Analisi Stocastica 2010/11 - Foglio di esercizi n. 4

Esercizio 1. Sia $B = \{B_t\}_{t>0}$ un moto browniano reale e definiamo le variabili

$$\tau_a := \inf\{t \ge 0 : B_t = a\}, \qquad S_t := \sup_{0 \le u \le t} B_u.$$

Ricordiamo il principio di riflessione: $P(S_t \ge a) = P(\tau_a \le t) = P(|B_t| \ge a)$.

- (a) Si ricavi la densità della variabile S_t . [Si consideri innanzitutto la funzione di ripartizione di S_t .]
- (b) Si mostri che vale la relazione $P(\tau_a \le t) = P(|B_1| \ge \frac{a}{\sqrt{t}})$, per ogni a, t > 0.
- (c) (*) Si deduca che per ogni $a \in \mathbb{R}$ si ha $P(\tau_a < \infty) = 1$.
- (d) Si determini la densità della variabile τ_a . Quanto vale $E(\tau_a)$?
- (e) (*) Si mostri in dettaglio come dal punto (b) segue che, q.c.,

$$\limsup_{t \to \infty} B_t = +\infty, \qquad \liminf_{t \to \infty} B_t = -\infty.$$

Esercizio 2. Sia $B = \{B_t\}_{t\geq 0}$ un moto browniano reale, di cui indichiamo con $\mathcal{G}_t := \sigma(\{B_u\}_{0\leq u\leq t})$ la filtrazione naturale. Supponiamo per semplicità che le traiettorie $t\mapsto B_t(\omega)$ siano continue per ogni $\omega\in\Omega$ (e non solo q.c.). Definiamo

$$A_n := \left\{ \sup_{0 \le u \le \frac{1}{n}} B_u > 0 \right\}, \quad \text{per } n \in \mathbb{N}, \qquad A := \bigcap_{n \in \mathbb{N}} A_n.$$

Ci si convinca che l'evento A può essere descritto come "in ogni intorno destro di 0 il moto browniano assume valori strettamente positivi".

- (a) Si mostri che $A_{n+1} \subseteq A_n$, $\forall n \in \mathbb{N}$, e dunque $P(A) = \lim_{n \to \infty} P(A_n)$ (perché?).
- (b) Si spieghi perché $A_n \supseteq \{B_{\underline{1}} > 0\}$. Si deduca che $P(A) \ge \frac{1}{2}$.
- (c) Si spieghi perché $A \in \mathcal{G}_{0+}$. Si deduca che P(A) = 1.
- (d) Si mostri che P(C) = 1, dove $C := \bigcap_{n \in \mathbb{N}} \{\inf_{0 \le u \le 1} B_u < 0\}$.
- (e) (*) Si mostri in dettaglio che, per q.o. $\omega \in \Omega$, esistono due successioni $\{s_n(\omega)\}_{n\in\mathbb{N}}$ e $\{t_n(\omega)\}_{n\in\mathbb{N}}$ tali che $s_n(\omega)\downarrow 0$ e $t_n(\omega)\downarrow 0$ per $n\to\infty$, con la proprietà che $B_{s_n(\omega)}(\omega)<0$ e $B_{t_n(\omega)}(\omega)>0$ per ogni $n\in\mathbb{N}$.

Esercizio 3 (Trivialità di coda per il moto browniano). (*) Sia $B = \{B_t\}_{t\geq 0}$ un moto browniano reale. Per $t\geq 0$ definiamo la σ -algebra $\mathcal{H}_t := \sigma(\{B_u\}_{u\in[t,\infty)})$. Si noti che \mathcal{H}_t è decrescente in t. Definiamo la σ -algebra di coda ponendo $\mathcal{H}_\infty := \bigcap_{t\geq 0} \mathcal{H}_t$. Si dimostri che \mathcal{H}_∞ è banale: per ogni $A\in\mathcal{H}_\infty$ si ha P(A)=0 oppure P(A)=1. [Sugg.: dedurre il risultato dalla legge 0–1 di Blumenthal applicata a . . .]

Soluzione 1. (a) Per il principio di riflessione

$$P(S_t < a) = P(|B_t| < a) = \frac{2}{\sqrt{2\pi t}} \int_0^a e^{-\frac{1}{2t}x^2} dx,$$

da cui, derivando rispetto ad a, si ottiene

$$f_{S_t}(x) = \frac{2}{\sqrt{2\pi t}} e^{-\frac{1}{2t}x^2} \mathbf{1}_{(0,\infty)}(x).$$

(b) Per il principio di riflessione e la proprietà di scaling

$$P(\tau_a \le t) = P(|B_t| \ge a) = P(|B_1| \ge \frac{a}{\sqrt{t}}).$$

(c) Dalla formula ottenuta al punto precedente e dalla continuità dall'alto della probabilità si ha

$$P(\tau_a = \infty) = \lim_{t \to \infty} P(\tau_a > t) = \lim_{t \to \infty} P(|B_1| < \frac{a}{\sqrt{t}}) = P(|B_1| = 0) = 0.$$

(d) Abbiamo visto che

$$P(\tau_a \le t) = P(|B_1| \ge \frac{a}{\sqrt{t}}) = 1 - P(|B_1| \le \frac{a}{\sqrt{t}}) = 1 - \frac{2}{\sqrt{2\pi}} \int_0^{a/\sqrt{t}} e^{-x^2/2} dx$$

da cui derivando rispetto a t si ottiene

$$f_{\tau_a}(t) = -\frac{2}{\sqrt{2\pi}} e^{-a^2/(2t)} \left(-\frac{1}{2} \frac{a}{t^{3/2}} \right) \mathbf{1}_{(0,\infty)}(t) = \frac{a}{\sqrt{2\pi} t^{3/2}} e^{-a^2/(2t)} \mathbf{1}_{(0,\infty)}(t).$$

Inoltre

$$E(\tau_a) = \int_0^\infty t f_{\tau_a}(t) dt = \frac{a}{\sqrt{2\pi}} \int_0^\infty \frac{e^{-a^2/(2t)}}{\sqrt{t}} dt = +\infty,$$

dove la divergenza dell'integrale è dovuta ai valori grandi di t.

(e) Ponendo $A_m := \{ \tau_m < \infty \}$, sappiamo che $P(A_m) = 1$ per ogni $m \in \mathbb{Z}$ e dunque P(A) = 1, dove anche $A := \bigcap_{m \in \mathbb{Z}} A_m$.

Per costruzione, se $\omega \in A$ si ha che $\tau_m(\omega) < \infty$ per ogni $m \in \mathbb{Z}$ e dunque $B_{\tau_m(\omega)}(\omega) = m$: in particolare, la sottosuccessione $\{B_{\tau_n(\omega)}(\omega)\}_{n \in \mathbb{N}}$ ha limite $+\infty$ mentre $\{B_{\tau_{-n}(\omega)}(\omega)\}_{n \in \mathbb{N}}$ ha limite $-\infty$. Questo mostra che, per ogni $\omega \in A$, si ha $\limsup_{t \to \infty} B_t(\omega) = +\infty$ e $\liminf_{t \to \infty} B_t(\omega) = -\infty$. Dato che P(A) = 1, segue la tesi.

Soluzione 2. (a) Per definizione, se $\omega \in A_{n+1}$ si ha $\sup_{0 \le u \le \frac{1}{n+1}} B_u(\omega) > 0$ e dunque esiste $\overline{u} = \overline{u}(\omega, n) \in [0, \frac{1}{n+1}]$ tale che $B_{\overline{u}}(\omega) > 0$. Dato che $\frac{1}{n+1} < \frac{1}{n}$, si ha che $\overline{u} \in [0, \frac{1}{n}]$ e dunque $\sup_{0 \le u \le \frac{1}{n}} B_u(\omega) > 0$, cioè $\omega \in A_n$. Questo mostra che $A_{n+1} \subseteq A_n$.

Dato che A è l'intersezione decrescente degli eventi A_n , per la continuità dall'alto della probabilità si ha $P(A) = \lim_{n \to \infty} P(A_n)$.

[†]Ultima modifica: 8 febbraio 2011.

(b) Se $\omega \in \{B_{\frac{1}{n}} > 0\}$, si ha $B_{\frac{1}{n}}(\omega) > 0$ e quindi in particolare $\sup_{0 \le u \le \frac{1}{n}} B_u(\omega) > 0$, cioè $\omega \in A_n$. Questo mostra che $\{B_{\frac{1}{n}} > 0\} \subseteq A_n$.

3

Di conseguenza $P(A_n) \ge P(B_{\frac{1}{n}} > 0) = \frac{1}{2}$, perché $B_{\frac{1}{n}} \sim \mathcal{N}(0, \frac{1}{n})$.

(c) Per definizione di $\mathcal{G}_{\frac{1}{n}} = \sigma(\{B_u\}_{0 \leq u \leq \frac{1}{n}})$, le variabili B_u con $u \leq \frac{1}{n}$ sono $\mathcal{G}_{\frac{1}{n}}$ misurabili. Di conseguenza $Y_n := \sup_{u \in [0, \frac{1}{n}] \cap \mathbb{Q}} B_u$ è una variabile aleatoria $\mathcal{G}_{\frac{1}{n}}$ misurabile, perché è estremo superiore di una famiglia numerabile di variabili $\mathcal{G}_{\frac{1}{n}}$ -misurabili. Per la continuità delle traiettorie, si ha $\sup_{u \in [0, \frac{1}{n}] \cap \mathbb{Q}} B_u = \sup_{0 \leq u \leq \frac{1}{n}} B_u$ e possiamo dunque scrivere $A_n = \{Y_n > 0\} = \{Y_n \in (0, \infty)\}$, il che mostra che $A_n \in \mathcal{G}_{\frac{1}{n}}$, per ogni $n \in \mathbb{N}$.

Ricordiamo che $\mathcal{G}_s \subseteq \mathcal{G}_t$ per $s \leq t$. Per ogni $n > n_0(\varepsilon) := \lceil \frac{1}{\varepsilon} \rceil$ si ha $\frac{1}{n} \leq \varepsilon$ e quindi $A_n \in \mathcal{G}_{\frac{1}{n}} \subseteq \mathcal{G}_{\varepsilon}$, da cui segue che $\bigcap_{n=n_0(\varepsilon)}^{\infty} A_n \in \mathcal{G}_{\varepsilon}$. Ma dato che la famiglia di eventi $\{A_n\}_{n\in\mathbb{N}}$ è decrescente, possiamo scrivere $\bigcap_{n\in\mathbb{N}} A_n = \bigcap_{n=n_0}^{\infty} A_n$, per ogni $n_0 \in \mathbb{N}$ (perché?). Segue allora che $A \in \mathcal{G}_{\varepsilon}$, per ogni $\varepsilon > 0$, e dunque $A \in \bigcap_{\varepsilon > 0} \mathcal{G}_{\varepsilon} = \mathcal{G}_{0+}$.

Per la legge 0–1 di Blumenthal $P(A) \in \{0,1\}$, ma già sappiamo che $P(A) \ge \frac{1}{2}$ e quindi P(A) = 1.

- (d) Basta notare che P(C) = P(A). Infatti, ponendo $\beta_t := -B_t$, si ha che $C = \bigcap_{n \in \mathbb{N}} \{ \sup_{0 \le u \le \frac{1}{n}} \beta_u > 0 \}$; visto che $\{\beta_u\}_{u \ge 0}$ è un moto browniano, si ha P(C) = 1 per quanto già mostrato.
- (e) Per definizione, se $\omega \in A$ si ha che per ogni $n \in \mathbb{N}$ esiste $t'_n(\omega) \in [0, \frac{1}{n}]$ tale che $B_{t'_n(\omega)}(\omega) > 0$. Si noti che $t'_n(\omega) \to 0$ per $n \to \infty$. A questo punto basta estrarre[†] una sottosuccessione decrescente $\{t_n(\omega)\}_{n \in \mathbb{N}}$ da $\{t'_n(\omega)\}_{n \in \mathbb{N}}$ e si ha chiaramente che $t_n(\omega) \downarrow 0$ per $n \to \infty$ e $B_{t_n(\omega)}(\omega) > 0$ per ogni $n \in \mathbb{N}$.

In modo analogo, se $\omega \in C$ possiamo definire una successione decrescente $\{s_n(\omega)\}_{n\in\mathbb{N}}$ tale che $s_n(\omega)\downarrow 0$ per $n\to\infty$ e $B_{s_n(\omega)}(\omega)<0$ per ogni $n\in\mathbb{N}$.

Per $\omega \in A \cap C$ si possono dunque definire entrambe le successioni: la conclusione segue dal fatto che $P(A \cap C) = 1$, poiché P(A) = P(C) = 1.

Soluzione 3. Poniamo $\beta_t := B_{1/t}$ per t > 0 e $\beta_0 := 0$ e indichiamo la filtrazione naturale del processo β con $\mathcal{D}_t := \sigma(\{\beta_u\}_{0 \le u \le t}) = \sigma(\{\beta_u\}_{0 < u \le t})$, poiché la variabile β_0 è costante e dunque $\sigma(\beta_0) = \{\emptyset, \Omega\}$. Per costruzione si ha che

$$\mathcal{H}_t = \sigma(\{B_u\}_{t \leq u < \infty}) = \sigma(\{B_{\frac{1}{v}}\}_{0 < v \leq \frac{1}{t}}) = \sigma(\{\frac{1}{v}\beta_v\}_{0 < v \leq \frac{1}{t}})$$
$$= \sigma(\{\beta_v\}_{0 < v \leq \frac{1}{t}}) = \mathcal{D}_{1/t},$$

dove la penultima uguaglianza segue dal fatto che $\sigma(X) = \sigma(cX)$ per ogni variabile aleatoria reale X e per ogni costante $c \neq 0$. Di conseguenza $\mathcal{H}_{\infty} = \bigcap_{t \geq 0} \mathcal{H}_t =$

 $\bigcap_{t>0} \mathcal{D}_t = \mathcal{D}_{0+}$. Dato che β è un moto browniano, la σ -algebra \mathcal{H}_{∞} risulta banale per la legge 0–1 di Blumenthal.

4

[†]Ad esempio ponendo $t_n(\omega) := t'_{k_n}(\omega)$, con $k_1 := 1$ e $k_{n+1} := \min\{\ell > k_n : t'_{\ell}(\omega) < t'_{k_n}(\omega)\}$.