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Abstract

The graph rewriting calculus is an extension of the p-calculus, handling graph like structures rather than
simple terms. The calculus over terms is naturally generalized by using unification constraints in addition
to the standard p-calculus matching constraints. The transformations are performed by explicit application
of rewrite rules as first class entities. The possibility of expressing sharing and cycles allows one to represent
and compute over regular infinite entities.

We propose in this paper a reduction strategy for the graph rewriting calculus which aims at maintaining
the sharing information as long as possible in the terms. The corresponding reduction relation is shown to
be confluent and complete w.r.t. the small-step semantics of the graph rewriting calculus.

1 Introduction

Main interest for term rewriting stem from functional and rewrite based languages
as well as from theorem proving. In particular, we can describe the behaviour of a
functional or rewrite based program by analyzing some properties of the associated
term rewriting system. In this framework, terms are often seen as trees but in
order to improve the efficiency of the implementation of such languages, it is of
fundamental interest to think and implement terms as graphs [BvEG'87]. In this
case, the possibility of sharing subterms allows to save space (by using multiple
pointers to the same subterm instead of duplicating the subterm) and to save time
(a redex appearing in a shared subterm will be reduced at most once and equality
tests can be done in constant time when the sharing is maximal).

Graph rewriting is a useful technique for the optimization of functional and
declarative languages implementations [PJ87]. Moreover, the possibility to define
cycles leads to an increased expressive power that allows one to represent easily reg-
ular infinite data structures. Cyclic term graph rewriting has been widely studied,
both from an operational [BVEGT87,AK96] and from a categorical /logical point of
view [CG99] (see [SPVE93] for a survey on term graph rewriting).
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The graph rewriting calculus, or pg-calculus, introduced in [Ber05], is a common
generalization of the cyclic A-calculus [AK97] and the p-calculus [CKO01], providing
a framework where pattern matching, graphical structures and higher-order capa-
bilities are primitive. The pg-calculus deals with cyclic terms with bound variables
and can express vertical sharing as well as horizontal sharing by means of a list
of recursion equations. In the pg-calculus computations related to the matching
are made explicit and performed at the object-level. The calculus, under suitable
linearity constraints for patterns, has been shown to be confluent [BBCKO07] and
expressive enough for simulating cyclic A-calculus and term-graph rewriting.

In view of a future implementation, we are interested in improving the efficiency
of the pg-calculus. To this aim we present a reduction strategy aimed at keeping
the sharing information as long as possible in pg-calculus terms. In the pg-calculus
the loss of sharing is caused by the application of the substitution rules, which
allow to create copies of (sub)terms of a pg-calculus term. Indeed, during the
computation, some loss of sharing is unavoidable, for example for making a rule
application explicit or for solving a matching constraint. However, a strategy which
suitably restricts the application of the substitution rules can avoid some useless
loss of sharing, leading to more compact normal forms. The strategy should allow
to perform essentially the same reductions to normal form as in the unconstrained
calculus, in the sense that the normal form of a term with respect to the strategy
(when it exists) should be the same as in the original calculus, up to sharing.

Indeed, we will show that, under suitable linearity constraints, the proposed
strategy is correct and complete with respect to the reduction relation of the
pg-calculus. Additionally, we will show that the reduction relation of the pg-calculus
induced by such strategy is confluent.

The paper is organized as follows. In the first section we review the graph
rewriting calculus. Section 3 describes the reduction strategy SharingStrat proposed
for preserving sharing in pg-calculus terms. In Section 4 we show that SharingStrat
is sound and complete with respect to the small step semantics of the pg-calculus.
Moreover, along the lines of the proof of confluence for the pg-calculus, we show
that the pg-calculus with SharingStrat is confluent. We conclude in Section 5 by
presenting some perspectives of future work.

2 The graph rewriting calculus

The syntax of the pg-calculus is presented in Fig. 1. As in the plain p-calculus,
A-abstraction is generalized by a rule abstraction P — G, where P is in general
an arbitrary term. There are two different application operators: the functional
application operator, denoted simply by concatenation, and the constraint appli-
cation operator, denoted by “_ []”. Terms can be grouped together into struc-
tures built using the operator “_ ! _”. This operator is useful for representing the
(non-deterministic) application of a set of rewrite rules and consequently, the non-
deterministic results. For example, the nondeterministic application of one of the
rules in {a — b, a — ¢} to the term a can be written (¢ — b a — ¢) a. This
term, as it will become clearer after the formal definition of the semantics of the
calculus (see Figure 2), reduces to (a — b) a l (a — ¢) a and then to b c. Note
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Terms Constraints
G,P =X (Variables) Cu=c¢ (Empty constraint)
| K (Constants) | X =G (Recursion equation)
| P — G (Abstraction) | P <G (Match equation)
| GG (Functional application) | C,C (Conjunction)
| GvG  (Structure)
| G [C] (Constraint application)

Fig. 1. Syntax of the pg-calculus

that the calculus is untyped, but type systems, in the style of those introduced for
the p-calculus in [BCKL03,Wac05], would be conceivable.

In the pg-calculus constraints are conjunctions (built using the operator “_, ) of
match equations of the form P <« G and recursion equations of the form X = G. The
empty constraint is denoted by e¢. The operator “_, " is supposed to be associative,
commutative, with € as neutral element.

We assume that the application operator associates to the left, while the other
operators associate to the right. To simplify the syntax, operators have different

“ b

priorities. Here are the operators ordered from higher to lower priority: “. 7,

cc_ s _77 cc_ 2 _’7 44_ [_]77 44_ << _77 44_ — _57 and 44_ _57'
The symbols G, H, P ... range over the set G of terms, z,y,... range over the
set X of variables, a,b,... range over a set I of constants. The symbols E, F,...

range over the set C of constraints.

We call algebraic the terms of the form (((f Gi) G2)...) Gy, with f € K,
G; € X UK or G; algebraic for ¢ = 1...n, and we usually denote them by
f(G1,Ga, ..., Gy).

We denote by e (black hole) a constant, already introduced in [AK96] using
the equational approach and also in [Cor93] using the categorical approach, to give
a name to “undefined” terms that correspond to the expression = [z = z] (self-
loop). The notation =, = is an abbreviation for the sequence = = z1,...,z, = z.
We use the symbol Ctx[] for a context with exactly one hole _. We say that a
pg-term is acyclic if it contains no sequence of constraints of the form Ctxg[zg] <
< Ctxq[11], Ctxglz1] <& Ctxslza], ..., Ctxpm[2n] < Ctxma1[wo], with n,m € N and
<« e {=,<}. A sequence of this kind is called a cycle.

For the purposes of this paper we restrict to left-hand sides of abstractions
and match equations that are acyclic, algebraic terms in normal form. The set
of all these terms, called patterns, is denoted by P. For instance, the pg-term
f(@) [y = g(y)] — a is not allowed since the abstraction has a cyclic left-hand side.

A pg-term is called well-formed if each variable occurs at most once as left-
hand side of a recursion equation. All the pg-terms considered in the sequel will be
implicitly assumed to be well-formed.

The notions of free and bound variables of pg-terms take into account the three
binders of the calculus: abstraction, recursion and match. Intuitively, variables on
the left hand-side of any of these operators are bound by the operator. As usual, we
work modulo a-conversion. The set of free variables of a pg-term G is denoted by
FV(G). A variable in a term G is called active, or in active position, if it appears free
in the left-hand side of an application occurring in GG. Moreover, given a constraint
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C we will refer to the set DV(C), of variables “defined” in C. This set includes, for
any recursion equation z = G in C, the variable x and for any match P < G in C,
the set of free variables of P. For a formal definition, see [BBCKO05].

Finally, in order to ensure the confluence of the calculus, we will assume all
patterns to be linear. Roughly, a pattern is called linear if each variable occurs free
at most once in the pattern.

Definition 2.1 (Linear pg-calculus) The class of (algebraic) linear patterns is
defined as follows:

Loo= X | K| ((KLo)L1)..) Lo | Lo [Xy =Ly, X = L]

where we assume that FV(L;) N FV(L;) = 0 for i # j. A constraint [L; <
< Gi,...,L, < Gy, where <€ {=,<}, is linear if all patterns Lq,..., Ly, are
linear and FV(L;)NFV(Lj) =0, i # j. The linear pg-calculus is the calculus where
all the patterns in the left-hand side of abstractions and all constraints are linear.

In this paper we will focus on the linear pg-calculus, hence the qualification
“linear” will be often omitted, and the involved patterns and constraints will be
assumed to be linear unless stated otherwise.

We define next an order over variables bound by a match or an equation. This
order will be later used in the definition of the substitution rule of the calculus,
which will allow one only “upward” substitutions, a constraint which is essential for
the confluence of the calculus (see [BBCKO07]). We denote by < the least pre-order
on recursion variables such that x > y if = Ctx[y] appears in the list of constraints
for some context Ctx[_]. The equivalence induced by the pre-order is denoted = and
we say that x and y are cyclically equivalent (x = y) if x > y > z (they lie on a
common cycle). We write z > y if ¢ > y and = # y.

Example 2.2 [Some pg-terms]

(i) In the rule (2 x f(x)) — ((y +y) [y = f(2)]) the sharing in the right-hand side
avoids the copying of the object instantiating f(z), when the rule is applied to
a pg-term.

(i) The pg-term x [z = cons(0,x)] represents an infinite list of zeros.

(ili) The pg-term f(z,y) [z = g(y),y = g(x)] is an example of twisted sharing that
can be expressed using mutually recursive constraints (to be read as a letrec
construct). We have that x > y and y > z, hence x = y.

The complete set of evaluation rules of the pg-calculus is presented in Fig. 2.
As in the plain p-calculus, in the pg-calculus the application of a rewrite rule to a
term is represented as the application of an abstraction. A redex can be activated
using the p rule in the BASIC RULES, which creates the corresponding matching
constraint. The computation of the substitution which solves the matching is then
performed explicitly by the MATCHING RULES and, if the computation is successful,
the result is a recursion equation added to the list of constraints of the term. This
means that the substitution is not applied immediately to the term but it is kept
in the environment for a delayed application or for deletion if useless, as expressed
by the GRAPH RULES.

More precisely, the first two rules p and 0 come from the p-calculus. For each of

4



BALDAN, BERTOLISSI, CIRSTEA, KIRCHNER

BASIC RULES:

(p) (P —G2)Gs —, G2 [P < G3)
(P — G2) [E] G3 —p G2 [P < G3, E|

(8) (G11G2)G3 —s G1 G311 G2 Gs
(G11G2) [E]Gs —5 (G1 G311 G2 Gs) [E]

MATCHING RULES:

(propagate) P < (G [E)) —p PKLGE ifP#x

(decompose) K(G1,...,Gn) < K(GY,...,G}) —ar G1 < GY,...,Gn <G,
with n > 0

(solved) r < G, FE —s =G, E ifx ¢ DV(E)

GRAPH RULES:

(external sub) Ctx[y] [y = G, E] —es CtX[G] [y = G, E]

(acyclic sub) G [P & Ctx[yl,y = G1,E] —ac G [P K Ctx[G1],y = G1, E]
if G1 is a variable or (z >y, Yoz € FV(P))
where K € {=,<}

(garbage) G [E,z =G —gc G [E]
if e & FV(E)UFV(G)
G e —ge G
(black hole)  Ctx[z] [z =0 x, E] —pn Ctx[o] [z =0 z, F]

G [P Cixlyl,y =0 y, E] —pn G [P <K Ctx[o],y =0 y, £]
if x>y, Ve e FV(P)

Fig. 2. Small-step semantics of the pg-calculus

these rules, an additional rule dealing with the presence of constraints is considered.

The MATCHING RULES and in particular the rule decompose are strongly related
to the theory modulo which we want to compute the solutions of the matching. In
this paper we consider the syntactical matching, which is known to be decidable,
but extensions to more elaborated theories are possible.

The GRAPH RULES are inherited from the cyclic A-calculus [AK97]. The first
two rules make a copy of a pg-term associated to a recursion variable into a term
that is inside the scope of the corresponding constraint. As already mentioned,
the substitution rule allows one to make the copies only upwards w.r.t. the order
defined on the variables of pg-terms. Recall that “_, 7 is assumed to be associative,
commutative and with e as neutral element, and thus evaluation steps are performed
modulo the corresponding theory.

We denote by — (— 1) and 5 () the relations induced by the set of rules
of Fig. 2 and by the subset of MATCHING RULES, respectively. For any two rules r
and s belonging to this set, we will write ., to express the two steps .

As mentioned above, the (linear) pg-calculus, with the rewrite relation s, has
been shown to be confluent [BBCKO07]. A term G is in normal form if no one of
the reduction rules of Fig. 2 can be applied to G. A reduction of a term H into its
normal form G, when it exists, is denoted by H »—»ﬁg! G.

Example 2.3 [A simple reduction]

(fla,a) = a) (f(y,y) [y = a])
= alflea) <fy,y) ly=all —p alfla,e) <[ly,y),y=ad
a0 o <<y,a <<y, y=al = ala<y,y=al (byidempotency)

e 0 la << a,y =al = aly=al —ye a
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Example 2.4 [Reduction to the normal form)]
Consider the term G = f(y,y) [y = z f(a),z = f(x) — z]. We show one of the
possible reductions of GG to its normal form.

fy,y) ly==2fla),z = f(x) — 2]

[

—ae f(y,9) ly = (f(x) = 2) f(a),2z = f(z) — 2]
= fy) ly=2 [f(2) < fla)],z = f(z) — 7]

—ak f(y,y) ly =2 [r <a],z = f(z) —» 7]

s fwy) ly=alr=al,z=f(z)—> 2]

es f(y,y) ly=alz=al,z=f(z) —»a]

=ye f(Y,y) [y =a,2 = f(z) — 1]
s fa,a) [y =a,2 = f(z) = 2] =g f(a,a)

Example 2.5 [Encoding of the Peano addition]
We suppose given the constants 0, S, add and rec. We define the following p-term
that computes the addition over Peano integers.

(add0y) —y

plus £ (recz) — (
add (S z)y) — S (z (recz) (addzy))

The variable z will contain a copy of plus to allow “recursive calls”. If we use the

notations m, m-+n and m—n for the terms S(...(50)...) with the right number

of S symbols, then the term plus (rec plus) (addmm) reduces to m—+n. Actually,

to obtain this result we also need a way of getting rid of some stuck subterms, in

which matching definitively fails (see [CLW03,CHWO06]).

3 A sharing strategy for p,-calculus

In view of a future efficient implementation of the calculus, we are interested in
studying suitable strategies that aim at keeping the sharing information as long as
possible in pg-terms.

Intuitively, the strategy should delay as much as possible the application of the
substitution rules, (external sub) and (acyclic sub), which can break the sharing
by duplicating terms. For instance, consider the reduction

flz,2) [z = (a—g(b))a]
s flla—g(b))a,z) [z = (a— g(b))d]
s f((a—g(b))a,(a— g(b))a) [z = (a > g(b))a]
=y f(9(b) [a < a],g(b) [a < a]) [z = (a — g(b))d]
=y f(9(b) [el,g(b) [e]) [ = (a — g(b))a]
—ye f(9(b), (b))
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The uncontrolled use of susbtitution induces useless and expensive (both in terms of
time and space) duplications of terms. For instance, in the case above, the following
reduction would be preferable

f(z,x

) [z = (a— g(b))d]
p f(z,2) [z=g
fla,x) [z =g

!

(0) [a < a]
P () [e]
—Yc f(l‘,ﬂj‘) [$ = g(b)]

The idea underlying the proposed strategy is to constrain substitution rules to be
applied only if they are needed for generating new redexes for the basic or matching
rules. Note that, in particular, substitutions which do not contribute to generating
new basic or matching redexes will never be applied. Hence the strategy will enlarge
the class of terms which are in normal form.

r, ) |x

For instance, we allow the application of the (external sub) rule to the terms
z alr = f(xr) »z]orzx alr=al (a— b)), since this is useful for creating,
respectively, a new (p) redex and a new (9) redex. Instead, (external sub) cannot be
applied to the terms f(z,z) [x = g(x)] or x [x = f(z)] which are actually considered
in normal form. Note, however, that capturing the notion of “substitution needed
for generating a new redex” is not straightforward since more than one substitution
step can be needed to generate a new redex for the basic or matching rules as it
happens below, where the generated redex is underlined:

yly=afla),x=f(2) =yl e fla) [y == fla),z = f(z) =y
—es (f(2) = y) fla) [y =z fla),x = f(z) = 2]

Note that a single step would suffice to generate the redex if we removed the acyclic-
ity constraint for substitutions, allowing the reduction

yly=xfla),x=f(z) »yl—yly=(f(2) »y) fla),z = f(2) =y

The definition of the strategy will rely on the fact, formally proved later, that the
above phenomenon is an instance of a completely general case.

There is one more situation in which we want to apply the substitution rules,
that is when we have trivial recursion equations of the kind = = y where both sides
are single variables, like in z xy + z [x = z,y = 2,z = 1]. In this case, we may
want to simplify the term to (z * z 4+ z) [z = 1] in which useless names have been
eliminated by garbage collection.

Hereafter, we call basic redez any term which has one of the shapes (P — G2) G,
(P — G2) [E] G3, (G1 1 G2) G3 or (G1 ! G2) [E] G3, which can be reduced using
the Basic rules in Fig. 2. Similarly, a term of the form P < G is called a matching
redex if it can be reduced by one of the MATCHING RULES.

We define next the reduction strategy we can adopt in the pg-calculus to maintain
the sharing information during the reduction as long as possible.

Definition 3.1 [Sharing Strategy] The evaluation strategy SharingStrat is defined
as follows.
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(i) All the evaluation rules but (external sub) and (acyclic sub) are applicable
without any restriction.

(ii) The rules (external sub) and (acyclic sub) are applied to a term G only if no
other rule is applicable and if
(a) their application replaces a variable by a variable (renaming), or
(b) their application creates (in one step) a basic or a matching redex, or
(c) the term G has the form G’ [z = Ctx[y],y = CtX'[z], E], with z = y and
Ctx[Ctx'[z]] includes a basic or a matching redex.

In other words the rules (external sub) and (acyclic sub) are applied when their
application leads to

¢ the instantiation of a variable by a variable (condition (ii)a);

e the instantiation of an active variable by an abstraction or a structure, which
produces a Basic redex (condition (7)b);

¢ the instantiation of a variable in a stuck match equation, which produces a Match-
ing reder, i.e., which enables a decomposition or constraint propagation w.r.t. the
match equation (condition (7i)b).

Additionally, condition (ii)c captures the fact that, given a term G [E] if a cyclic
substitution in £ would generate a redex, then one is allowed to apply some external
substitutions in order to reproduce the same redex in G.

Example 3.2 [Multiplication]

Let us use an infix notation for the constant “x”. The following p,-term corre-
sponds to the application of the rewrite rule R = x * s(y) — (x %y + ) to the term
1 % s(1) where the constant 1 is shared.

(@ *s(y) = (xxy+2)) (2%s(2) [ =1])
o oxy+ o [zxs(y) < (zxs(2) [z =1])]
=y oxy+a[xks(y) K zxs(z),z=1]
e Ty o[z <L 2,y <L 2,2 =1]
By rxy -t (r=2y=22=1]
s (%24 2) [t =2,y =2,2=1] (allowed by Def. 3.1(ii) a))

e (2xz+2) [2=1]
Notice that the term (z * z + z) [z = 1] is in normal form w.r.t. the strategy
SharingStrat but can be reduced to (1 %1+ 1) if no evaluation strategy is used.

Example 3.3 [Reduction to normal form)]
We consider the term G of Example 2.4 and we reduce it following the strategy
SharingStrat. We obtain:

) ly=2f(a),z = f(x) =]
—ac [(,y) ly = (f(x) =) fa), 2z = f(x) = x| (by Def. 3.1(ii) b))
= fwy) ly =2 [f(z) < fla)],z = f(z) = ]
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—ae f(y,y) [y =2 (v <a], 2 = f(z) — 2]

Y
Y

= fyy) ly=2lr=al,z=fz) =]

= gc f(y7y) [y =T [‘T - CLH

Note that the normal form with respect to SharingStrat, i.e., the term
f(y,y) [y = = [x = a]], represents a graph where the arguments of f are shared. In-
stead, as shown in Example 2.4, the reduction in the pg-calculus with no evaluation
strategy leads to the term f(a,a) where the arguments of f are duplicated.

Example 3.4 Consider the pg-term G = f(y)ly = = a,x = y 1 b]. Notice that
x =y, thus the (acyclic sub) rule cannot be applied. We have instead the reduction:

TWly=xa,2=y1b] —e f(za)ly=2 a,x=ylb] e

fyb) aly=zax=y1bl—sf((yarba))ly==za,z=ylY

This derivation is a valid derivation using the strategy SharingStrat. Indeed,
there exists a cyclic substitution step which transforms the pre-redex x a into a
basic redex (y ! b) a. Hence, the first (external sub) rule step can be performed
following Def. 3.1(ii) ¢). The second (external sub) rule step is needed to create
the basic redex (y 1 b) a, thus it is allowed for Def. 3.1(ii) b).

4 Properties of the sharing strategy

In this section we will show some basic properties of the pg-calculus with the evalu-
ation strategy SharingStrat. First, we will show the soundness and completeness of
the strategy SharingStrat w.r.t. pg-calculus (normalising) derivations. In the second
part, we will adapt the proof of confluence described in [BBCKO7] in order to prove
that the pg-calculus with the strategy SharingStrat is still confluent.

4.1  Soundness and completeness

Here we prove that the reduction strategy proposed for the pg-calculus is sound
and complete with respect to the one step semantics of the pg-calculus as defined
in Section 2. Actually, while soundness is immediate, completeness will be proved
only for normalising reductions.

Proposition 4.1 (Soundness) Given two pg-terms G and Gy, if Gz Gy, in the
pg-calculus with the strategy SharingStrat, then Gy G, in the pg-calculus.

Proof. Trivial. O

The completeness result relies on a couple of technical lemmata. In the proofs,
it will be convenient to refer to a notion of cyclic substitution, which consists of the
application of the rule (ac) without any restriction on the order of variables

G [P <« Ctx[yl,y = G1,E] —. G [P << Ctx[G1],y = G1, E]

We will denote by — any application of the substitution rules, i.e. (external sub)
or (acyclic sub), possibly cyclic, if this is specified.
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We remark that these cyclic substitutions are not allowed in the calculus, but
they are just used as a technically convenient tool in proofs. In particular we will
use the following simple fact.

Proposition 4.2 Let G be G’ [v = Ctx[y],y = CtX'[z], E] with {x,y} NFV(G’) # 0.
If G —. G [z = Ctx[CtX[2]],y = CtX'[z], E] and Ctx[CtX'[z]] includes a basic or
matching redex, then G is not in normal form with respect to SharingStrat.

Proof. If x =y, then by Definition 3.1(7i)c we can apply an external substitution,
replacing in G’ z or y with their definition. Otherwise, the considered step is a valid
application of rule (ac). O

Lemma 4.3 Let Ctx[], Ctx1[-] be two p-contexts such that Ctxq[x] is neither a free
variable nor a free constrained variable (i.e. neither x nor x [E] with DV(E) N
{z} = 0). Let Ctx[Ctx1[y]] be a p-term without redexes and Ctx[Ctx1[G]] be a p-
term containing a BASIC or MATCHING redex. Then, Ctx1[G] contains a BASIC or
MATCHING redez.

Proof. [Sketch.] By induction on the form of Ctx[_]. The interesting cases are the
followings:

o Ctx[] is an application. In this case Ctx[] = Ctx'[] G’ or Ctx[.] = G’ CtX[].
If Ctx/[z] is not a free (constrained) variable, then we conclude by inductive hy-
pothesis. Hence, either Ctx[.] = -G’ or Ctx[] = G’ _.

If Ctx[.] = - G, note that Ctxq[y] cannot be a variable and it cannot be
an abstraction or a structure (otherwise Ctx[Ctx;[y]] would contain a redex). If
Ctxq[y] is an application the property clearly holds since no new redexes can be
created by instantiation. If Ctx;[y] is a constraint application of the form H [E]
then, again, H cannot be an abstraction or a structure (otherwise Ctx[Ctxi[y]]
would contain a redex). If H = y then it can be instantiated by G and create a
new redex only if y € DV(F) but this contradicts the hypothesis.

If instead, Ctx[.] = G’ _ the property trivially holds.

e Ctx|.] is a matching equation. Then Ctx[.] = G’ < CtX[], and as above, when
Ctx'[] is non-empty we conclude by inductive hypothesis. Thus, let Ctx[] = _G’.
Since the term f(G1, Ga, ..., G,) < Ctx[y] contains redexes then Ctx; [y] is not of
the form f(Hy, Ha,...,H,) or H [E]. The term f(G1,Ga,...,G,) < Ctx1[G] is a
redex only if Ctxy[G] has the form f(Hy, H,. .., H,) or H [E] and this is possible
only if Ctx;[z] is a free (constrained) variable (which contradicts the hypothesis).

]

A key point is that it is not possible to create a BASIC or MATCHING redex by
further reducing a term that is in normal form w.r.t. the reduction strategy. To
prove this result, we use the following lemma.

Lemma 4.4 Let G,G1,Ga be pg-terms not containing trivial recursion equations,
i.e. equations of the form x = y. Let G s Gy —4 G2 be two (possibly cyclic)
substitution steps such that G and G1 do not contain a BASIC or MATCHING redex
and Go does. Then, there exists a (possibly cyclic) substitution step G —5 G, such
that the BASIC or MATCHING redex is present in GY.

10
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Proof.

 Consider the two-steps external sub reduction Ctx[y| [y = Ctx1[z], z = H, E] s
Ctx[Ctx1[2]] [y = Ctxi[z], 2 = H, E] —es Ctx[Ctxq[H]] [y = Ctxq[z],2 = H, E]
where only the last term contains a BASIC or MATCHING redex. Since by
hypothesis Ctxj[-] is not empty, by Lemma 4.3, we know that the redex is
in the term Ctx;[H]. Hence we can build the following one-step reduction:
Ctx[y] [y = Ctxq[z], 2 = H, E] 4 Ctx[y] [y = Ctxq[H]|,z = H, E] Notice that
this substitution step may be cyclic, if y and z are cyclically equivalent.

e For the two-steps acyclic sub reduction = [x = Ctx[y],y = Ctx1[z], 2 = H, E] g,
z [z = Cx[Ctxi[z]],y = Cixi[z],z2 = H,E] —es z [z = Ctx[Coxq[H]],y =
Ctxy[z], z = H, E] we proceed similarly as in the previous case.

¢ Consider the two-steps reduction Ctx[y| [y = Ctxq[z],2 = H, E] 4. Ctx[y] [y =
Ctx1[H],z = H, E] —.s Ctx[Ctx1[H]] [y = Ctxi[H],z = H, E] Since by hypoth-
esis Ctxi[] is not empty, the first acyclic sub step instantiates a variable in the
term Ctx;[z] without changing its structure. Thus, to create a redex, it is suf-
ficient to perform the one-step reduction Ctx[y] [y = Ctxi[z],z = H, E]| s
Ctx[Ctxq [2]] [y = Ctxq[z], 2 = H, E].

e Consider the two-steps reduction Ctx[y] [y = Ctxilz],z = H,E] i+
Ctx[Ctx1[2]] [y = Ctxi[z], 2 = H, E]| —q Ctx[Ctxq[z]] [y = Ctxq[H],z = H, E]
The redex is created in Ctx;[H|. The first external sub step copies a sub-term in
the graph but is without effect w.r.t. redex creation. We thus can build the one-
step reduction Ctx[y] [y = Ctxq[z], 2 = H, E] —4. Ctx[y| [y = Ctx1[H],z = H, E].

(]

Corollary 4.5 Let G be a pg-term with no trivial recursion equations, and let
G+ Gy, such that G, contains a BASIC or MATCHING redex and G does not, then
there exists a a (possibly cyclic) substitution step G —s G, such that the BASIC or
MATCHING redex is present in G,.

Proof. By induction, using Lemma 4.4. O

Using the above result and exploiting Proposition 4.2 we easily prove the result
below, from which compleneteness follows.

Corollary 4.6 If a pg-term G is in normal form with respect to the strategy Shar-
ingStrat and G —is,qc Gpn, then Gy, is in normal form with respect to the strategy
SharingStrat.

Theorem 4.7 (Completeness) Given a normalising pg-term G, if G»—»[g!Gn
in the pg-calculus, then there ewists a pg-term Gy, such that G»—»,g! G, in the
pg-calculus with the strategy SharingStrat and G, —es,ac Gn-

Proof. First, notice that in the pg-calculus with the strategy SharingStrat, the
reduction G+ . .. cannot be infinite, otherwise we would have an infinite reduction
also in the pg-calculus. Thus we have G '—»ﬁg! Gy,. Moreover, we have G, '—»ﬁg! Gn
in the pg-calculus, since the calculus is confluent. In order to conclude we have to
prove that G, —us e Gy (using only substitution steps).

This follows immediately from Corollary 4.6. In fact, by contradiction, if there

11
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Fig. 3. Properties of rewriting modulo AC1

were a reduction Gy, —s oc Gb, —nr Gh, then, by Corollary 4.6, Gy, would not be in
normal form w.r.t. the strategy SharingStrat. O

Notice that we cannot expect completeness to hold in general, since “useless”
unsharing followed by the reduction of some basic or matching redexed cannot be
simulated while obeying SharingStrat. For instance, the result in Theorem 4.7 would
not hold for the derivation

f(z,z) [v = (a—)a]
—es f((a—b)a,x) [ = (a —b)al
i f(b,x) [ = (a — b) a]

4.2 Confluence

We will next show that the (linear) pg-calculus calculus with the evaluation strategy
SharingStrat is confluent. The proof is obtained by adapting the confluence proof
for the pg-calculus [BBCKOT].

As already mentioned, in the pg-calculus, rewriting can be thought of as acting
over equivalence classes of pg-graphs with respect to the congruence relation, de-
noted by ~ ¢y or simply ACT, generated by the associativity, commutativity and
neutral element axioms for the “_,” operator. The relation induced over ACI-
equivalence classes is written —, s1c;. Concretely, in the proof, the notion of
rewriting modulo AC1 [PS81], denoted +,, c1, is used.

Figure 4.2 provides a graphical representation of some properties of a relation R
modulo the congruence relation ~4¢7. A formal definition can be found in [Ohl98].

A key property in the confluence proof is the compatibility of the reduction
relation with respect to the equivalence on terms, that holds for any subset of rules
of the pg-calculus. This property ensures that the rewrite relation is particularly
well-behaved w.r.t. the congruence relation ACT.

Clearly, according to the strategy SharingStrat, the order in which constraints
are listed does not influence the applicability of substitution rules. Therefore com-
patibility for the pg-calculus with strategy SharingStrat can be proved exactly as
for in the unrestricted calculus.

Lemma 4.8 (Compatibility of p,) Compatibility with AC1 holds for any rule r
of the pg-calculus with strategy SharingStrat.

e ACT T ~ACT S ~NACT S ACH

12
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Following the proof in [BBCKO07], the evaluation rules of the pg-calculus are
split into two subsets for which confluence is first proved independently. Then,
this intermediate result, together with a commutation lemma, is used for proving
the confluence of the union of the two subsets. Here this proof is adapted to the
pg-calculus calculus with the strategy SharingStrat, under the same assumptions of
linearity for patterns and constraints.

The first subset of rules, called 7, includes (p), (propagate), (decompose),
(solved), (garbage) and (black hole), and the second one, called X, consists of the
remaining rules, i.e. (external sub), (acyclic sub) and the (4). Since only the latter
set includes rules whose application is constrained by the strategy SharingStrat,
only the proofs concerning the relation induced by this set should be adapted w.r.t.
to the unrestricted version of the calculus. In what follows we detail the corre-
sponding proofs, while the properties that can be inherited from the unrestricted
calculus [BBCKO7] are just stated.

Proposition 4.9 The relation T is confluent modulo AC1 under the strategy Shar-
ingStrat.

The relation induced by the set of rules ¥ is shown to be confluent adapting
the complete development method defined for the A-calculus: a terminating version
of the relation (the development), denoted X, can be defined and its properties
are used for deducing the confluence of the original rewrite relation. Due to space
constraints, the development relation cannot be defined in full details here. Roughly,
a step G —yx H of such relation consists of the complete development, with respect
to X, of a set of redexes selected in the starting term G. The notation X arises from
the fact that the selection is done by underlining the redexes.

First of all, notice that since the strategy SharingStrat affects the rewrite relation
by restraining the application of the substitution rules, the relation X is clearly still
normalising under this strategy. Hence, for proving its confluence, we simply need
to verify its local confluence [Ohl98].

Lemma 4.10 The relation (esUac) is locally confluent modulo AC1 under the
strategy SharingStrat:

Gt es,ac ql
es,acl éesUac

! V,

G2|.......é.s....acG1 ~ACT G2

Proof. By analysis of the critical pairs. If the terms duplicated by the substitutions
are simply variables, then local confluence follows from the corresponding result for
the pg-calculus. A non trivial critical pair arises when one of the substitution steps
occurs in the term duplicated by the other substitution. For example, consider
the term G = Gy [y = z a,z = f(z a) 1 b,z = a — b] and the two (ac)-steps
leading respectively to Gi = Go [y = z a,x = f((a — b) a) 0 b,z = a — ]
and G2 = Go ly = (f(z a) 1 b) a,z = f(z a) L bz = a — b]. We can close the
critical pair since there exist two reductions G 4. G3 and Gy . G3 such that

13
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Gs=Goly=(f((a—=>b)a)lb) a,z = f((a—>b) a)b,z=a—Dbl.
O

The same arguments as for the unrestricted version of the calculus can be used
to show that the relations (es Uac) and (J) commute. Using this result and the
compatibility of the two relations we obtain the confluence of the ¥ relation and
then of the X relation.

Proposition 4.11 The relation ¥ is confluent modulo AC1 under the strategy
SharingStrat.

Once having proved the confluence of the two rewrite relation independently, we
prove general confluence of the (py, ACT) relation by showing the (strong) commu-
tation of the two subsets of rules [Ohl98].

Lemma 4.12 The relations 7 and > commute modulo AC1.

Proof. Since the relations 7 and ¥ are compatible with AC1, it is enough to show
strong commutation between the two relations instead of general commutation:

Gt T ql

El 2?0/1
v

Golm >G) ~ac1 G

If the applied X-rule is the (0) rule, the diagram can be closed as described
in [BBCKO7]. We are interested here in the cases where the applied X-rule is a
substitution rule. We proceed by analysing the critical pairs. The diagram can
always be closed under the strategy SharingStrat, since the T-rules do not interfere
with the creation of basic redexes. For example :

P < (Cxy] [y=H,E]) ———P < Ctx[yl,y = H, E

es ac:
)

P < (Ctx[H] [y = H,E])tp P < Cx[H],y = H,E

The basic redex Ctx[H]| can be created before or after the propagation of the list
of constraints. We can reason similarly for the application of the other 7-rules, like
the (decompose) or the (garbage) rule (in this case we may have zero X steps for
closing the diagram). O

Theorem 4.13 (Confluence of pg, AC1) The rewrite relation pg, AC1 is conflu-
ent modulo AC1 under the strategy SharingStrat.

Finally, the main theorem states the confluence of the p,/ACI relation, by
deducing it from the confluence of the (py, ACT) relation.

Theorem 4.14 (Confluence) The linear pg-calculus with the strategy Shar-
ingStrat is confluent modulo AC1T.

14
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5 Conclusions

In this paper we have proposed a reduction strategy SharingStrat for the pg-calculus,
an extension of the p-calculus able to deal with graph like structures. The strategy
SharingStrat aims at maintaining the sharing information as long as possible in the
pg-terms and is shown to be sound and complete (for normalising terms). Moreover,
the pg-calculus with the strategy SharingStrat is shown to be confluent, under some
restrictions of linearity on patterns.

There are several interesting directions for future research. We intend to in-
vestigate the issue of optimality for the reduction strategy, where the notion of
“optimal” has to be formally defined, for example in terms of time, space or sharing
conservation. In this case a natural reference to compare with would be the work on
optimal reduction for lambda calculus. Another matter for future work is to model
the rewrite strategy not at the meta level, but in the calculus itself. Taking inspira-
tion from analogous work in the p-calculus [CKLWO03], we would like to have rewrite
rules as primal strategies and iterate rewritings on a pg-term adding a fix-point op-
erator to the calculus. Moreover, to detect failures of rewrite rule application at
some occurences, we need also to define an exception handling mechanism.
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