Prova d'esame di

Fondamenti di algebra lineare e geometria (mat.disp.)

Laurea Triennale in Ingegneria dell'energia
??/??/2015

COGNOME e NOME
N. MATRICOLA
Quesiti preliminari Rispondere ad almeno 2 dei quesiti seguenti. Qualora non si risponda in maniera corretta ad almeno 2 dei quesiti, il compito verrà considerato insufficiente (e non verrà corretto il resto dell'elaborato).
Quesito 1. (V. 1 punti.) Sia T sottospazio di $V=\mathbb{R}^n$ e siano v_1,\ldots,v_k vettori di V . Cosa si intende per "i vettori v_1,\ldots,v_k sono generatori di T "?
Quesito 2. (V. 1 punti.) Fornire la definizione di base di un sottospazio vettoriale $T \leq \mathbb{R}^n$.
Quesito 3. (V. 1 punti.) Fornire la definizione di autovalore e autovettore di una matrice $A \in M_{n,n}(\mathbb{R})$.

Esercizio 1.

Dimostrare la seguente proposizione . . .

Esercizio 2.

Risolvere le seguenti equazioni su $\mathbb{C}:$

- (a) $Z + 2\bar{Z} = i$
- (b) $Z^2 = 3 4i$

Esercizio 3.

Risolvere il seguente sistema con incognite $x,y,z,w\in\mathbb{R}.$ (il sistema non è lineare in w!)

$$\begin{cases} x + y + w^3 &= 0 \\ 2y + z + w &= 0 \\ x + y + z &= 2 \\ z + w &= 2 \end{cases}$$

Esercizio 4.

Data la matrice A:

$$A := \left(\begin{array}{rrr} -1 & 3 & 1 \\ 0 & 0 & -1 \\ 0 & 2 & 3 \end{array} \right)$$

Trovare, se esiste, una matrice $H \in GL_3$ tale che posto $D := H^{-1}AH$ si abbia D matrice diagonale.

Esercizio 5.

Sia $\mathcal{B}_V = (v_1, v_2, v_3)$ una base di $V = \mathbb{R}^3$ e sia $\mathcal{B}_W = (w_1, w_2)$ una base di $W = \mathbb{R}^2$. Determinare al variare di $k, t \in \mathbb{R}$ (se esiste) un'applicazione lineare $f := V \to W$ tale che:

$$f(v_1 - tv_2) = -tkw_1 + (k - t^2)w_2$$

$$f(v_2 + v_3) = kw_1 + tw_2$$

$$f(v_1 + v_2 + v_3) = (k - t)w_1 + (1 - t)kw_2$$

calcolare la matrice $A_{\mathcal{B}_V}^{\mathcal{B}_W} \in M_{2,3}$ associata ad f rispetto alle basi \mathcal{B}_V e \mathcal{B}_W .