Analisi Stocastica 2010/11 – Foglio di esercizi n. 1[†]

Esercizio 1. Siano X e S due variabili aleatorie reali *indipendenti*, tali che $X \sim \mathcal{N}(0,1)$ mentre P(S=+1)=p, P(S=-1)=1-p, dove $p \in (0,1)$ è un parametro fissato. Definiamo Z:=SX.

- (a) Si mostri che $Z \sim \mathcal{N}(0,1)$.
- (b) (*) Si mostri che il vettore (X, Z) non è normale.
- (c) Si mostri che le variabili X e Z non sono indipendenti.

[Sugg. Può essere utile usare l'identità $1=\mathbf{1}_{\{S=1\}}+\mathbf{1}_{\{S=-1\}}]$

Esercizio 2. Data una variabile aleatoria reale $X \sim \mathcal{N}(0, \sigma^2)$, si calcoli $E(e^{tX^2})$ per $t \in \mathbb{R}$.

[Sugg. Si usi la formula del cambio di variabili]

Esercizio 3. Siano X_1, \ldots, X_n variabili aleatorie reali i.i.d. con legge $\mathcal{N}(0, \sigma^2)$. In altri termini $X := (X_1, \ldots, X_n) \sim \mathcal{N}(0, \sigma^2 I_n)$. Definiamo $Y_k := \sum_{i=1}^k X_i$, per 1 < k < n, cioè

$$Y_1 := X_1$$
, $Y_2 := X_1 + X_2$, ... $Y_n := X_1 + \ldots + X_n$.

- (a) Si mostri che $Y := (Y_1, \dots, Y_n)$ è un vettore normale.
- (b) Si determinino il vettore media μ e la matrice delle covarianze Γ di Y.
- (c) (*) Si scriva la densità di Y.

 $[\mathit{Sugg}.$ Si noti che Y è una trasformazione lineare di X]

- Esercizio 4. (a) Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione in uno spazio topologico E. Supponiamo che esista $\overline{x}\in E$ tale che, per ogni sottosuccessione $\{x_{n_k}\}_{k\in\mathbb{N}}$ di $\{x_n\}_{n\in\mathbb{N}}$, è possibile estrarre un'ulteriore sotto-sottosuccessione $\{x_{n_k'}\}_{k\in\mathbb{N}}$ che converge a \overline{x} . Si dimostri che l'intera successione $\{x_n\}_{n\in\mathbb{N}}$ converge a \overline{x} . [Sugg. Si mostri che, per ogni aperto contenente \overline{x} , i termini x_n che non appartengono all'aperto sono necessariamente in numero finito.]
- (b) Siano X, $\{X_n\}_{n\in\mathbb{N}}$ variabili aleatorie reali. Supponiamo che, per ogni sottosuccessione di $\{X_n\}_{n\in\mathbb{N}}$, sia possible estrarre una sotto-sottosuccessione che converge a X in L^p (risp. in probabilità). Si mostri che allora la successione completa $\{X_n\}_{n\in\mathbb{N}}$ converge a X in L^p (risp. in probabilità). [Sugg. Si applichi opportunamente il punto precedente.]

Soluzione 1. (a) Usando l'identità $1=\mathbf{1}_{\{S=1\}}+\mathbf{1}_{\{S=-1\}}$ e sfruttando l'indipendenza di X e S, per $\vartheta\in\mathbb{R}$ si ha

$$\begin{split} \mathbf{E}(e^{i\vartheta Z}) &= \mathbf{E}(e^{i\vartheta SX}) = \mathbf{E}(e^{i\vartheta X}\,\mathbf{1}_{\{S=1\}}) + \mathbf{E}(e^{-i\vartheta X}\,\mathbf{1}_{\{S=-1\}}) \\ &= \mathbf{E}(e^{i\vartheta X})\,p + \mathbf{E}(e^{-i\vartheta X})\,(1-p) = e^{-\vartheta^2/2}\,(p\,+\,(1-p)) = e^{-\vartheta^2/2}\,, \\ \mathrm{da\ cui\ segue\ che}\ Z \sim \mathcal{N}(0,1). \end{split}$$

(b) Se (X,Z) fosse un vettore normale, la variabile X+Z sarebbe normale. Ma X+Z=X(1+S), da cui si vede che sull'evento $\{S=-1\}$ si ha X+Z=0, mentre sull'evento $\{S=1\}$ si ha $X+Z=2X\neq 0$ q.c., perché $X\sim \mathcal{N}(0,1)$. Quindi $P(X+Z=0)=P(S=-1)=1-p\in(0,1)$, che è impossibile per una variabile aleatoria normale.

In alternativa, si mostra facilmente che $E(e^{i\vartheta(X+Z)}) = p e^{-2\vartheta^2} + (1-p)$, che non è la funzione caratteristica di una variabile normale per nessun $p \in (0,1)$.

(c) Se le variabili X e Z fossero indipendenti, il vettore (X,Z) sarebbe normale, in contraddizione col punto precedente.

Soluzione 2. Con un semplice cambio di variabili si ha, per $t < \frac{1}{2\sigma^2}$,

$$E(e^{tX^2}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} e^{tx^2} e^{-\frac{x^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}\sigma} \int_{\mathbb{R}} e^{-(\frac{1}{2\sigma^2} - t)x^2} dx$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \frac{1}{\sqrt{\frac{1}{2\sigma^2} - t}} \int_{\mathbb{R}} e^{-x^2} dx = \frac{1}{\sqrt{1 - 2\sigma^2 t}},$$

avendo usato l'integrale noto $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$. Per $t \ge \frac{1}{2\sigma^2}$ si ha invece $E(e^{tX^2}) = +\infty$ (infatti l'integrando $e^{-(\frac{1}{2\sigma^2} - t)x^2}$ diverge per $x \to \infty$).

Soluzione 3. (a) Per definizione si ha Y = AX, dove A è la matrice $n \times n$ definita da $A_{ij} = 1$ per $j \le i$, mentre $A_{ij} = 0$ per j > i:

$$A = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \ddots & 0 \\ 1 & 1 & 1 & \ddots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 1 & \cdots & \cdots & 1 \end{pmatrix} . \tag{1}$$

È noto che una trasformazione lineare di un vettore normale è ancora normale.

(b) Ricordiamo che $X \sim \mathcal{N}(0, \sigma^2 I_n)$ e Y = AX. Per proprietà note dei vettori normali si ha dunque $Y \sim \mathcal{N}(\mu, \Gamma)$ dove $\mu = A0 = 0$ e $\Gamma = A(\sigma^2 I_n)A^* = \sigma^2 AA^*$; dato che $A_{ij} = \mathbf{1}_{(j \leq i)}$, si ha

$$\Gamma_{ij} \ = \ \sigma^2 \sum_{k=1}^n A_{ik} A_{jk} \ = \ \sigma^2 \sum_{k=1}^n \mathbb{1}_{(k \le i)} \, \mathbb{1}_{(k \le j)} \ = \ \sigma^2 \sum_{k=1}^n \mathbb{1}_{(k \le \min\{i,j\})} \ = \ \sigma^2 \min\{i,j\} \, .$$

[†]Ultima modifica: 27 gennaio 2011.

Una dimostrazione più diretta si ottiene notando che $Cov(X_h, X_k) = \sigma^2 \delta_{h,k}$, da cui

3

$$\Gamma_{ij} := \text{Cov}(Y_i, Y_j) = \text{Cov}\left(\sum_{h=1}^{i} X_h, \sum_{k=1}^{j} X_k\right) = \sum_{h=1}^{i} \sum_{k=1}^{j} \text{Cov}(X_h, X_k)$$
$$= \sigma^2 \sum_{h=1}^{i} \sum_{k=1}^{j} \delta_{h,k} = \sigma^2 \min\{i, j\}.$$

Una rappresentazione grafica di Γ è come segue:

$$\Gamma = \sigma^2 \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 1 & 2 & 2 & \cdots & 2 \\ 1 & 2 & 3 & \cdots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & 3 & \cdots & n \end{pmatrix}.$$

(c) Si noti che la densità di ciascuna delle variabili X_i è data da $f_{X_i}(x) = (\sqrt{2\pi}\sigma)^{-1}e^{-x^2/(2\sigma^2)}$. Dato che le variabili X_i sono indipendenti, la densità del vettore $X = (X_1, \ldots, X_n)$ è data per $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ da

$$f_X(x) = \prod_{i=1}^n f_{X_i}(x_i) = \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2} = \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\frac{1}{2\sigma^2} \langle x, x \rangle}.$$

Dato che Y = AX con $det(A) = 1 \neq 0$, cf. (1), anche Y è assolutamente continuo e la sua densità è data per $y = (y_1, \dots, y_n) \in \mathbb{R}^n$ da

$$f_Y(y) = |\det(A)|^{-1} f_X(A^{-1}y) = \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\frac{1}{2\sigma^2} \langle A^{-1}y, A^{-1}y \rangle}.$$

Si noti che questa espressione coincide con la formula vista a lezione.

Resta da calcolare l'inversa di A, e per questo conviene invertire la relazione che lega X e Y: infatti si ha $X_1 = Y_1$, $X_2 = Y_2 - Y_1$ e più in generale $X_i = Y_i - Y_{i-1}$ per $2 \le i \le n$. Dato che $X = A^{-1}Y$, ciò significa che

$$A^{-1} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{pmatrix}.$$

Quindi $A^{-1}y = (y_1, y_2 - y_1, \dots, y_n - y_{n-1})$ e otteniamo

$$f_Y(y) = \frac{1}{(2\pi)^{n/2}\sigma^n} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - y_{i-1})^2},$$

dove abbiamo posto per semplicità $y_0 := 0$.

Soluzione 4. (a) Fissato un aperto $A\ni \overline{x}$, i termini della successione $\{x_n\}_{n\in\mathbb{N}}$ che non appartengono ad A sono necessariamente in numero finito (in caso contrario esisterebbe una sottosuccessione composta da tali termini, da cui evidentemente non si può estrarre alcuna sotto-sottosuccessione convergente a \overline{x} , il che contraddice l'ipotesi). Tra i termini della successione che non appartengono ad A, indichiamo con x_{n_A} l'ultimo in ordine di apparizione (cioè quello con l'indice più grande). Abbiamo dunque mostrato che, per ogni aperto $A\ni \overline{x}$, esiste $n_A\in\mathbb{N}$ tale che per $n>n_A$ si ha $x_n\in A$: ciò significa proprio che la successione $\{x_n\}_{n\in\mathbb{N}}$ converge verso \overline{x} .

4

(b) Poniamo $x_n := \mathrm{E}(|X_n - X|^p)^{1/p} = \|X_n - X\|_p$. Possiamo riformulare l'ipotesi nel modo seguente: per ogni sottosuccessione di $\{x_n\}_{n \in \mathbb{N}}$, si può estrarre una sotto-sottosuccessione che converge a zero. Dal punto (a) segue dunque che l'intera successione $\{x_n\}_{n \in \mathbb{N}}$ tende a zero, e ciò significa che $X_n \to X$ in L^p . Per la convergenza in probabilità il discorso è analogo: basta porre $x_n := \mathrm{P}(\|X_n - X\| > \varepsilon)$, per $\varepsilon > 0$ fissato.