Esercizi di Calcolo delle Probabilità Foglio 1

Misurabilità

David Barbato

Esercizio 1. Dimostrare che se una σ -algebra è finita allora la sua cardinalità è 2^n per qualche $n \in \mathbb{N}$.

Esercizio 2. Siano A_1 e A_2 due σ -algebre. Mostrare che $A_1 \cup A_2$ è una σ -algebra se e solo se $A_1 \subseteq A_2$ oppure $A_1 \supseteq A_2$.

Esercizio 3. Dimostrare che se $X : \mathbb{R}^n \to \mathbb{R}^m$ è un'applicazione continua allora è anche misurabile come applicazione da $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ in $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$.

Esercizio 4. Consideriamo i seguenti insiemi:

$$\begin{cases}
\mathcal{A}_1 := \{ (-\infty, a] | a \in \mathbb{R} \} \\
\mathcal{A}_2 := \{ (a, b] | a, b \in \mathbb{R} \} \\
\mathcal{A}_3 := \{ (a_1, b_1] \bigcup ... \bigcup (a_n, b_n] | n \in \mathbb{N}, a_1, b_1 ... a_n, b_n \in \overline{R} \}
\end{cases}$$

Dimostrare che:

$$\sigma(\mathcal{A}_1) = \sigma(\mathcal{A}_2) = \sigma(\mathcal{A}_3) = \mathcal{B}(\mathbb{R})$$

Esercizio 5. Siano $\{X_n\}_{n\in\mathbb{N}}$ appplicazioni misurabili da uno spazio misurabile (Ω, \mathcal{H}) in $(\mathbb{R}, \mathcal{B}(\mathbb{R})$ dimostrare che sono misurabili le seguenti applicazioni:

- 1. $\sup_n X_n$
- 2. $\inf_n X_n$
- 3. $\limsup_{n} X_n$
- 4. $\liminf_{n} X_n$

dove
$$\limsup_n X_n := \inf_n \{ \sup_{m>n} X_m \} = \lim_n \{ \sup_{m>n} X_m \}$$

 e $\liminf_n X_n := \sup_n \{ \inf_{m>n} X_m \} = \lim_n \{ \inf_{m>n} X_m \}$

Esercizio 6. Sia Ω un insieme e sia $\mathcal{G} \subseteq \mathcal{P}(\Omega)$ consideriamo le seguenti ipotesi su \mathcal{G} :

- (i) $\Omega \in \mathcal{G}$
- (ii) Se $A \in \mathcal{G}$ allora $A^c \in \mathcal{G}$
- (iii) Se $A_n \in \mathcal{G}$ e $A_n \cap A_m = \emptyset$ per ogni $n \neq m$ allora $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{G}$
- (a) $\Omega \in \mathcal{G}$
- (b) Se $A, B \in \mathcal{G}$ e $A \subseteq B$ allora $B/A \in \mathcal{G}$
- (c) Se $A_n \in \mathcal{G}$ e $A_n \uparrow A$ allora $A \in \mathcal{G}$

Dimostrare che le ipotesi (i), (ii) e (iii) implicano le ipotesi (a), (b) e (c) e viceversa le ipotesi (a), (b) e (c) implicano le ipotesi (i), (ii) e (iii).

Esercizio 7. Sia Ω un insieme con cardinalità pari e maggiore di 2. Consideriamo la seguente collezione di sottoinsiemi di Ω :

$$\mathcal{A} := \{ B \in \mathcal{P}(\Omega) | \sharp(B) \ pari \ \}$$

dimostrare che A è un d-system ma non è una σ -algebra.

Esercizio 8. Mostrare che se $(A_n)_{n\in\mathbb{N}}$ è una successione crescente di eventi allora:

$$\limsup A_n = \liminf A_n = \lim A_n = \cup A_n$$

Esercizio 9. Sia C la collezione di sottoinsiemi di \mathbb{R} data da:

$$\mathcal{C} := \{(-a, a) : a > 0\}$$

 $e \ sia \ \mathcal{A} = \sigma(\mathcal{C}).$

- (a) Dimostrare che se A appartiene ad A allora A è un boreliano e vale A = -A dove $-A := \{x : -x \in A\}.$
- $(b)^{**}$ Dimostrare che se A è un boreliano e vale A = -A allora A appartiene ad A.