉, T 〉.
This mapping can be extended to an inclusion functor I:GTS→ TGTSimp in
the following way: if f = 〈fT , fP 〉:G1 → G2 is a gts morphism, then the t-gts

morphism I(f) = 〈gT , gP , gι〉: I(G1)→ Î(G2) is given as

– gT = fT ;
– for each production p ∈ PG1

its image gP (p) is the rt-process [φfP (p)]r, where,
as above, φfP (p) is the process associated to the one-step derivation obtained
by applying fP (p) to its left-hand side;

– for each production p ∈ PG1
, gι(p) is a triple of isomorphisms mapping the

span ΠI(G2)([φfP (p)]r) to Lp ←֓ Kp →֒ Rp and making the two resulting
squares commute.

We are now ready to present the main result of the paper.

Theorem 1 (universality of abstraction). The abstraction functor
A : TGTSimp → GTS is right adjoint to the inclusion functor I.

Proof (Sketch). For each t-gts Z, we define the component at Z of the counit
ǫZ : I(A(Z))→ Z. This is an implementation morphism, thus a t-gts morphism

ǫZ : I(A(Z))→ Ẑ. Its type graph component is simply the inclusion of the stable
type graph into the full type graph, while the component on productions maps
each abstract rt-process of Z to itself. It remains to show that given a gts G and
a t-gts Z, for each implementation morphism f : I(G) → Z, there is a unique
h:G → A(Z) such that ǫZ ◦ I(h) = f .

Now, observe that morphism f maps each production of G to a rt-process of
Z. Since productions in A(G) are exactly the rt-processes of G, the morphism
h:G → A(G) can be defined identically. The proofs of uniqueness and of the fact
that ǫZ ◦ I(h) = f are long, but routine. ⊓⊔

6 Conclusions

The present paper carried on the investigation on transactional graph transfor-
mation systems, introduced in [1], as a tool for expressing transactional activities
in graph transformation. A transaction is defined as a shift-equivalence class of
derivations such that the starting and ending states are stable and all the in-
termediate states are unstable. Thus unstable items are intended to represent
temporary resources, only visible within a transaction, and the distinction be-
tween stable and unstable items is enforced by a typing mechanism.

The “indirect” definition of transactions based on the dichotomy between
stable and unstable items, inspired by the work on zero-safe nets [4], is motivated
by our understanding of graph transformation as a data-centered formalism,
where the rules of a system are applied non-deterministically, and any form of
control on the application of rules has to be encoded in the graphs.

14

As far as the realm of graph transformation is concerned, though, also more
traditional notions of transaction have been considered, most importantly in
the design of PROGRES [16]. PROGRES provides a development environment
where basic operations, defined by graph transformation rules, can be combined
using a rich set of control structures, including traditional programming lan-
guage constructs, various kinds of non-deterministic choices, as well as trans-
actions. The PROGRES approach is therefore similiar to the way transactions
are introduced in programming languages and other control-centered formalism,
and as a consequence a direct comparison with our approach is not feasible.

Besides reviewing the basic definitions concerning graph transactions, enrich-
ing and streamlining the original proposal, the main result of the present work is
the characterisation of the abstract system of a t-gts, including all transactions
as productions, in terms of a universal construction, presented as a right adjoint
functor. A key concept introduced in the present paper is that of implementation
morphisms among t-gtss, allowing to map productions to transactional pro-
cesses. Such morphisms are similar to the refinement morphisms of [11], where
productions can be mapped to arbitrary derivations: a deeper analysis of the
relationships among the two notions will be a topic of future work.

As mentioned in the introduction, the ACID properties are a canonical way
of characterising transactions, even if in our framework only the first three are
relevant. Let us discuss informally how such properties are guaranteed by the
notion of transaction presented in this paper. Atomicity is guaranteed by the
fact that computations that do not represent a transaction are forgotten at the
abstract level. Consistency is guaranteed because the initial and final states of a
transaction are all stable, and at the abstract level only stable graphs are consid-
ered. Isolation is guaranteed by the fact that a transaction, besides starting and
ending in stable states, is “minimal”, in the sense that all derivations that are
shift-equivalent to it are also transactions. Hence, intermediate unstable states
are only accessible inside the transaction itself. This implies that, if two transac-
tions can be applied in parallel to a stable graph, then all the direct derivations
of either of them are independent of the direct derivations of the other one. Thus,
as desired, the transactions can be interleaved in an arbitrary way.

Currently we are working on the definition of a notion of graph transformation
module, based on the theory presented in this paper. The idea is that a t-gts

can be seen as the implementation of a module, and its abstract gts as the
exported interface. Module composition mechanisms defined as suitable colimits
are under investigation, as well as the study of the precise relationship between
the new notion of module and existing ones in the literature (as in [11, 14, 13]).

Acknowledgements. We are mostly indebted to Roberto Bruni and Leila Ribeiro
for enlightening discussions about the topic of the paper, as well as to an anony-
mous referee for pointing out an inconsistency in the submitted version.

15

References

1. P. Baldan, A. Corradini, F.L. Dotti, L. Foss, F. Gadducci, and L. Ribeiro. Towards
a notion of transaction in graph rewriting. In R. Bruni and D. Varró, editors, Pro-

ceedings International Workshop on Graph Transformation and Visual Modeling

Techniques, Electr. Notes in Theor. Comp. Sci. Elsevier, 2006. To appear.
2. P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes: relating

processes and derivation traces. In K.G. Larsen, S. Skyum, and G. Winskel, editors,
Proceedings International Conference on Automata, Languages and Programming,
volume 1443 of Lect. Notes in Comp. Sci. Springer, 1998.

3. P. Baldan, A. Corradini, and U. Montanari. Unfolding of double-pushout graph
grammars is a coreflection. In H. Ehrig, G. Engels, H.J. Kreowski, and G. Rozen-
berg, editors, Proceedings International Workshop on Theory and Application of

Graph Transformations, volume 1764 of Lect. Notes in Comp. Sci., pages 145–163.
Springer, 1999.

4. R. Bruni and U. Montanari. Zero-safe nets: Comparing the collective and individual
token approaches. Info. & Comp., 156(1-2):46–89, 2000.

5. R. Bruni and U. Montanari. Transactions and zero-safe nets. In H. Ehrig, G. Juhás,
J. Padberg, and G. Rozenberg, editors, Advances in Petri Nets: Unifying Petri

Nets, volume 2128 of Lect. Notes in Comp. Sci., pages 380–426. Springer, 2001.
6. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and J. Padberg. The category

of typed graph grammars and its adjunctions with categories of derivations. In
J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, Proceedings International

Workshop on Graph Grammars and their Application to Computer Science, volume
1073 of Lect. Notes in Comp. Sci. Springer, 1996.

7. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-

maticae, 26(3/4):241–265, 1996.
8. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-

braic approaches to graph transformation I: Basic concepts and double pushout
approach. In Rozenberg [15], chapter 3, pages 163–245.

9. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of

Graph Grammars and Computing by Graph Transformation, Vol. 2: Applications,

Languages and Tools. World Scientific, 1999.
10. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of

Graph Grammars and Computing by Graph Transformation. Vol. 3: Concurrency,

Parallelism, and Distribution. World Scientific, 1999.
11. M. Große-Rhode, F. Parisi-Presicce, and M. Simeoni. Formal software specification

with refinements and modules of typed graph transformation systems. Journal of

Computer and System Science, 64(2):171–218, 2002.
12. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-

ited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.
13. R. Heckel, H. Ehrig, G. Engels, and G Täntzer. Classification and comparison of

module concepts for graph transformation systems. In Ehrig et al. [9], chapter 17,
pages 669–689.

14. H.-J. Kreowski and S. Kuske. Graph transformation units and modules. In Ehrig
et al. [9], chapter 15, pages 607–638.

15. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, Vol. 1: Foundations. World Scientific, 1997.
16. A. Schürr, A. Winter, and A. Zündorf. The PROGRES approach: Language and

environment. In Ehrig et al. [9], chapter 13, pages 487–550.

16

