Esercizi 9 17\07\2016

Esercizi numero 4 e 5 degli appelli 2014-2015

David Barbato

L'esercizio 4 dell'appello 2 sarà accessibile dalla terza settimana di maggio.

Appello 1 2014-2015

Esercizio 4.

Data la matrice A:

$$A := \left(\begin{array}{cccc} 1 & -1 & -1 & -1 \\ 0 & 2 & 3 & 3 \\ 0 & 0 & -4 & -6 \\ 0 & 0 & 3 & 5 \end{array}\right)$$

- (a) Determinare gli autovalori di A e la loro molteplicità algebrica e geometrica.
- (b) Trovare, se esiste, una matrice $H \in GL_4$ tale che posto $D := H^{-1}AH$ si abbia D matrice diagonale.

Esercizio 5.

Sia $f: \mathbb{R}^2 \to \mathbb{R}^3$ un'applicazione lineare. Sia \mathcal{B}_1 la base di \mathbb{R}^2 costituita dai vettori nell'ordine $v_1 = (1,0)$ e $v_2 = (1,-1)$ e sia \mathcal{B}_2 la base di \mathbb{R}^3 costituita dai vettori nell'ordine $w_1 = (1,0,0)$, $w_2 = (2,0,1)$ e $w_2 = (2,1,1)$. Sia infine

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \\ 1 & -1 \end{array}\right)$$

la matrice associata ad f rispetto alle basi canoniche. Calcolare i coefficienti della matrice $A_{\mathcal{B}_1}^{\mathcal{B}_2}(f)$.

Appello 2 2014-2015

Esercizio 4.

Siano $T \in W$ i due sottospazi di \mathbb{R}^4 definiti da:

$$T = \langle (4, 4, 3, 0), (4, 3, 3, 0), (4, -4, 3, 0) \rangle$$

$$W = \langle (3, 3, 4, 0), (3, 4, 4, 0), (3, -3, 4, 0) \rangle.$$

Sia infine A la matrice associata alla proiezione ortogonale sullo spazio T.

- (a) Stabilire se gli spazi T e W sono uguali.
- (b) Trovare una base ortonormale per T.
- (c) Calcolare i coefficienti della matrice A.

Esercizio 5.

Al variare di $t \in \mathbb{R}$ sia A_t la matrice seguente:

$$A_t := \left(\begin{array}{cccc} 4 - t & 0 & t - 2 \\ 2t - 4 & t & 2 - t \\ 2 - t & 0 & t \end{array} \right)$$

- (a) Determinare gli autovalori di A_t e la loro molteplicità algebrica. (In funzione di t.)
- (b) Per quali valori di t esiste una matrice $H \in GL_3$ tale che posto $D := H^{-1}AH$ si abbia D matrice diagonale?

Appello 3 2014-2015

Esercizio 4.

Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ un'applicazione lineare. Sia \mathcal{B}_1 la base di \mathbb{R}^3 costituita dai vettori nell'ordine $w_1 = (1, 0, 0), w_2 = (1, 0, 1)$ e $w_3 = (2, 1, 1)$ e sia \mathcal{B}_2 la base di \mathbb{R}^2 costituita dai vettori nell'ordine $v_1 = (1, 1)$, e $v_2 = (1, -1)$. Sia infine

$$A_{\mathcal{B}_1}^{\mathcal{B}_2} = \left(\begin{array}{ccc} 4 & 0 & -2\\ 0 & 2 & -2 \end{array}\right)$$

la matrice associata ad f rispetto alle basi \mathcal{B}_1 e \mathcal{B}_2 .

- (a) Calcolare i coefficienti della matrice A associata ad f rispetto alle basi canoniche.
- (b) Esiste un'applicazione lineare $g: \mathbb{R}^2 \to \mathbb{R}^3$ tale che $g(v_1) = w_1$ e $g(v_2) = w_3$? E' unica? Se esiste ed è unica calcolare i coefficienti della matrice associata a g rispetto alle basi cononiche.

Esercizio 5.

Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo definito da:

$$f(x, y, z) = (x + y, 2x, x - z)$$

determinare se esiste una base di \mathbb{R}^3 costituita da autovettori di f.

Appello 4 2014-2015

Esercizio 4. (V. 8 punti.)

Data la matrice A:

$$A := \left(\begin{array}{cccc} -2 & 0 & -1 & -2 \\ 3 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 4 & 0 & 1 & 4 \end{array}\right)$$

- (a) Determinare gli autovalori di A e la loro molteplicità algebrica e geometrica.
- (b) Trovare, se esiste, una matrice $H \in GL_4$ tale che posto $D := H^{-1}AH$ si abbia D matrice diagonale.

Esercizio 5. (V. 5 punti.)

Definiamo al variare di $t \in \mathbb{R}$ i seguenti sottospazi vettoriali di \mathbb{R}^4

$$T_t := \langle (1, 1, t, -t), (t, t, 1, -1), (1, 1, 1, -1) \rangle$$

$$W_t := \langle (t, 1, t, -1), (0, 1 - t, 0, 1 - t), (1, 1, 1, -1) \rangle$$

- (a) Per quali valori di $t \in \mathbb{R}$ si ha $dim(T_t) = 3$?
- (b) Per quali valori di $t \in \mathbb{R}$ si ha $dim(W_t) = 2$?
- (c) Per quali valori di $t \in \mathbb{R}$ si ha $T_t = W_t$?
- (d) Per quali valori di $t \in \mathbb{R}$ si ha $dim(T_t \cap W_t) = 1$?
- (e) Per quali valori di $t \in \mathbb{R}$ si ha $dim(T_t + W_t) = 4$?

Soluzioni

Esercizio 4 (appello 2)

(a) Applichiamo il metodo di riduzione di Gauss Jordan alla matrice associata ai generatori di T e W.

$$\begin{pmatrix} 4 & 4 & 3 & 0 \\ 4 & 3 & 3 & 0 \\ 4 & -4 & 3 & 0 \end{pmatrix} \xrightarrow{Gauss-Jordan} \begin{pmatrix} 1 & 0 & \frac{3}{4} & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 3 & 4 & 0 \\ 3 & 4 & 4 & 0 \\ 3 & -3 & 4 & 0 \end{pmatrix} \xrightarrow{Gauss-Jordan} \begin{pmatrix} 1 & 0 & \frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Le matrici di Gauss-Jordan associate agli spazi vettoriali T e W sono diverse quindi T e W sono sottospazi diversi.

(b) Dalla riduzione di Gauss-Jordan otteniamo che $((1,0,\frac{3}{4},0),(0,1,0,0))$ è una base, osserviamo inoltre che i due vettori $(1,0,\frac{3}{4},0),(0,1,0,0)$ sono già ortogonali quindi per avere una base ortonormale basta renderli di norma 1.

$$\mathcal{B}_{T} = (v_{1}, v_{2}) \qquad \text{con } v_{1} = \left(\frac{4}{5}, 0, \frac{3}{5}, 0\right) \text{ e } v_{2} = (0, 1, 0, 0)$$
(c)
$$A = \begin{pmatrix} v_{1} \end{pmatrix} \underbrace{v_{1}}_{} + \begin{pmatrix} v_{2} \end{pmatrix} \underbrace{v_{2}}_{}$$

$$A = \begin{pmatrix} \frac{16}{25} & 0 & \frac{12}{25} & 0\\ 0 & 1 & 0 & 0\\ \frac{12}{25} & 0 & \frac{9}{25} & 0\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Esercizio 5 (appello 2)

Calcoliamo prima di tutti il polinomio caratteristico.

$$p(\lambda) = (t - \lambda)(2 - \lambda)^2$$

Occorre a questo punto distinguere due casi: t = 2 e $t \neq 2$.

- (a) Se t=2 c'è un solo autovalore $\lambda=2$ con molteplicità algebrica 3 Se $t\neq 2$ ci sono 2 autovalori: $\lambda_1=t$ con molteplicità algebrica 1 e $\lambda_2=2$ con molteplicità algebrica 2.
- (b) CASO t=2. Se t=2 allora la matrice A_t diventa:

$$A_2 := \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array}\right) = 2I$$

La matrice A_2 è chiaramente diagonalizzabile (è già giagonale). CASO $t \neq 2$. Riassumendo si ha:

$$\lambda_1 = t, \text{ m.a.}(\lambda_1) = 1$$

 $\lambda_2 = 2, \text{ m.a.}(\lambda_2) = 2$

chiaramente si ha m.g. $(\lambda_1) = 1$, vediamo cosa succede per λ_2 . Scriviamo prima di tutto la matrice $A_t - \lambda_2 I$ e riduciamo con Gauss-Jordan:

$$\begin{pmatrix} 2-t & 0 & t-2 \\ 2t-4 & t-2 & 2-t \\ 2-t & 0 & t-2 \end{pmatrix} \xrightarrow{Gauss-Jordan} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Il rango di $A_t - \lambda_2 I$ è 2 dunque si ha m.g. $(\lambda_2)=1$ quindi A_t non è diagonalizzabile per $t \neq 2$

Esercizio 4 (appello 3)

(a) Siano B_1 e B_2 le matrici associate alle basi \mathcal{B}_1 e \mathcal{B}_2 .

$$B_1 = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \qquad B_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

La matrice cercata è data da:

$$A = B_2 \cdot A_{\mathcal{B}_1}^{\mathcal{B}_2} \cdot B_1^{-1} = \begin{pmatrix} 4 & -10 & -2 \\ 4 & -2 & -6 \end{pmatrix}$$

(b) Detoniamo con $C_{\mathcal{B}_2}^{\mathcal{B}_1}$ la matrice associata a g rispetto alle basi \mathcal{B}_2 e \mathcal{B}_1 e denotiamo con C la matrice associata a g rispetto alle basi canoniche. La prima matrice è data dalle ipotesi:

$$C_{\mathcal{B}_2}^{\mathcal{B}_1} = \left(\begin{array}{cc} 1 & 0\\ 0 & 0\\ 0 & 1 \end{array}\right)$$

mentre C può essere ricavata come nel quesito precedente

$$C = B_1 \cdot C_{\mathcal{B}_2}^{\mathcal{B}_1} \cdot B_2^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Un altro modo per risolvere l'esercizio poteva essere quello di scrivere la matrice associata alle equazioni: g(1,1) = (1,0,0) e g(1,-1) = (2,1,1) e poi ridurre con il metodo di Gauss-Jordan.

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & -1 & 2 & 1 & 1 \end{pmatrix} \xrightarrow{Gauss-Jordan} \quad \begin{pmatrix} 1 & 0 & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

e quindi

$$C = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Esercizio 5 (appello 3)

La matrice A associata ad f è data da:

$$A = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 1 & 0 & -1 \end{array}\right)$$

Procedendo come al solito calcoliamo il polinomio caratteristico

$$\det(A - \lambda I) = -(\lambda + 1)^{2}(\lambda - 2)$$

dunque ci sono due autovalori distinti $\lambda_1 = -1$ e $\lambda_2 = 2$. L'autovalore λ_1 ha molteplicità algebrica 2. Per sapere se f ammette una base di autovettori occorre calcolare la molteplicità geometrica di λ_1 .

$$A - \lambda_1 I = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

Il Rango di $A - \lambda_1 I$ è 2 dunque la molteplicità geometrica di λ_1 è 1 e la funzione f non ammette una base di autovettori.