Esercitazione del 18/11/2011 Calcolo delle probabilità

Principio di scambiabilità per variabili aleatorie indipendenti.

Sia T una variabile aleatoria reale. Se X_1, \ldots, X_n è una n-upla di v.a. indipendenti tali che $X_i \sim T$ per ogni i e se Y_1, \ldots, Y_n è una n-upla di v.a. indipendenti tali che $Y_i \sim T$ per ogni i allora il blocco $\{X_i\}_{i\in\{1,\ldots,n\}}$ (ovvero il vettore aleatorio (X_1,\ldots,X_n)) ha la stessa distribuzione del blocco $\{X_i\}_{i\in\{1,\ldots,n\}}$ (ovvero del vettore aleatorio (X_1,\ldots,X_n)).

Esempio 1. Siano X_1 e X_2 due variabili aleatorie indipendenti e identicamente distribuite (i.i.d.), sia $Y_2 := X_1$ e $Y_1 := X_2$ allora per quanto detto si ha $(X_1, X_2) \sim (Y_1, Y_2)$ e dunque $(X_1, X_2) \sim (X_2, X_1)$.

Proposition 1. Sia $\{X_i\}_{i\in\{1,\dots,n\}}$ un blocco di variabili aleatorie i.i.d. e sia π una fissata permutazione dell'insieme $\{1,2,\dots,n\}$ allora vale

$$(X_1,\ldots,X_n)\sim(X_{\pi_1},\ldots,X_{\pi_n})$$

Questa proposizione ci dice che qualunque fissata permutazione di variabili aleatorie i.i.d. non ne modifica la distribuzione.

Esercizio 1.

Sia $\{X_i\}_{i \in \{1,\dots,n\}}$ un blocco di variabili aleatorie i.i.d con distribuzione continua. Quanto vale $P(X_1 < X_2 < \dots < X_n)$?

Svolgimento.

Innanzitutto osserviamo che per ogni $i \neq j$ le distribuzioni di X_i e X_j sono continue e indipendenti dunque per un risultato visto a lezione vale $P(X_i = X_j) = 0$. Questo vuol dire per esempio che $P(X_1 < X_2 < ... < X_n) = P(X_1 \leq X_2 \leq ... \leq X_n)$. Sia π una permutazione dell'insieme $\{1, 2, ..., n\}$ allora per la proposizione (1) vale

$$P(X_1 < X_2 < \ldots < X_n) = P(X_{\pi_1} < X_{\pi_2} < \ldots < X_{\pi_n})$$

poiché le variabili X_i sono quasi certamente diverse (cioè assumono valori diversi con probabilità 1) allora si ha

$$P\left(\bigcup_{\pi} \left\{ X_{\pi_1} < X_{\pi_2} < \dots < X_{\pi_n} \right\} \right) = 1$$

(dove l'unione si intende su tutte le possibili permutazioni π). Infine poiché le permutazioni di n elementi sono n! e al variare di π gli eventi $\{X_{\pi_1} < X_{\pi_2} < \ldots < X_{\pi_n}\}$ sono a due a due disgiunti ed equiprobabili si ha:

$$P(X_1 < X_2 < \ldots < X_n) = \frac{1}{n!}$$
.

Statistiche ordinate. Sia ancora $\{X_i\}_{i\in\{1,\dots,n\}}$ un blocco di variabili aleatorie i.i.d. e supponiamo che ciascuna X_i abbia distribuzione continua, cosicché valgano le ipotesi dell'esercizio 1 e $P(X_1 < X_2 < \dots < X_n) = \frac{1}{n!}$. Indichiamo con Π la permutazione aleatoria che dispone in ordine crescente le X_i e indichiamo con $X_{(i)}$ la variabile $X_{(i)} := X_{\Pi_i}$. Quindi si ha

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}$$
.

con probabilità uno. Sottolineamo il fatto che per la permutazione aleatoria Π si ha $P(X_{\Pi_1} < X_{\Pi_2} < \ldots < X_{\Pi_n}) = 1$ mentre come visto nella soluzione dell'esercizio 1 per una fissata permutazione π (non aleatoria) vale $P(X_{\pi_1} < X_{\pi_2} < \ldots < X_{\pi_n}) = \frac{1}{n!}$.

Esercizio 2.

Sia $\{X_i\}_{i\in\{1,\dots,10\}}$ un blocco di variabili aleatorie i.i.d con distribuzione uniforme sull'intervallo (0,10).

- (a) Calcolare la probabilità $P(X_{(k)} \in (k-1,k) \text{ per ogni } k \in \{1,2,\ldots,10\}).$
- (b) Calcolare la probabilità $P(X_{(5)} < 5, X_{(6)} > 6)$

Soluzione. (a) $\frac{10!}{10^{10}} \simeq 0.00036288$, (b) $\binom{10}{5} \cdot (\frac{1}{2})^5 \cdot (\frac{2}{5})^5 \simeq 0.08064$ Svolgimento. In aula.

Esercizio 3.

Siano X_1 e X_2 v.a. indipendenti con distribuzione normale di media $\mu = 0$ e varianza $\sigma^2 = 1$. Sia $Z = \max(X_1, X_2)$. Calcolare $\mathbb{E}[Z]$.

Soluzione. $\frac{1}{\sqrt{\pi}}$

Svolgimento. In aula.

Esercizio 4.

Siano X_1, X_2 e X_3 v.a. indipendenti con distribuzione uniforme sull'intervallo (0,1). Calcolare $\mathbb{E}[X_{(1)}], \mathbb{E}[X_{(2)}] \mathbb{E}[X_{(3)}]$.

Soluzione. $\mathbb{E}[X_{(1)}] = \frac{1}{4}$, $\mathbb{E}[X_{(2)}] = \frac{2}{4}$, $\mathbb{E}[X_{(3)}] = \frac{3}{4}$.

Svolgimento. In aula.

Esercizio 5*.

Sia n un intero maggiore di 3. Siano $X_1, X_2, ... X_n$ v.a. indipendenti con distribuzione uniforme sull'intervallo (0, 1).

Calcolare $\mathbb{E}[X_{(j)}]$ con $j \in \{1, 2, \dots, n\}$.

Soluzione. $\frac{j}{n+1}$

Svolgimento. Per casa. (In caso di difficoltà limitarsi a risolvere l'esercizio per n=4)

Valore atteso condizionato.

Sia (X,Y) un vettore aleatorio discreto. Sia $p_{(X,Y)}$ la sua densità discreta e $p_{X|Y}$ la densità discreta condizionata.

$$p_{(X,Y)}(x,y) := P(X = x, Y = y)$$

$$\sum_{x,y} p_{(X,Y)}(x,y) = 1$$

$$p_{(X|Y)}(x|y) := P(X = x|Y = y) = \frac{p_{(X,Y)}(x,y)}{p_Y(y)}$$

Ricordiamo che se y è tale che $p_Y(y)>0$ allora $p_{(X|Y)}(\cdot|y)$ definisce una misura di probabilità per cui $\sum_x p_{(X|Y)}(x|y)=1$. Poiché $p_{(X|Y)}(\cdot|y)$ definisce una misura di probabilità (sempre nel caso $p_Y(y)>0$) allora ha senso parlare di valore atteso rispetto a questa misura, tale valore atteso sarà detto valore atteso di X condizionato a Y=y e scriveremo $\mathbb{E}[X|Y=y]$

$$\mathbb{E}[X|Y=y] = \sum_{x} x p_{(X|Y)}(x|y)$$

Se X e Y sono indipendenti allora si ha $p_{(X|Y)}(x|y) = p_{(X)}(x)$ e dunque vale la seguente

Proposition 2. Se (X,Y) è un vettore aleatorio e X è indipendente da Y allora

$$\mathbb{E}[X|Y=y] = \mathbb{E}[X]$$

Una relazione importante che riguarda il valore atteso condizionato è la seguente:

$$\mathbb{E}[X] = \mathbb{E}\left[\mathbb{E}[X|Y]\right]$$

Che cosa è $\mathbb{E}[X|Y]$? E' importante sottolineare il fatto che $\mathbb{E}[X|Y]$ in questo caso è una variabile aleatoria, essa è definita nel modo seguente:

$$\mathbb{E}[X|Y] = \begin{cases} \mathbb{E}[X|Y = y_1] & \text{se } Y = y_1 \\ \mathbb{E}[X|Y = y_2] & \text{se } Y = y_2 \\ \dots & \dots \end{cases}$$

Esercizio 6.

Sia $T_1 \sim Geo(\frac{1}{3})$, sia $T_2 \sim Geo(\frac{1}{5})$ e sia $Y \sim Bern(\frac{1}{4})$. Supponiamo inoltre che Y sia indipendente da T_1 e T_2 . Sia $X:=\left\{\begin{array}{ll} T_1 & \text{se }Y=0 \\ T_2 & \text{se }Y\neq0 \end{array}\right.$ Calcolare $\mathbb{E}[X]$

Calcolare $\mathbb{E}[X]$.

Soluzione. $\frac{7}{2}$

Svolgimento. In aula.

Esercizio 7.

Siano $T_1, \dots T_n$ una n-upla di v.a. binomiali con distribuzione $T_k \sim Bin(p,k)$ con $p \in (0,1)$. Sia Y una v.a. indipendente dalle T_i con distribuzione

$$Y \sim Unif\{1, 2, \dots, n\}. \text{ Sia infine } X := \begin{cases} T_1 & \text{se } Y = 1 \\ T_2 & \text{se } Y = 2 \\ \dots & \dots \\ T_n & \text{se } Y = n \end{cases}.$$

- (a) Calcolare $\mathbb{E}[Y]$.
- (b) Calcolare $\mathbb{E}[X]$.

Soluzione. (a) $\frac{n+1}{2}$, (b) $\frac{n+1}{2}p$

Svolgimento. In aula.

Esercizio 7 bis.

Viene lanciato un dado regolare a sei facce, sia Y il risultato del lancio. Dopo aver lanciato il dado vengono lanciate Y monete regolari, sia X il numero di teste ottenute.

- (a) Calcolare $\mathbb{E}[Y]$.
- (b) Calcolare $\mathbb{E}[X]$.

Soluzione. Ricondursi all'esercizio precedente con n=6 e $p=\frac{1}{2}$ Svolgimento. Per casa.