Esercitazione del 17/03/2015 Probabilità e Statistica

David Barbato

Esercizio 1

Consideriamo due urne ed una moneta truccata. La prima urna (urna A) contiene 2 palline rosse e 4 bianche, la seconda urna (urna B) contiene una pallina rossa, una bianca e una nera. Mentre la moneta truccata ha una probabilità p ($p \in [0,1]$) di dare testa e una probabilità 1-p di dare croce. Lanciamo la moneta, se esce testa estraiamo una pallina dall'urna A se esce croce estraiamo una pallina dall'urna B.

- (a) Calcolare la probabilità che la pallina estratta sia nera? (Il risultato dipende dal parametro p.)
- (b) Calcolare la probabilità che la pallina estratta sia rossa?
- (c) Qual è la probabilità che la moneta abbia dato testa sapendo che la pallina estratta è bianca?
- (d) Per quali valori di p la probabilità di estrarre una pallina bianca è $\frac{1}{2}$?
- (e) Per quali valori di p la probabilità di estrarre una pallina rossa è $\frac{1}{3}$?
- (f) Per quali valori di p la probabilità di estrarre una pallina nera è $\frac{1}{4}$?

Esercizio 2

Vengono lanciati due dadi a 6 facce regolari. Calcolare le seguenti probabilità.

- (a) Qual è la probabilità che siano entrambi dispari?
- (b) Qual è la probabilità che ci sia almeno un 2?
- (c) Calcolare la probabilità che la somma sia 2.
- (d) Calcolare la probabilità che la somma sia minore o uguale a 5.
- (e) Calcolare la probabilità che siano entrambi minori di 3.
- (f) Sapendo che la somma è uguale a 6 calcolare la probabilità che ci sia almeno un 2.
- (g) Sapendo che la somma è minore o uguale a 6 calcolare la probabilità che ci sia almeno un 2.

Esercizio 3 Siano E ed F due eventi tali che $P(E \cap F) > 0$ dimostrare che:

$$P(E|F) < P(E|E \cap F)$$
.

Esercizio 4

Siano $A, B \in C$ tre eventi tali che $P(C) \in (0,1)$ dimostrare o fornire dei controesempi per le seguenti proposizioni:

(a) Se

$$P(A|C) > P(B|C)$$
 e $P(A|C^c) > P(B|C^c)$

allora P(A) > P(B).

(b) Se

$$P(A|C) > P(A|C^c)$$
 e $P(B|C) > P(B|C^c)$

allora $P(A \cap B|C) > P(A \cap B|C^c)$.

Esercizio 5 Siano E ed F due eventi tali che P(F) > 0 dimostrare che:

$$P(E|F) \le P(E|E \cup F).$$

Esercizio 6

Siano A, B e C tre eventi tali che $P(B \cap C) > 0$ e $P(B \cap C^c) > 0$. Sia infine $P_B(E) := P(E|B)$ per ogni evento E. Dimostrare le seguenti uguaglianze. (a)

$$P(A|B \cap C) = P_B(A|C)$$

(b)
$$P(A|B) = P(A|B \cap C)P(C|B) + P(A|B \cap C^c)P(C^c|B)$$

Esercizio 7** Per quali $n \in \mathbb{N}$ esiste un insieme Ω e una σ -algebra \mathcal{A} su Ω che contiene esattamente n eventi?

Soluzioni:

Esercizio 1

Consideriamo i seguenti eventi:

T = "Il risultato del lancio della moneta è testa";

A = "La pallina viene estratta dall'urna A";

B = "La pallina viene estratta dall'urna B";

R = "La pallina estratta è Rossa";

N = "La pallina estratta è Nera";

 B_i = "La pallina estratta è Bianca";

Le ipotesi della traccia diventano: A = T, $B = T^c$, P(A) = p, P(B) = 1 - p, $P(R|A) = \frac{2}{6} = \frac{1}{3}$, $P(B_i|A) = \frac{4}{6} = \frac{2}{3}$, P(N|A) = 0, $P(R|B) = \frac{1}{3}$, $P(B_i|B) = \frac{1}{3}$, $P(N|B) = \frac{1}{3}$.

(a)
$$P(N) = P(N|A) \cdot P(A) + P(N|B) \cdot P(B) = \frac{1-p}{3}$$

(b)
$$P(R) = P(R|A) \cdot P(A) + P(R|B) \cdot P(B) = \frac{1}{2}$$

(c)
$$P(B_i) = P(B_i|A) \cdot P(A) + P(B_i|B) \cdot P(B) = \frac{1+p}{3}$$

(a) $P(N) = P(N|A) \cdot P(A) + P(N|B) \cdot P(B) = \frac{1-p}{3}$ (b) $P(R) = P(R|A) \cdot P(A) + P(R|B) \cdot P(B) = \frac{1}{3}$ (c) $P(B_i) = P(B_i|A) \cdot P(A) + P(B_i|B) \cdot P(B) = \frac{1+p}{3}$ Utilizzando Bayes $P(T|B_i) = \frac{P(B_i|T) \cdot P(T)}{P(B_i|T) \cdot P(T) + P(B_i|T^c) \cdot P(T^c)} = \frac{2p}{p+1}$

(d)
$$\frac{1+p}{3} = \frac{1}{2}$$
 \Rightarrow $p = \frac{1}{2}$

(e)
$$\frac{1}{3} = \frac{1}{3}$$
 $\forall p \in [0, 1]$

$$\begin{array}{ll} \text{(d)} \ \frac{1+p}{3} = \frac{1}{2} & \Rightarrow & p = \frac{1}{2} \\ \text{(e)} \ \frac{1}{3} = \frac{1}{3} & \forall p \in [0,1] \\ \text{(f)} \ \frac{1-p}{3} = \frac{1}{4} & \Rightarrow & p = \frac{1}{4} \end{array}$$

Esercizio 2

(a)
$$\frac{1}{4}$$
, (b) $\frac{11}{36}$, (c) $\frac{1}{36}$, (d) $\frac{5}{18}$, (e) $\frac{1}{9}$, (f) $\frac{2}{5}$, (g) $\frac{7}{15}$.