COGNOME:	NOME:	MATR.:
COULTOINE.	TOME.	111111110

Analisi Matematica 2, I Appello – 7 Febbraio 2012 Ingegneria dell'Informazione, matr. 0-4, corso prof. Bardi

Tema A

FARE SUBITO: 1) Inserire qui e sul foglio intestato le proprie generalità. 2) Riportare sul foglio intestato il nome del tema (A, B, C,...) alla voce "N. Tema".

COSA CONSEGNARE: questo foglio con le crocette al posto giusto nel riquadro in basso e il foglio intestato con gli SVOLGIMENTI degli esercizi.

REGOLE: NON inserire fogli di brutta copia - Risposte non giustificate sul foglio intestato o non coerenti con quanto ivi scritto non saranno prese in considerazione - TEMPO: 2 ore e 15 minuti

1. Riscrivere il seguente integrale iterato come l'integrale doppio $\int \int_D f(x,y) dx dy$ di una funzione su un opportuno dominio D, disegnare D e calcolare l'integrale

$$\int_{-3}^{3} \left\{ \int_{-\sqrt{9-y^2}}^{0} \frac{\sqrt{x^2 + y^2}}{9 + x^2 + y^2} \, dx \right\} \, dy$$

$$\mathbf{1.} \boxed{a} \, 3\pi - 3\pi^2/4 \qquad b) \, \pi/4 \qquad c) \, 0 \qquad d) \, (4-\pi)/16 \qquad e) \, \pi - \pi^2/4 \qquad f) \, (\pi - 1)/8$$

2. Siano $\gamma(t) = \left(t\sqrt{\pi/2}, t^2(1-t^2)\right)$ con $t \in [0,1]$ e $\mathbf{F}(x,y) = \left(2x\cos\left(x^2+y^2\right), 2y\cos\left(x^2+y^2\right) + 1\right)$. Il campo è conservativo? (risposta sul foglio); calcolare l'integrale di \mathbf{F} lungo γ .

2.
$$a - e^{4\pi}$$
 $b = 0$ $c = 1$ $d = \pi^2/4$ $e = 30$ $f = \pi$

3. Calcolare l'integrale

$$\int_{|z|=2} \frac{3e^{i\pi z}}{z^2 - 4z + 3} dz$$
3. $a) 1$ $b) 3i\pi$ $c) i\pi$ $d) - \pi$ $e) - i\pi$ $f) - \sqrt{\pi/2}$

4. Sia $\mathbf{F}(x, y, z) = (-y, x, ye^{z^2})$. Usando il teorema di Stokes calcolare il flusso del rotore di \mathbf{F} attraverso la superficie (con la normale orientata verso gli z > 0)

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, \ z \ge 0\}$$
4. $a) \ 2 \quad b) - 4/3 \quad c) \ 3 \quad d) \ e \quad e) \ 2\pi \quad f) \ \pi$

5. Dato il sistema di equazioni differenziali x' = x - y, y' = y - 4x, si calcoli sul foglio intestato la soluzione del problema di Cauchy con condizione iniziale x(0) = -1/2, y(0) = 1. Si determini poi (x(1), y(1)).

$$\mathbf{5.} \boxed{a) \left(e^{-1}, -e^{-1}/2\right) \qquad b) \left(-e^{3}, e^{3}/2\right) \qquad c) \left(e^{-1}, e^{-1}/2\right) \qquad d) \left(-e^{3}/2, e^{3}\right) \qquad e) \left(-e^{-1}, e^{-1}/2\right) \qquad f) \left(e^{3}, e^{3}/2\right)}$$

6. Si trovino i punti critici di $f(x,y) = \cos x \sinh y$ e se ne determini la natura. Si dica poi se ci sono

a un solo max loc. b un solo min loc. b un s

Risposte: barrare con una X in corrispondenza delle risposte corrette

	a)	$\mid b)$	$ c\rangle$	d)	e)	f)	ALTRO
1							
2							
3							
4							
5							
6							

COGNOME:	NOME:	MATR.:
COGITOINE.	II O III E.	1/1111110

Analisi Matematica 2, I Appello – 7 Febbraio 2012 Ingegneria dell'Informazione, matr. 0-4, corso prof. Bardi

Tema B

FARE SUBITO: 1) Inserire qui e sul foglio intestato le proprie generalità. 2) Riportare sul foglio intestato il nome del tema (A, B, C,...) alla voce "N. Tema".

COSA CONSEGNARE: questo foglio con le crocette al posto giusto nel riquadro in basso e il foglio intestato con gli SVOLGIMENTI degli esercizi.

REGOLE: NON inserire fogli di brutta copia - Risposte non giustificate sul foglio intestato o non coerenti con quanto ivi scritto non saranno prese in considerazione - TEMPO: 2 ore e 15 minuti

1. Siano $\gamma(t) = \left(t\sqrt{\pi/2}, t^2(1-t^2)\right)$ con $t \in [0,1]$ e $\mathbf{F}(x,y) = \left(2x\sin\left(x^2+y^2\right)+1, 2y\sin\left(x^2+y^2\right)\right)$. Il campo è conservativo? (risposta sul foglio); calcolare l'integrale di \mathbf{F} lungo γ .

$$\mathbf{1.} \boxed{a) \, 1 \qquad b) \, 2 - 2 \sqrt{\pi/2} \qquad c) - 1 + \sqrt{\pi/2} \qquad d) - \sqrt{\pi/2} \qquad e) \, 1 + \sqrt{\pi/2} \qquad f) \, 1 - \sqrt{\pi/2} \boxed{}$$

2. Riscrivere il seguente integrale iterato come l'integrale doppio $\int \int_D f(x,y) dx dy$ di una funzione su un opportuno dominio D, disegnare D e calcolare l'integrale

$$\int_{-2}^{2} \left\{ \int_{-\sqrt{4-x^2}}^{0} \frac{\sqrt{x^2 + y^2}}{4 + x^2 + y^2} \, dy \right\} dx$$
2. $a) \ 0 \qquad b) \ 2\pi - \pi^2/2 \qquad c) \ \pi \log 2 \qquad d) \ (4 - \pi)/8 \qquad e) \ \pi/2 \qquad f) \ (\pi - 1)/4$

3. Calcolare l'integrale

$$\int_{|z|=5} \frac{e^{2i\pi z}}{z^2 - 9z + 18} dz$$
3. $a) 1/4$ $b) i\pi/5$ $c) i/12$ $d) 2i\pi/3$ $e) - 2i\pi/3$ $f) - \sqrt{\pi/3}$

4. Dato il sistema di equazioni differenziali x' = x - 4y, y' = y - x, si calcoli sul foglio intestato la soluzione del problema di Cauchy con condizione iniziale x(0) = 1, y(0) = 1/2. Si determini poi (x(2), y(2)).

$$\mathbf{4.} \boxed{a) \left(e^{-2}, -e^{-2}/2\right) \qquad b) \left(-e^{6}, e^{6}/2\right) \qquad c) \left(e^{-2}, e^{-2}/2\right) \qquad d) \left(e^{6}, -e^{6}/2\right) \qquad e) \left(-e^{-2}, e^{-2}/2\right) \qquad f) \left(e^{6}, e^{6}/2\right) \qquad e^{-2}/2 \qquad f \left(e^{6}, e^{6}/2\right) \qquad f \left(e^{6$$

5. Si trovino i punti critici di $f(x,y) = \sin x \cosh y$ e se ne determini la natura. Si dica poi se ci sono

 $\mathbf{5}$. a) infiniti max loc. b) infinite selle c) una sola sella d) un solo max loc. e) infiniti min loc. f) un solo min loc.

6. Sia $\mathbf{F}(x,y,z) = (-yz,xz,yze^{z^2})$. Usando il teorema di Stokes calcolare il flusso del rotore di \mathbf{F} attraverso la superficie (con la normale orientata verso gli z > 0)

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = 1 + x^2 + y^2, \ x^2 + y^2 \le 1\}$$
 6. $a) 4\pi$ $b) e$ $c) - 2\pi$ $d) \pi/2$ $e) \pi$ $f) - 6\pi$

Risposte: barrare con una X in corrispondenza delle risposte corrette

	$ a\rangle$	$\mid b)$	$ c\rangle$	d)	e)	f)	ALTRO
1							
2							
3							
4							
5							
6							