Esercitazione del 25/11/2011 Calcolo delle probabilità

Convergenza in distribuzione.

Sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di variabili aleatorie reali. Sia X un'ulteriore variabile aleatoria reale.

Definizione 1. Diremo che la successione di variabili aleatorie $\{X_n\}_{n\in\mathbb{N}}$ converge in distribuzione alla variabile aleatoria X se per quasi ogni $t\in\mathbb{R}$ vale:

$$\lim_{n \to \infty} F_{X_n}(t) = F_X(t) \tag{1}$$

 $e \ scriveremo \ X_n \stackrel{d}{\longmapsto} X.$

Si può dimostrare che all'interno della definizione sono cose equivalenti:

- 1) verificare la (1) su un insieme di misura uno.
- 2) verificare la (1) su un insieme denso.
- 3) verificare la (1) sull'insieme dei $t \in \mathbb{R}$ tali che F_X è continua in t.

Enunciamo il teorema di unicità della convergenza in distribuzione.

Theorem 1. Se $X_n \stackrel{d}{\longmapsto} X$ e $X_n \stackrel{d}{\longmapsto} Y$ allora X e Y hanno la stessa distribuzione.

Enunciamo ora un criterio per la convergenza in distribuzione di v.a. discrete.

Theorem 2. Siano $(X_n)_{n\geq 0}$ variabili aleatorie discrete con densità $(x_{n,r}, p_{n,r})$ cioè tali che $P(X_n = x_{n,r}) = p_{n,r}$ per ogni $n \in r$, $(con \sum_r p_{n,r} = 1 \ \forall n \in x_{n,r_1} \neq x_{n,r_2}$ per ogni $n \in r_1 \neq r_2$). Se $\lim_{n\to+\infty} x_{n,r} = x_{0,r} \in \lim_{n\to+\infty} p_{n,r} = p_{0,r}$ allora $X_n \stackrel{d}{\longmapsto} X$.

E' importante notare che nell'applicare il teorema 2 è necessario verificare che $\sum_r p_{0,r} = 1$. Il prossimo è un teorema che caratterizza la convergenza in distribuzione di variabili aleatorie normali.

Theorem 3. Siano $(X_n)_{n\geq 0}$ una successione di v.a. normali con distribuzione $X_n \sim Norm(\mu_n, \sigma_n^2)$ allora la successione delle v.a. X_n converge in distribuzione se e solo se i due seguenti limiti esistono e sono finiti:

$$\lim_{n \to \infty} \mu_n =: \mu \qquad \qquad \lim_{n \to \infty} \sigma_n =: \sigma.$$

Inoltre se sigma > 0 allora X_n converge in distribuzione ad un distribuzione normale di media μ e varianza σ^2 mentre se $\sigma = 0$ allora X_n converge in distribuzione alla constante μ .

Il teorema 3 giustifica la convenzione di indicare con $Norm(\mu, 0)$ la distribuzione di una v.a. costante (che vale quasi certamente μ). Un ulteriore teorema per la convergenza in distribuzione è il seguente:

Theorem 4. Sia g un'applicazione continua da \mathbb{R} in \mathbb{R} . Siano $(X_n)_{n\geq 0}$ una successione di v.a. e sia X una ulteriore variabile aleatoria. Se $X_n \stackrel{d}{\longmapsto} X$ allora $g(X_n) \stackrel{d}{\longmapsto} g(X)$.

Esercizio 1. Sia $(X_n)_{n\geq 0}$ una successione di v.a. con distribuzione

$$P(X_n = k) = \begin{cases} \frac{n2^k + 3^{k-1}}{(n+1)4^k} & \text{per ogni } k \text{ intero positivo} \\ 0 & \text{altrimenti} \end{cases}$$

- (a) Dimostrare che l'equazione precedente definisce effettivamente una variabile aleatoria discreta.
- (b) Dimostrare che X_n converge in distribuzione ad una v.a. geometrica di parametro p. Quanto vale p?

Esercizio 2. Sia $(X_n)_{n\geq 0}$ una successione di v.a. con distribuzione

$$P(X_n = k) = \begin{cases} \frac{1}{2} & \text{se } k = 0 \text{ oppure } k = n \\ 0 & \text{altrimenti} \end{cases}$$

(a) La successione $(X_n)_{n\geq 0}$ converge in distribuzione? (Giustificare la risposta.)

Esercizio 3. Sia $(X_n)_{n\geq 0}$ una successione di v.a. con distribuzione

$$P(X_n = k) = \begin{cases} \frac{n-1}{n} & \text{se } k = 0\\ \frac{1}{n} & \text{se } k = n\\ 0 & \text{altrimenti} \end{cases}$$

(a) La successione $(X_n)_{n\geq 0}$ converge in distribuzione? (Giustificare la risposta.)

Convergenza in probabilità.

Sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di variabili aleatorie reali. Sia X un'ulteriore variabile aleatoria reale.

Definizione 2. Diremo che la successione di variabili aleatorie $\{X_n\}_{n\in\mathbb{N}}$ converge in probabilità alla variabile aleatoria X se per ogni $\epsilon > 0$ vale:

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0 \tag{2}$$

 $e \ scriveremo \ X_n \stackrel{p}{\longmapsto} X.$

Osserviamo innanzitutto che affinché la (2) abbia senso le v.a. X_n e la v.a. X devono essere definite tutte sullo stesso spazio di probabilità. Enunciamo il teorema di unicità per la convergenza in probabilità.

Theorem 5. Se
$$X_n \stackrel{p}{\longmapsto} X$$
 e $X_n \stackrel{p}{\longmapsto} Y$ allora $P(X = Y) = 1$.

I prossimi due teoremi mettono in relazione la convergenza in probabilità e quella in distribuzione.

Theorem 6. Se $X_n \stackrel{p}{\longmapsto} X$ allora $X_n \stackrel{d}{\longmapsto} X$.

Theorem 7. Sia $a \in \mathbb{R}$. Se $X_n \stackrel{d}{\longmapsto} a$ allora $X_n \stackrel{p}{\longmapsto} a$.

Nel teorema 7 si sottointende l'ulteriore ipotesi che le X_n siano definite sullo stesso spazio di probabilità.

Theorem 8. Se $X_n \stackrel{p}{\longmapsto} X$ e $Y_n \stackrel{p}{\longmapsto} Y$ e $g : \mathbb{R}^2 \to \mathbb{R}$ è continua allora $g(X_n, Y_n) \stackrel{p}{\longmapsto} g(X, Y)$.

Esempio. Se $X_n \stackrel{p}{\longmapsto} X$ e $Y_n \stackrel{p}{\longmapsto} Y$ allora $X_n + Y_n \stackrel{p}{\longmapsto} X + Y$.

Esempio. Se $X_n \stackrel{p}{\longmapsto} X$ e allora $X_n^k \stackrel{p}{\underset{n\to\infty}{\longrightarrow}} X^k$.

Convergenza quasi certa.

Sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di variabili aleatorie reali. Sia X un'ulteriore variabile aleatoria reale.

Definizione 3. Diremo che la successione di variabili aleatorie $\{X_n\}_{n\in\mathbb{N}}$ converge quasi certamente alla variabile aleatoria X se

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1\tag{3}$$

 $e \ scriveremo \ X_n \stackrel{q.c.}{\longmapsto} X.$

Enunciamo il teorema di unicità per la convergenza quasi certa.

Theorem 9. Se $X_n \stackrel{q.c.}{\longmapsto} X$ e $X_n \stackrel{q.c.}{\longmapsto} Y$ allora P(X = Y) = 1.

Theorem 10. Se $X_n \stackrel{q.c.}{\longmapsto} X$ allora $X_n \stackrel{p}{\longmapsto} X$.

Theorem 11. Se $X_n \stackrel{p}{\longmapsto} X$ allora esiste una sottosuccessione di X_n che converge quasi certamente ad X.

Theorem 12. Se $X_n \stackrel{q.c.}{\longmapsto} X$ e $Y_n \stackrel{q.c.}{\longmapsto} Y$ e $g : \mathbb{R}^2 \to \mathbb{R}$ è continua allora $g(X_n, Y_n) \stackrel{q.c.}{\longmapsto} g(X, Y)$.

Esempio. Se $X_n \stackrel{q.c.}{\longmapsto} X$, $Y_n \stackrel{q.c.}{\longmapsto} Y$ e $Z_n = X_n \cdot Y_n$ allora $Z_n \stackrel{q.c.}{\longmapsto} X \cdot Y$.

Un utile criterio di convergenza quasi certa:

Theorem 13. Siano $(X_n)_{n\in\mathbb{N}}$ e X variabili aleatorie se per ogni $\epsilon > 0$ vale $\sum_n P(|X_n - X| \ge \epsilon) < +\infty$ allora $X_n \stackrel{q.c.}{\longmapsto} X$.

Nel caso in cui $(X_n)_{n\in\mathbb{N}}$ sia una successione di v.a. indipendenti allora il teorema 13 può essere invertito nel seguente senso:

Theorem 14. Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie indipendenti. Se $(X_n)_{n\in\mathbb{N}}$ converge q.c.allora esiste una costante $C\in\mathbb{R}$ tale $X_n \stackrel{q.c.}{\longmapsto} C$ e per ogni $\epsilon > 0$ vale $\sum_n P(|X_n - X| \ge \epsilon) < +\infty$.

Come conseguenza del teorema 14 otteniamo un corollario molto utile se si vuole dimostrare che una successione di variabili aleatorie indipendenti non corverge quasi certamente.

Corollario 15. Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie indipendenti tale che $X_n \stackrel{d}{\longmapsto} C$, se per qualche $\epsilon > 0$ si ha $\sum_n P(|X_n - C| \ge \epsilon) = +\infty$ allora X_n non converge quasi certamente.

Il seguente teorema afferma che le successioni di v.a. limitate e monotone convergono.

Theorem 16. Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie. Supponiamo che X_n sia monotona in n cioè $X_n \geq X_{n+1}$ (risp $X_n \leq X_{n+1}$) per ogni n. Se esiste una costante C tale che per ogni n vale l'uguaglianza $P(X_n \geq C) = 1$ (risp. $P(X_n \leq C) = 1$) allora X_n converge in distribuzione, in probabilità e quasi certamente.

Il precedente teorema vale anche se sostituiamo la costante C con una fissata variabile aleatoria Y (la v.a. Y non deve dipendere da n!).

Convergenza in L^p . (Convergenza in media r-esima.)

Sia X una v.a. reale e sia $p \ge 1$, diremo che X appartiene allo spazio L^p se

$$||X||_{L^p}^p := \mathbb{E}[|X|^p] < +\infty \tag{4}$$

Sia $\{X_n\}_{n\in\mathbb{N}}$ una successione di variabili aleatorie reali in L^p e sia X un'ulteriore variabile aleatoria reale in L^p .

Definizione 4. Diremo che la successione di variabili aleatorie $\{X_n\}_{n\in\mathbb{N}}$ $(X_n \in L^p)$ converge in L^p alla variabile aleatoria $X \in L^p$ se

$$\lim_{n \to \infty} \mathbb{E}[|X_n - X|^p] = 0 \tag{5}$$

 $e \ scriveremo \ X_n \stackrel{L^p}{\longmapsto} X.$

La (5) è equivalente a dire che $||X_n - X||_{L^p} \xrightarrow[n \to \infty]{} 0$.

Enunciamo il teorema di unicità per la convergenza in L^p .

Theorem 17. Siano $\{X_n\}_{n\in\mathbb{N}}$, X e Y v.a. in L^p . Se $X_n \stackrel{L^p}{\longmapsto} X$ e $X_n \stackrel{L^p}{\longmapsto} Y$ allora P(X = Y) = 1.

Theorem 18. Se $X_n \stackrel{L^p}{\longmapsto} X$ allora $X_n \stackrel{p}{\longmapsto} X$.

Theorem 19. Se $1 \le p_1 \le p_2$ $e X_n \stackrel{L^{p_2}}{\longmapsto} X$ allora $X_n \stackrel{L^{p_1}}{\longmapsto} X$.

Un teorema per la convergenza in L^p analogo al teorema 16 è il seguente:

Theorem 20. Siano $(X_n)_{n\in\mathbb{N}}$ e Y variabili aleatorie in L^p . Supponiamo che X_n sia monotona in n cioè $X_n \geq X_{n+1}$ (risp $X_n \leq X_{n+1}$) per ogni n. Se vale l'uguaglianza $P(X_n \geq Y) = 1$ per ogni n (risp. $P(X_n \leq Y) = 1$) allora esiste una v.a. X in L^p tale che $X_n \stackrel{L^p}{\longmapsto} X$.

Theorem 21. Siano $(X_n)_{n\in\mathbb{N}}$ e Y variabili aleatorie in L^p . Se vale l'uguaglianza $P(|X_n| \leq Y) = 1$ per ogni $n \in X_n \stackrel{p}{\longmapsto} X$ allora $X_n \stackrel{L^p}{\longmapsto} X$.

Esercizi.

Esercizio 1

Siano Y e $(X_n)_{(n\in\mathbb{N})}$ un insieme di variabili aleatorie indipendenti. Supponiamo che Y abbia distribuzione bernoulliana di parametro $p=\frac{1}{6}$ e le X_n siano uniformi sull'intervallo (0,3). Siano infine $Z_n=\min(X_1,X_2,\ldots,X_n)$, $T_n=\min(Y,X_n)$ e $W_n=T_1\cdot T_2\cdot \cdots \cdot T_n$.

- (a) Studiare la convergenza in distribuzione di Z_n .
- (b) Studiare la convergenza in probabilità quasi certa e in L^p di Z_n .
- (c) Calcolare F_{T_n} . Qual è il supporto di T_n ?
- (d) Quanto vale la probabilità $P(W_n \leq Z_n)$?
- (e) Studiare la convergenza in distribuzione, in probabilità e quasi certa di W_n .
- (f) Calcolare $\mathbb{E}[T_n]$.

Svolgimento (a) Per studiare la convergenza in distribuzione di Z_n calcoliamo F_{Z_n} .

$$F_{X_n}(a) = \begin{cases} 0 & a < 0 \\ \frac{a}{3} & 0 \le a < 3 \\ 1 & a \ge 1 \end{cases}$$

$$F_{Z_n}(t) = P(Z_n \le t) = P(\min(X_1, X_2, \dots, X_n) \le t) =$$

$$= 1 - P(\min(X_1, X_2, \dots, X_n) > t) = 1 - P(X_1 > t, X_2 > t, \dots, X_n > t) =$$

$$= 1 - P(X_1 > t) \cdot P(X_2 > t) \cdot \dots \cdot P(X_n > t) =$$

$$= 1 - (1 - F_{X_1}(t)) \cdot (1 - F_{X_2}(t)) \cdot \dots \cdot (1 - F_{X_n}(t)) =$$

 $=1-(1-F_{X_1}(t))^n$

per $t \in (0,3)$ si ha $F_{Z_n}(t) = 1 - (1 - \frac{t}{3})^n$. Dunque:

$$F_{Z_n}(t) = \begin{cases} 0 & t < 0 \\ 1 - (1 - \frac{t}{3})^n & 0 \le t < 1 \\ 1 & t \ge 1 \end{cases}$$

Per studiare la convergenza in distribuzione di Z_n è sufficiente studiare il limite $\lim_{n\to\infty} F_{Z_n}$.

se
$$t < 0$$
 $\lim_{n \to \infty} 0 = 0$
se $t \in (0,3)$ $\lim_{n \to \infty} 1 - (1 - \frac{t}{3})^n = 1$ $\lim_{n \to \infty} F_{Z_n}(t) = \begin{cases} 0 & t < 0 \\ 1 & t \in (0,3) \\ 1 & t > 3 \end{cases}$

Quindi dalla definizione 1 segue che $Z_n \xrightarrow{d} Z$ con $F_Z(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$ e dunque $Z_n \xrightarrow{d} 0$.

(b) Poiché Z_n converge in distribuzione ad una costante allora (teorema 7) converge anche in probabilità: $Z_n \stackrel{p}{\longrightarrow} 0$. Per lo studio della convergenza quasi certa innanzitutto osserviamo che poiché converge in probabilità a 0 allora (per i teoremi 10 e 5) se converge in maniera quasi certa deve convergere quasi certamente a zero. Dalla seguente disuguaglianza

$$Z_{n+1} = \min\{Z_n, X_{n+1}\} \le Z_n$$

segue che $(Z_n)_{n\in\mathbb{N}}$ è una successione monotona inoltre $P(Z_n\in(0,3))=1$ dunque Z_n è anche limitata. Per il teorema 16 la successione Z_n converge in maniera quasi certa dunque

$$Z_n \xrightarrow{q.c.} 0$$
.

Infine per il teorema 20 segue che $Z_n \xrightarrow{L^p} 0$.

(c) Si procede come per il quesito (a),

$$F_{T_n}(t) = P(\min(Y, X_n) \le t) = 1 - P(\min(Y, X_n) > t) =$$

$$= 1 - P(Y > t, X_n > t) = 1 - P(Y > t) \cdot P(X_n > t) =$$

$$= 1 - (1 - F_Y(t)) \cdot (1 - F_{X_n}(t)) =$$

Poiché

$$F_{X_n}(t) = \begin{cases} 0 & t < 0 \\ \frac{t}{3} & 0 \le t < 3 \\ 1 & t \end{cases} \qquad F_{Y_n}(t) = \begin{cases} 0 & t < 0 \\ \frac{5}{6} & 0 \le t < 1 \\ 1 & t \ge 1 \end{cases}$$

è opportuno considerare separatamente i quattro casi: $t<0,\ t\in[0,1),$ $t\in[1,3)$ e $t\geq3.$

se
$$t < 0$$
 $F_{T_n}(t) = 1 - (1 - 0)(1 - 0) = 0$
se $t \in [0, 1)$ $F_{T_n}(t) = 1 - (1 - \frac{5}{6})(1 - \frac{t}{3}) = \frac{5}{6} + \frac{t}{18}$
se $t \in [1, 3)$ $F_{T_n}(t) = 1 - (1 - 1)(1 - \frac{t}{3}) = 1$
se $t \ge 3$ $F_{T_n}(t) = 1 - (1 - 1)(1 - 1) = 1$

$$F_{T_n}(t) = \begin{cases} 0 & t < 0\\ \frac{5}{6} + \frac{t}{18} & t \in [0, 1)\\ 1 & t \ge 1 \end{cases}$$

Il supporto di T_n è l'intervallo chiuso [0,1].

(d) Per risolvere questo quesito occorre utilizzare i risultati precedenti: supporto di T_n uguale all'intervallo [0,1] e $T_n \leq X_n$.

Bisogna calcolare $P(W_n \leq Z_n) = P(T_1 \cdot T_2 \cdot \ldots \cdot T_n \leq \min(X_1, X_2, \ldots, X_n))$. Il supporto di T_n uguale all'intervallo [0, 1] ci dice che:

$$T_1 \cdot T_2 \cdot \ldots \cdot T_n \leq \min(T_1, T_2, \ldots, T_n)$$

Mentre dalla definizione $T_n = \min(Y, X_n) \le X_n$ si ottiene:

$$\min(T_1, T_2, \dots, T_n) < \min(X_1, X_2, \dots, X_n)$$

Applicando la proprietà transitiva alle due precedenti disequazioni si ottiene:

$$T_1 \cdot T_2 \cdot \ldots \cdot T_n \le \min(X_1, X_2, \ldots, X_n)$$

e dunque

$$P(W_n \le Z_n) = 1$$

Per convincersi del risultato appena ottenuto, si può anche procedere nel seguente modo, si suppone che il minimo $\min(X_1, X_2, \dots, X_n)$ sia realizzato in k cioè $\min(X_1, X_2, \dots, X_n) = X_k$ quindi si ha

$$Z_n = X_k$$

$$W_n = T_1 \cdot T_2 \cdot \ldots \cdot T_n = (T_1 \cdot \ldots \cdot T_{k-1} \cdot T_{k+1} \cdot \ldots \cdot T_n) \cdot T_k \leq T_k \leq X_k$$
 dove le ultime due disuguaglianze seguono dal fatto che $(T_1 \cdot \ldots \cdot T_{k-1} \cdot T_{k+1} \cdot \ldots \cdot T_n) \in [0,1]$ e $T_k \leq X_k$.

(e) Il risultato del quesito (c) $T_n \in [0,1]$ ci dice che $W_n = T_1 \cdot T_2 \cdot \ldots \cdot T_n$ è una successione monotona e limitata, dunque converge quasi certamente, in probabilità e in distribuzione. Per capire qual è la variabile aleatoria a cui converge si possono utilizzare i risultati dei quesito (b), (c) e (d). Da (d) e (c) sappiamo che $0 \leq W_n \leq Z_n$. Da (b) sappiamo che Z_n converge quasi certamente a zero.

Dimostriamo in maniera rigorosa che anche W_n converge a zero. Sia (Ω, \mathcal{A}, P) lo spazio di probabilità in cui sono definite le variabili aleatorie, sia $A \in \mathcal{A}$ l' evento

$$A = \{ \omega \in \Omega : 0 \le W_n(\omega) \le Z_n(\omega) \text{ e } \lim_{n \to \infty} Z_n(\omega) = 0 \}$$

allora per le ipotesi precedenti si ha:

$$P(A) = 1$$

mentre dalla definizione di Ae dal teorema del confronto si ha che per ogni $\omega \in A$

$$\lim_{n\to\infty} W_n(\omega) = 0$$

Dunque

$$W_n \xrightarrow{q.c.} 0 \qquad W_n \xrightarrow{p} 0 \qquad W_n \xrightarrow{d} 0$$

(f) La variabile aleatoria W_n è mista $P(T_n=0)=\frac{5}{6},\ P(T_n=1)=\frac{1}{9}$

$$\frac{d}{dt}F_{T_n}(t) = \begin{cases} \frac{1}{18} & t \in (0,1) \\ 0 & t \notin [0,1] \end{cases}$$

da cui si ricava

$$\mathbb{E}[T_n] = 0 \cdot P(T_n = 0) + 1 \cdot P(T_n = 1) + \int_0^1 t \cdot \frac{1}{18} dt = \frac{1}{9} + \frac{1}{36} = \frac{5}{36}$$

Esercizio 2

Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie indipendenti. Supponiamo che ciascuna X_n abbia distribuzione bernoulliana di parametro $\frac{1}{n^{\alpha}}$, con $\alpha>0$. Siano infine $S_n=\frac{X_1+X_2+...+X_n}{n}$ e $W_n=\max\{X_1,X_2,\ldots,X_n\}$.

(a) Per quali valori di $\alpha > 0$ la successione $(X_n)_{n \in \mathbb{N}}$ converge in distribuzione. Per i valori di α in cui converge indicare il limite.

(b) Per quali valori di $\alpha > 0$ la successione $(X_n)_{n \in \mathbb{N}}$ converge in probabilità. Per i valori di α in cui converge (in probabilità) indicare il limite.

(c) Per quali valori di $\alpha > 0$ la successione $(X_n)_{n \in \mathbb{N}}$ converge quasi certamente. Per i valori di α in cui converge (quasi certamente) indicare il limite.

(d) Per quali valori di $\alpha > 0$ la successione $(X_n)_{n \in \mathbb{N}}$ converge in L^p . Per i valori di α in cui converge (in L^p) indicare il limite.

(e) Studiare la convergenza quasi certa di $(W_n)_{n\in\mathbb{N}}$.

(f) Calcolare $\mathbb{E}[S_n]$. (Lasciare il risultato sotto forma di sommatoria

(g*) Calcolare $\lim_{n\to\infty} \mathbb{E}[S_n]$.

(h) Studiare la convergenza in probabilità di $(S_n)_{n\in\mathbb{N}}$. (Utilizzare il risultato del questito (g) e la disuguaglianza di Markov:

Per ogni T v.a. non negativa e per ogni x>0 si ha $P(T>x)\leq \frac{\mathbb{E}[T]}{x})$

$$(a) F_{X_n}(x) = \begin{cases} 0 & x < 0 \\ 1 - \frac{1}{n^{\alpha}} & x \in [0, 1) \\ 1 & x \ge 1 \end{cases}$$
$$\lim_{n \to \infty} F_{X_n}(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 1 \end{cases} \Rightarrow X_n \xrightarrow[n \to \infty]{d} 0 \forall \alpha > 0$$

- (b) Poiché converge in distribuzione ad una costante allora (teorema 7) con- $X_n \xrightarrow[n \to \infty]{p} 0 \qquad \forall \alpha > 0$ verge anche in probabilità.
- (c) Vogliamo utilizzare il criterio di sommabilità (teorema 13 e corollario 15) Nel nostro caso C=0. Dobbiamo stimare la serie $\sum_n P(|X_n|>\epsilon)$ se ϵ è maggiore di 1 allora la stima è banale. Consideriamo il caso $\epsilon \in (0,1)$

$$\sum_{n} P(|X_n| > \epsilon) = \sum_{n} \frac{1}{n^{\alpha}} \begin{cases} = \infty & \text{se } \alpha \le 1 \\ < \infty & \text{se } \alpha > 1 \end{cases}$$

dunque $X_n \xrightarrow[n \to \infty]{q.c.} 0$ se e solo se $\alpha > 1$.

(d) Poiché X_n é uniformemente limitata e converge in probabilità allora (teorema 21) converge anche in L^p dunque $X_n \xrightarrow[n \to \infty]{L^p} 0$ per ogni $\alpha > 0$. Un metodo alternativo può essere quello di applicare la definizione di convergenza in L^p (definizione 4)

$$\lim_{n \to \infty} \mathbb{E}[|X_n - X|^p] = \lim_{n \to \infty} \mathbb{E}[|X_n|^p] = \lim_{n \to \infty} \frac{1}{n^\alpha} = 0$$

dunque converge $(X_n)_{n\in\mathbb{N}}$ converge a zero per ogni $p\geq 1$ e per ogni $\alpha>0$. (e) $(W_n)_{n\in\mathbb{N}}$ è una successione limitata e monotona dunque (teorema 16) converge quasi certamente ad una variabile W. $W_n \xrightarrow[n \to \infty]{q.c.} W$. Dalla definizione delle W_n è chiaro che W è definita nel modo seguente:

$$W = \begin{cases} 1 & \text{Se } X_n = 1 \text{ per qualche } n \in \mathbb{N} \\ 0 & \text{Se } X_n = 0 \text{ per ogni } n \in \mathbb{N} \end{cases}$$

In aggiunta alle richieste del testo è possibile osservare che $P(W = 0) = 0$

 $P(X_n = 0 \ \forall n) = \prod_n (1 - \frac{1}{n^\alpha})$

$$P(W=0)=0$$
 \iff $\sum_{n}\frac{1}{n^{\alpha}}=\infty$ \iff $\alpha \le 1$

Dunque per $\alpha \in (0,1]$ si ha P(W=1)=1. (f) $\mathbb{E}[S_n] = \frac{X_1 + X_2 + ... + X_n}{n} = \frac{1}{n} \sum_{i=1}^n \frac{1}{i^{\alpha}}$ (g) $\lim_{n \to \infty} \mathbb{E}[S_n] = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \frac{1}{i^{\alpha}}$

Se m < n allora

$$\mathbb{E}[S_n] = \frac{1}{n} \sum_{i=1}^m \frac{1}{i^{\alpha}} + \frac{1}{n} \sum_{i=m+1}^n \frac{1}{i^{\alpha}} \le \frac{m}{n} + \frac{n-m}{n} \frac{1}{(m+1)^{\alpha}}$$

$$\lim_{n \to \infty} \mathbb{E}[S_n] \le \limsup_{n \to \infty} \mathbb{E}[S_n] \le \limsup_{n \to \infty} \frac{m}{n} + \frac{n - m}{n} \frac{1}{(m+1)^{\alpha}} = \frac{1}{(1+m)^{\alpha}}$$

Dunque per ogni m vale la disuguaglianza

$$\limsup_{n \to \infty} \mathbb{E}[S_n] \le \frac{1}{(1+m)^{\alpha}}$$

da cui segue

$$\limsup_{n\to\infty} \mathbb{E}[S_n] \le 0$$

poiché infine $\mathbb{E}[S_n] \geq 0$ si ha $\lim_{n \to \infty} \mathbb{E}[S_n] = 0$.

(h) Poiché $\mathbb{E}[S_n]$ tende a zero, un tentativo ragionevole è quello di provare a dimostrare che il limite in probabilità di S_n sia proprio lo zero. Applichiamo la definizione di convergenza in probabilità, dobbiamo mostrare che il limite $\lim_{n\to\infty} P(S_n - 0 > \epsilon)$ è uguale a zero per ogni $\epsilon > 0$. Dalla disuguaglianza di Markov abbiamo $P(S_n > \epsilon) \leq \frac{\mathbb{E}[S_n]}{\epsilon}$ dunque

$$\lim_{n \to \infty} P(S_n - 0 > \epsilon) \le \frac{1}{\epsilon} \limsup_{n \to \infty} \mathbb{E}[S_n] = 0$$

da cui si ottiene $S_n \xrightarrow[n \to \infty]{p} 0$

Un metodo alternativo per risolvere il quesito (h) può essere quello di calcolare prima la convergenza in L^p con p=1. Infatti per p=1 si ha $\lim_n \mathbb{E}[|S_n-0|^p] = \lim_n \mathbb{E}[|S_n|] = 0$ dunque S_n converge in L^1 e quindi converge anche in probabilità.

Un terzo metodo è quello di usare la legge dei grandi numeri per v.a. non correlate ed equilimitate in varianza. Dalla legge forte dei grandi numeri segue che:

$$S_n - \mathbb{E}[S_n] \xrightarrow[n \to \infty]{q.c.} 0$$

da (g) sappiamo che $\mathbb{E}[S_n] \xrightarrow[n \to \infty]{q.c.} 0$ e dunque $S_n \xrightarrow[n \to \infty]{q.c.} 0$.

Esercizio 3

Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie i.i.d. con distribuzione $X_n \sim Unif(-1,5)$ e siano inoltre $(Z_n)_{n\in\mathbb{N}}$ e $(T_n)_{n\in\mathbb{N}}$ definite come segue:

$$Z_n := \frac{X_1 + X_2 + \dots + X_n}{n}$$
 $T_n := \min\{X_1, X_2, \dots, X_n\}$

- (a) Calcolare F_{X_n} , $\mathbb{E}[X_n]$ e F_{T_n} .
- (b) Studiare la convergenza in distribuzione, in probabilità e quasi certa di

 Z_n .

- (c) Studiare la convergenza in L^p di Z_n .
- (d) Studiare la convergenza in distribuzione e in probabilità di T_n .
- (e) Studiare la convergenza in L^p di T_n .

Svolgimento

(a) Per le variabili aleatorie uniformi su (a, b) valgono le formule:

$$\mathbb{E}[X] = \frac{a+b}{2} \qquad F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$$

dunque

$$\mathbb{E}[X_n] = 2 \qquad F_{X_n}(x) = \begin{cases} 0 & x < -1 \\ \frac{x+1}{6} & -1 \le x < 5 \\ 1 & x \ge 5 \end{cases}$$

Calcoliamo F_{T_n} utilizzando la definizine di funzione di ripartizione.

$$F_{T_N}(t) = P(T_n \le t) = P(\min\{X_1, X_2, \dots, X_n\} \le t) =$$
 passando al complementare...

$$= 1 - P(\min\{X_1, X_2, \dots, X_n\} > t) = 1 - P(X_1 > t, X_2 > t, \dots, X_n > t) =$$
utilizzando l'indipendenza

$$= 1 - P(X_1 > t) \cdot P(X_2 > t) \cdot \dots \cdot P(X_n > t) = 1 - (1 - F_{X_1}(t)) \cdot (1 - F_{X_2}(t)) \cdot \dots \cdot (1 - F_{X_n}(t)) = 1 - (1 - F_{X_1}(t))^n$$

Dunque

$$F_{T_n}(x) = \begin{cases} 0 & x < -1\\ 1 - \left(1 - \frac{x+1}{6}\right)^n = 1 - \left(\frac{5-x}{6}\right)^n & -1 \le x < 5\\ 1 & x \ge 5 \end{cases}$$

(b) Le $(X_n)_{n\in\mathbb{N}}$ sono v.a. i.i.d. con $\mathbb{E}[X_n]=2$ dunque per la legge forte dei grandi numeri si ha:

$$\frac{X_1 + X_2 + \dots + X_n}{n} \xrightarrow[n \to \infty]{q.c.} \mathbb{E}[X_n] = 2$$

Dunque

$$Z_n \xrightarrow{q.c.} 2$$

Per il teorema 10

$$Z_n \xrightarrow{p} 2$$

Per il teorema 6

$$Z_n \xrightarrow{d} 2$$

(c) Vogliamo mostrare che per $(Z_n)_{n\in\mathbb{N}}$ valgono le ipotesi del teorema 21. Sappiamo già da (b) che $Z_n \xrightarrow{p}$ 2 dobbiamo mostrare che $(Z_n)_{n\in\mathbb{N}}$ è uniformemente limitata. X_n ha distribuzione uniforme su (-1,5) dunque vale $|X_n| \leq 5$ q.c.

$$|Z_n| = \left| \frac{X_1 + X_2 + \dots + X_n}{n} \right| \le \frac{|X_1| + |X_2| + \dots + |X_n|}{n}$$
n volte

$$|Z_n| \le \underbrace{\frac{n \text{ volte}}{5+5+\dots+5}}_{n} = \frac{5n}{n} = 5$$

Le condizioni del teorema 21 sono soddisfatte (con Y = 5) dunque

$$Z_n \xrightarrow{L^p} 2$$

(d) Cominciamo con lo studio della convergenza in distribuzione. Bisogna calcolare il $\lim_{n\to\infty} F_{T_n}$.

$$F_{T_n}(t) = \begin{cases} 0 & t < -1 \\ 1 - \left(1 - \frac{t+1}{6}\right)^n = 1 - \left(\frac{5-t}{6}\right)^n & -1 \le t < 5 \\ 1 & t \ge 5 \end{cases}$$
Se $t < -1$ allora $\lim_{n \to \infty} F_{T_n}(t) = \lim_{n \to \infty} 0 = 0$
Se $t = -1$ allora $\lim_{n \to \infty} F_{T_n}(t) = \lim_{n \to \infty} 1 - 1^n = 0$

$$-1 < t < 5 \quad \text{allora} \quad \lim_{n \to \infty} F_{T_n}(t) = \lim_{n \to \infty} 1 - \left(\frac{5-t}{6}\right)^n$$

 $t \in (-1,5)$ implica che $0 < \frac{5-t}{6} < 1$ e dunque

$$\lim_{n \to \infty} F_{T_n}(t) = 1$$

$$t \ge 5 \qquad \text{allora} \qquad \lim_{n \to \infty} F_{T_n}(t) = \lim_{n \to \infty} 1 = 1$$

In conclusione

$$\lim_{n \to \infty} F_{T_n}(t) = \begin{cases} 0 & t \le -1\\ 1 & t > -1 \end{cases}$$

Dunque T_n converge in distribuzione ad una variabile aleatoria T con distribuzione:

$$F_T(t) = \begin{cases} 0 & t < -1 \\ 1 & t \ge -1 \end{cases}$$

ovvero

$$T_n \xrightarrow{d} -1$$

Per il teorema 7 allora

$$T_n \xrightarrow{p} -1$$

Vogliamo inoltre mostrare che sono soddisfatte le ipotesi del teorema 16 e che dunque vi è anche convergenza quasi certa (questa parte non è espressamente richiesta dal testo).

$$T_{n+1} = \min\{X_1, X_2, \dots, X_n, X_{n+1}\} = \min\{T_n, X_{n+1}\}$$

Dunque

$$T_{n+1} \leq T_n$$

inoltre $X_n \ge -1$ implica $T_n \ge -1$ per ogni n. Per il teorema 16 allora T_n converge quasi certamente. Per l'unicità del limite si ha:

$$T_n \xrightarrow{q.c.} -1$$

- (e) Per mostrare la convergenza in L^p sarà sufficiente verificare le ipotesi del teorema 21 per T_n .
- 1) T_n è v.a. limitata infatti $P(T_n \le 5) = 1$.
- 2) $T_n \xrightarrow{p} -1$ segue dal quesito (d).

Esercizio 4

Sia $(X_n)_{n\in\mathbb{N}}$ una successione di variabili aleatorie indipendenti. Supponiamo che ciascuna X_n abbia distribuzione assolutamente continua con densità f_{X_n} data da:

$$f_{X_n}(x) = \begin{cases} 0 & x \le 0\\ \frac{n^2}{(n^2x+1)^2} & x > 0 \end{cases}$$

- (a) Calcolare la funzione di ripartizione F_{X_n} .
- (b) Studiare la convergenza in distribuzione ed in probabilità di $(X_n)_{n\in\mathbb{N}}$.
- (c) Studiare la convergenza quasi certa di $(X_n)_{n\in\mathbb{N}}$.
- (d) Quanto vale $\mathbb{E}[X_n^2]$? Cosa si può dire della convergenza in media r-esima della successione $(X_n)_{n\in\mathbb{N}}$ se r=2? (Sugg.: Per il calcolo di $\mathbb{E}[X_n^2]$ può essere utile considerare il limite: $\lim_{x\to\infty} x^2 f_{X_n}(x)$.)

Svolgimento In aula.