Prova d'esame di **Probabilità e Statistica**

Laurea Triennale in Matematica 10/04/2015

COGNOME e NOME
N. MATRICOLA

Esercizio 1. (V. 1 punti.)

Fornire la definizione di indipendenza per una famiglia finita di eventi $\{A_i\}_{i\in 1,\dots,n}$.

Esercizio 2. (V. 1 punti.)

Siano A e B due eventi con $P(B) \in (0,1)$. Esprimere la probabilità $P(A|A \cup B)$ in funzione delle probabilità $P(A|B^c)$, $P(A^c|B)$ e P(B).

Esercizio 3. (V. 7 punti.) (Se possibile esprimere i risultati sotto forma di frazioni)

Antonio e Giacomo giocano a carta alta e carta bassa. Ciascuno dei due pesca una carta a caso da un mazzo di 10 carte numerate da 1 a 10. (Le due carte pescate sono distinte). Vince chi ha la carta più alta. Sia X risp. Y la variabile aleatoria che indica la carta pescata da Antonio risp. Giacomo e sia V l'evento vince Antonio.

- (a) Qual è la probabiltà che Antonio vinca se ha pescato un 4?
- (b) Qual è la probabiltà che Giacomo vinca se ha pescato la carta k con $k \in \{1, 2, ..., 10\}$?
- (c) Se sappiamo che Antonio ha vinto quanto vale la probabilità che abbia pescato un 4.
- (d) Qual è la probabilità che Antonio vinca e Giacomo abbia pescato un 9?
- (e) Qual è la probabilità che Antonio vinca sapendo che Giacomo ha pescato un 9?
- (f) Le variabili aleatorie X e Y sono indipendenti? (Giustificare la risposta.)
- (g) Quanto vale P(X = Y + 1|V)

Esercizio 4. (V.5 punti.) (Se possibile esprimere i risultati sotto forma di

frazioni)

Siano X,Y e Z tre variabili aleatorie indipendenti Bernoulliane di parametro $p\in(0,1).$ Sia $T:=\min(X,Y,Z)$ e $W:=\max(X,Y,Z)$

- (a) Calcolare la media e la varianza di W.
- (b) Calcolare P(T < W).
- (c) Calcolare $\mathbb{E}[(X+Y)(Y+Z)]$.
- (d) Calcolare P(Z=1|T=0).
- (e) Calcolare $\mathbb{E}[T \cdot W]$.

Esercizio 5. (V. 2 punti.)

Sia $I:=\{-2,-1,0,1,2\}$. Per quali valori di $\mu,s\in\mathbb{R}$ esiste una variabile aleatoria X discreta tale che:

- $P(X \in I) = 1$
- $P(X = n) = P(X = -n) \quad \forall n \in I$
- $\mathbb{E}[X] = \mu$, Var[X] = s

(Sugg. Per i valori s per i quali la v.a. esiste occorre fornire un esempio mentre per i valori s per i quali non esiste occorre fornire una dimostrazione)