Prova d'esame di

Fondamenti di algebra lineare e geometria (mat.disp.)

Laurea Triennale in Ingegneria dell'energia 17/09/2015

COGNOME e NOME
N. MATRICOLA

Quesiti preliminari A

Rispondere ad almeno 2 dei quesiti seguenti. Qualora non si risponda in maniera corretta ad almeno 2 dei quesiti, il compito verrà considerato insufficiente (e non verrà corretto il resto dell'elaborato).

Quesito 1. (V. 1 punti.)

Per quali valori di a e b in \mathbb{R} il numero complesso z := a + bi è invertibile? Esprimere l'inverso di z in funzione di a e b,

Quesito 2. (V. 1 punto.)

Determinare quali delle seguenti affermazioni sono vere per ogni W_1 , W_2 sottospazi vettoriali di $V = \mathbb{R}^4$.

- (a) Se $dim(W_1) = dim(W_2) = 1$ allora $dim(W_1 \cap W_2) = 1$
- (b) Se $dim(W_1) = dim(W_2) = 1$ allora $dim(W_1 + W_2) \le 2$
- (c) Se $W_1 + W_2 = V$ allora $dim(W_1) + dim(W_2) = 4$
- (d) Se $W_1 \cap W_2 = \{0\}$ allora $dim(W_1) + dim(W_2) \le 4$

Quesito 3. (V. 1 punto.)

Determinare quali delle seguenti affermazioni sono vere per ogni matrice ortogonale $A \in M_{n,n}(\mathbb{R})$ con n > 1.

- (a) |det(A)| = 1
- (b) AA è una matrice simmetrica.
- (c) AA è una matrice invertibile.
- (d) AA è una matrice ortogonale.

Esercizio 1. [Disuguaglianza triangolare] (V. 3 punti.) Dimostrare che

$$\forall v, w \in \mathbb{R}^n \quad \text{vale} \quad \|v + w\| \le \|v\| + \|w\|$$

Esercizio 2. (V. 3 punti.) Determinare le radici di $z^4+7-24i=0$ sapendo che una delle radici è $z_1 = 2 + i$

Esercizio 3. (V. 4 punti.)

Risolvere il seguente sistema lineare nelle incognite x,y,z al variare di $t\in\mathbb{R}.$

$$\begin{cases} y + (|t| - t)(z + 1) &= 0 \\ x - y &= 1 + t - |t| \\ y - x + (|t| + t)z &= |t| \end{cases}$$

Esercizio 4. (V. 8 punti.)

Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ un'applicazione lineare. Sia \mathcal{B}_1 la base di \mathbb{R}^3 costituita dai vettori nell'ordine $w_1 = (1,0,0), w_2 = (1,0,1)$ e $w_3 = (2,1,1)$ e sia \mathcal{B}_2 la base di \mathbb{R}^2 costituita dai vettori nell'ordine $v_1 = (1,1)$, e $v_2 = (1,-1)$. Sia infine

$$A_{\mathcal{B}_1}^{\mathcal{B}_2} = \left(\begin{array}{ccc} 4 & 0 & -2 \\ 0 & 2 & -2 \end{array}\right)$$

la matrice associata ad f rispetto alle basi \mathcal{B}_1 e \mathcal{B}_2 .

- (a) Calcolare i coefficienti della matrice A associata ad f rispetto alle basi canoniche.
- (b) Esiste un'applicazione lineare $g: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $g(v_1) = w_1$ e $g(v_2) = w_3$? E' unica? Se esiste ed è unica calcolare i coefficienti della matrice associata a g rispetto alle basi cononiche.

Esercizio 5. (V. 4 punti.) Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo definito da:

$$f(x, y, z) = (x + y, 2x, x - z)$$

determinare se esiste una base di \mathbb{R}^3 costituita da autovettori di f.

Esercizio 6. (V. 8 punti.)

Siano P_1 e P_2 due punti di $\mathbb{A}^3(\mathbb{R})$, sia v un vettore di \mathbb{R}^3 , sia $T:=\langle v\rangle$ e $W:=T^\perp$. Consideriamo inoltre in $\mathbb{A}^3(\mathbb{R})$ la retta $r=P_1+\langle v\rangle$ e il piano $\pi=P_2+W$ sia infine P_3 il punto di intersezione tra il piano π e la retta r. Assumiamo che P_1 , P_2 e v siano dati:

$$P_1 = (2, -3, -1)$$
 $P_2 = (5, -3, 5)$ $v = (-1, 2, 2)$

- (a) Determinare un sistema lineare minimale per W.
- (b) Trovare una base per W.
- (c) Determinare un sistema lineare minimale per T.
- (d) Determinare un'equazione per il piano π .
- (e) Determinare un sistema lineare di equazioni minimali per la retta r.
- (f) Calcolare le coordinate del punto P_3 .
- (g) Calcolare la distanza tra il punto P_2 e la retta r.
- (h) Calcolare la distanza tra il punto P_1 e il piano π .