Esercitazione del 17/03/2014 Probabilità e Statistica esercizi extra

David Barbato

Esercizi dal libro di testo: 1.2,1.4

Esercizio 1 Subadditività (corollario 1.20 pag.19 del libro di testo.) Sia A_n una successione di eventi, dimostrare che:

$$P(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} P(A_n)$$

Esercizio 2

Sia A_n una successione di eventi, dimostrare che:

(a)
$$P(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(\bigcup_{i=1}^{n} A_i)$$

$$(b) P(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} P(\bigcap_{i=1}^n A_i)$$

Esercizio 3

Siano E ed F due eventi tali che P(E)=0.7 e P(F)=0.8, siano $A:=E\cup F$ e $B:=E\cap F$. Quali sono i valori massimi e minimi che possono assumere P(A) e P(B)?

Soluzione

Costruire degli esempi espliciti in cui: P(A) = 0.8, P(A) = 1, P(B) = 0.5 e P(B) = 0.7. Dimostrare che $0.8 \le P(A) \le 1$ e $0.5 \le P(B) \le 0.7$.

Esercizio 4*

Sia f_n il numero di modi in cui si possono lanciare n monete e non ci siano mai due teste consecutive. Trovare una formula per ricorrenza per f_n .

Soluzione

Dimostrare che $f_1 = 2$, $f_2 = 3$ e $f_n = f_{n-1} + f_{n-2}$ per ogni n > 2.

Esercizio 5

Le carte di un mazzo di 52 carte sono disposte a caso.

- (a) Qual è la probabilità che la decima sia un asso?
- (b) Qual è la probabilità che la decima sia il primo asso del mazzo?

Soluzione

(a)
$$\frac{1}{13}$$
 (b) $\frac{\binom{48}{9} \cdot 4 \cdot 9! \cdot 42!}{52!}$