Analisi Stocastica 2010/11 - Foglio di esercizi n. 5

Esercizio 1. Sia $B = \{B_t\}_{t\geq 0}$ un moto browniano reale. Definiamo la variabile aleatoria $\tau := \tau_{-a,b} := \inf\{s \geq 0 : B_s \notin (-a,b)\}$, per a,b > 0. Sappiamo che τ è un tempo d'arresto q.c. finito e inoltre

$$P(B_{\tau} = -a) = \frac{b}{a+b}, \qquad P(B_{\tau} = b) = \frac{a}{a+b}.$$

Ricordiamo che il processo $Q = \{Q_t := B_t^2 - t\}_{t \ge 0}$ è una martingala.

- (a) Si ponga $\tau_n := \tau \wedge n$, per $n \in \mathbb{N}$. Si spieghi perché τ_n è un tempo d'arresto.
- (b) Si mostri che $E(B_{\tau_n}^2 \tau_n) = 0$ per ogni $n \in \mathbb{N}$.
- (c) (*) Si mostri che $E(B_{\tau}^2 \tau) = 0$.
- (d) (*) Si mostri che $E(\tau) = ab$.

Esercizio 2. Usiamo le stesse notazioni dell'esercizio precedente Ricordiamo che $M = \{M_t := e^{\gamma B_t - \frac{1}{2}\gamma^2 t}\}_{t>0}$ è una martingala, $\forall \gamma \in \mathbb{R}$, e che $\sinh(x) := \frac{1}{2}(e^x - e^{-x})$.

- (a) Si mostri che $E(M_{\tau}) = 1$, per ogni $\gamma \in \mathbb{R}$.
- (b) (*) Ponendo $\alpha := \mathbb{E}(e^{-\frac{1}{2}\gamma^2\tau}\mathbf{1}_{\{B_{\tau}=-a\}})$ e $\beta := \mathbb{E}(e^{-\frac{1}{2}\gamma^2\tau}\mathbf{1}_{\{B_{\tau}=b\}})$, si mostri che vale la relazione $e^{-\gamma a}\alpha + e^{\gamma b}\beta = 1$, per ogni $\gamma \in \mathbb{R}$.
- (c) (*) Sfruttando la simmetria $\gamma \to -\gamma$, si deduca che

$$E(e^{-\lambda \tau}) = \frac{\sinh(\sqrt{2\lambda} a) + \sinh(\sqrt{2\lambda} b)}{\sinh(\sqrt{2\lambda} (a+b))}, \quad \forall \lambda \ge 0.$$

Esercizio 3. Sia $B = \{B_t\}_{t\geq 0}$ un moto browniano reale, definito su uno spazio di probabilità (Ω, \mathcal{F}, P) . Introduciamo l'insieme degli zeri $Z = Z(\omega)$ del moto browniano, ponendo

$$Z(\omega) := \left\{ s \in [0, \infty) : B_s(\omega) = 0 \right\}.$$

- (a) Si mostri che, per ogni t > 0 fissato, q.c. $t \notin Z$ (cioè $P(t \in Z) = 0$).
- (b) Si deduca che q.c. $Z \cap (\mathbb{Q} \cap (0, \infty)) = \emptyset$.
- (c) Si mostri che q.c. 0 è un punto di accumulazione di Z, cioè esiste una successione di punti in Z che converge a 0.
- (d) (*) Si mostri che q.c. Z è un insieme chiuso. [Suqq.: Non serve fare nessun calcolo!]
- (e) (*) Si mostri che q.c. Z ha misura di Lebesgue nulla. [Sugg.: la misura di Lebesgue di un insieme $C\subseteq [0,\infty)$ vale $m(C)=\int_0^\infty \mathbf{1}_C(s)\,\mathrm{d} s.$]

- **Soluzione 1.** (a) τ_n è il minimo dei due tempi d'arresto $n \in \tau$.
- (b) Applicando il teorema d'arresto alla martingala Q, per il tempo d'arresto limitato τ_n , si ha che $\mathrm{E}(Q_0) = \mathrm{E}(Q_{\tau_n})$, cioè $0 = \mathrm{E}(B_{\tau_n}^2 \tau_n)$
- (c) Per $n \to \infty$ si ha che q.c. (anzi per ogni $\omega \in \Omega$) $\tau_n \to \tau$. Ricordando che $\tau < \infty$ q.c., segue che $B_{\tau_n} \to B_{\tau}$ q.c.. Dato che $|B_{\tau_n}| \le \max\{a,b\}$, per convergenza dominata si ha $\mathrm{E}(B_{\tau_n}) \to \mathrm{E}(B_{\tau})$. Dato che τ_n è crescente, per convergenza monotona si ha $\mathrm{E}(\tau_n) \to \mathrm{E}(\tau)$. Dal punto precedente si ha dunque che $\mathrm{E}(B_{\tau}^2 \tau) = \lim_{n \to \infty} \mathrm{E}(B_{\tau_n}^2 \tau_n) = 0$.
- (d) Dal punto precedente e dalla legge di B_{τ} si ha che

$$E(\tau) = E(B_{\tau}^2) = a^2 P(B_{\tau} = -a) + b^2 P(B_{\tau} = b) = \frac{a^2 b}{a+b} + \frac{b^2 a}{a+b} = ab.$$

- **Soluzione 2.** (a) Per $t \leq \tau$ si ha chiaramente $B_t \leq \max\{a,b\}$, di conseguenza $|M_{\tau \wedge t}| \leq e^{\gamma \max\{a,b\}}$. Dato che τ è q.c. finito, siamo nelle condizioni di applicare il teorema d'arresto e dunque $\mathrm{E}(M_{\tau}) = \mathrm{E}(M_0) = 1$.
- (b) Si noti che

$$\begin{split} \mathbf{E}(M_{\tau}^{\gamma}) &= \mathbf{E}(e^{\gamma B_{\tau} - \frac{1}{2}\gamma^{2}\tau}) = e^{-\gamma a} \mathbf{E}(e^{-\frac{1}{2}\gamma^{2}\tau}\mathbf{1}_{\{B_{\tau} = -a\}}) + e^{\gamma b} \mathbf{E}(e^{-\frac{1}{2}\gamma^{2}\tau}\mathbf{1}_{\{B_{\tau} = b\}}), \\ &\text{e dal punto precedente si ricava } e^{-\gamma a}\alpha + e^{\gamma b}\beta = 1, \text{ per ogni } \gamma \in \mathbb{R}. \end{split}$$

(c) Riscrivendo la relazione ricavata nel punto precedente per γ e $-\gamma$, abbiamo che

$$\begin{cases} e^{-\gamma a}\alpha + e^{\gamma b}\beta = 1\\ e^{\gamma a}\alpha + e^{-\gamma b}\beta = 1 \end{cases}.$$

Con un po' di algebra si ricava

$$\alpha = \frac{\sinh(\gamma b)}{\sinh(\gamma(a+b))}, \qquad \beta = \frac{\sinh(\gamma a)}{\sinh(\gamma(a+b))},$$

da cui

$$E(e^{-\frac{1}{2}\gamma^2\tau}) = \alpha + \beta = \frac{\sinh(\gamma a) + \sinh(\gamma b)}{\sinh(\gamma(a+b))}.$$

Ponendo $\gamma = \sqrt{2\lambda}$ si ottiene la formula voluta.

Soluzione 3. (a) $P(t \in Z) = P(B_t = 0) = 0$ perché $B_t \sim N(0, t)$.

- (b) L'evento $\{Z \cap (\mathbb{Q} \cap (0, \infty)) \neq \emptyset\} = \bigcup_{t \in \mathbb{Q} \cap (0, \infty)} \{t \in Z\}$ è unione numerabile di eventi con probabilità nulla, dunque ha probabilità nulla.
- (c) Sappiamo che q.c. il moto browniano cambia segno infinite volte in ogni intorno destro dell'origine: per la continuità delle traiettorie, q.c. esiste una successione $\{t_n\}_{n\in\mathbb{N}}=\{t_n(\omega)\}_{n\in\mathbb{N}}$ tale che $t_n\downarrow 0$ e $B_{t_n}=0$, cioè $t_n\in Z$.

[†]Ultima modifica: 2 febbraio 2011.

- (d) Sappiamo che per q.o. ω la funzione $t \mapsto B_t(\omega)$ è continua, quindi l'insieme $Z(\omega)$ è chiuso, essendo controimmagine dell'insieme chiuso $\{0\}$.
- (e) Per il teorema di Fubini, $\mathrm{E}(m(Z)) = \int_0^\infty \mathrm{E}(\mathbf{1}_Z(s)) \,\mathrm{d}s = \int_0^\infty \mathrm{P}(s \in Z) \,\mathrm{d}s = 0$. Dato che $m(Z) \geq 0$, segue che m(Z) = 0 q.c..