Elliptic Hamilton-Jacobi-Bellman equations degenerating at the boundary and applications to stochastic control

Martino Bardi with Annalisa Cesaroni and Luca Rossi

Department of Mathematics University of Padua, Italy

"Hamilton-Jacobi Equations: new trends and applications" University Rennes 1, France 28th May - 3rd June, 2016

Martino Bardi (University of Padua)

HJB degenerating at the boundary

4 **A** N A **B** N A **B** N

H-J-Bellman operator

$$F[u] := \sup_{\alpha \in \mathcal{A}} \left\{ -\operatorname{tr} \left(a(x, \alpha) D^2 u(x) \right) - b(x, \alpha) \cdot Du(x) \right\},\$$

in $\Omega \subseteq \mathbb{R}^n$ bounded connected open set with C^2 boundary, $A \subseteq \mathbb{R}^m$ closed, $a \equiv \sigma \sigma^T \ge 0$

$$b: \overline{\Omega} \times A \to \mathbb{R}^n, \qquad \sigma: \overline{\Omega} \times A \to \mathbf{M}_{n \times r}, \quad r \ge 1$$

Associated controlled diffusion process

$$\begin{cases} dX_t^{\alpha_{\cdot}} = b(X_t^{\alpha_{\cdot}}, \alpha_t) dt + \sqrt{2}\sigma(X_t^{\alpha_{\cdot}}, \alpha_t) dW_t \\ \\ X_0^{\alpha_{\cdot}} = x \in \overline{\Omega}, \end{cases}$$

 $W_t r$ -dimensional Brownian motion.

Martino Bardi (University of Padua)

- A TE N - A TE N

Outline

- Solutions of *F*[*u*] ≤ 0 or *F*[*u*] ≥ 0 in Ω with an "infinite boundary condition" are constant.
- Application 1 Stochastic control with exit time:

$$v(x) := \inf_{\alpha. \in \mathcal{A}} \mathbb{E} \left[\phi(X_{\tau_x^{\alpha.}}^{\alpha.}) \right] = \text{ explicit constant,}$$

where τ_{x}^{α} is the first exit time of the process X_{t}^{α} from Ω .

• Application 2 - Ergodic HJB equation:

 $F[\chi] - I(x) = c \text{ in } \Omega$, + "infinite boundary condition" on $\partial \Omega$

in the unknowns (c, χ) has a unique solution (χ up to additive constants).

Standing assumptions

• (H) Hölder continuity of data

$$\begin{cases} |b(x,\alpha) - b(y,\alpha)| \le C|x - y|^{\eta}, & 0 < \eta \le 1\\ |\sigma(x,\alpha) - \sigma(y,\alpha)| \le B|x - y|^{\beta}, & \frac{1}{2} < \beta \le 1 \end{cases}$$

• (SMP) Strong Maximum Principle:

 $u \in USC(\Omega)$ solving $F[u] \leq 0$ in Ω and $\exists x_o$ such that $u(x_o) = \max_{\Omega} u \implies u$ is constant.

Sufficient conditions for (SMP) [M.B. - F. Da Lio 2001-3]:

- $\forall x \quad \exists \alpha_x \in A \quad \text{such that}$
 - either $a(x, \alpha_x) > 0$ (strict ellipticity for some control)
 - or the operator tr $(a(x, \alpha_x)D^2)$ is Hörmander hypoelliptic.

Standing assumptions continued

Define

$$d(x) := \operatorname{dist}(x, \mathbb{R}^n \setminus \Omega) - \operatorname{dist}(x, \overline{\Omega})$$

• (B1) $\exists \delta, k > 0, \gamma < 2\beta - 1$ such that $\forall \overline{x} \in \partial \Omega, \exists \overline{\alpha} \in A$: $\begin{cases} \sigma^{T}(\overline{x}, \overline{\alpha}) Dd(\overline{x}) = 0, \quad (a) \\ b(x, \overline{\alpha}) \cdot Dd(x) + tr(a(x, \overline{\alpha}) D^{2}d(x)) \geq k d^{\gamma}(x), \forall x \in \Omega \cap B_{\delta}(\overline{x}) (b) \end{cases}$

Meaning: (a): diffusion with control $\overline{\alpha}$ degenerates in the direction $n(\overline{x}) = Dd(\overline{x})$, but (b) $b(x,\overline{\alpha})$ points inward Ω in a neighborhood of \overline{x} .

Sufficient condition for (b): (a) + $b(\overline{x},\overline{\alpha}) \cdot Dd(\overline{x}) + tr(a(\overline{x},\overline{\alpha})D^2d(\overline{x})) \ge k > 0.$

N.B.: (B1) $\implies \Omega$ viable, or weakly invariant.

A Liouville-type property 1: subsolutions

Theorem (1) (H), (SMP), (B1), $u \in USC(\Omega)$ viscosity subsolution $F[u] \leq 0$ in Ω , and

(BC1)
$$\limsup_{x \to \partial \Omega} \frac{u(x)}{-\log d(x)} \le 0,$$

 \Rightarrow *u* is constant.

Lemma (Lyapunov-like function)

 $\forall M \geq 0, \exists \delta > 0$ such that

 $F[-\log(d(x))] > M, \quad \forall x \in \Omega_{\delta},$

where $\Omega_{\delta} := \{ x \in \Omega \mid d(x) < \delta \}.$

Proof of the Lyapunov Lemma

Choose $\overline{x} \in \partial \Omega$: $d(x) = |x - \overline{x}|$ and $Dd(x) = Dd(\overline{x})$, and $\overline{\alpha} \in A$ such that $\sigma^T(\overline{x}, \overline{\alpha})Dd(\overline{x}) = 0$ by (B1). For $w(x) := -\log(d(x))$,

$$Dw = -Dd/d$$
, $D^2w = -D^2d/d + Dd \otimes Dd/d^2$, ==

$$F[w](x) = \sup_{\alpha \in A} \left(b(x,\alpha) \cdot \frac{Dd(x)}{d(x)} + \operatorname{tr}\left(a(x,\alpha)\frac{D^2d(x)}{d(x)}\right) - \frac{1}{d^2(x)}|\sigma^T(x,\alpha)Dd(x)|^2 \right)$$

$$\geq \frac{1}{d(x)} \left(b(x,\overline{\alpha}) \cdot Dd(x) + \operatorname{tr}(a(x,\overline{\alpha})D^2d(x)) - \frac{1}{d^2(x)}|\sigma^T(x,\overline{\alpha})Dd(x)|^2 \right)$$

$$\geq kd^{\gamma-1}(x) - B^2d^{2\beta-2}(x) \geq M$$

by (H) and $\gamma < 2eta - 1$, for d small enough.

Proof of the Lyapunov Lemma

Choose $\overline{x} \in \partial \Omega$: $d(x) = |x - \overline{x}|$ and $Dd(x) = Dd(\overline{x})$, and $\overline{\alpha} \in A$ such that $\sigma^T(\overline{x}, \overline{\alpha})Dd(\overline{x}) = 0$ by (B1). For $w(x) := -\log(d(x))$,

$$Dw = -Dd/d, \quad D^2w = -D^2d/d + Dd \otimes Dd/d^2, \implies$$

$$F[w](x) = \sup_{\alpha \in A} \left(b(x,\alpha) \cdot \frac{Dd(x)}{d(x)} + \operatorname{tr}\left(a(x,\alpha)\frac{D^2d(x)}{d(x)}\right) - \frac{1}{d^2(x)}|\sigma^T(x,\alpha)Dd(x)|^2 \right)$$

$$\geq \frac{1}{d(x)} \left(b(x,\overline{\alpha}) \cdot Dd(x) + \operatorname{tr}(a(x,\overline{\alpha})D^2d(x)) - \frac{1}{d^2(x)}|\sigma^T(x,\overline{\alpha})Dd(x)|^2 \right)$$

$$\geq kd^{\gamma-1}(x) - B^2d^{2\beta-2}(x) \geq M$$

by (H) and $\gamma < 2\beta - 1$, for *d* small enough.

Proof of the Theorem

Set

$$U_{\varepsilon}(x) := u(x) - \max_{\Omega \setminus \Omega_{\delta}} u + \varepsilon \log d(x)$$

Then

•
$$U_{\varepsilon}(x) = \varepsilon \log d(x) < 0$$
 if $d(x) = \delta < 1$

•
$$\lim_{x \to \partial \Omega} U_{\varepsilon}(x) = -\infty$$
 by (BC1).

 $\implies U_{\varepsilon} < 0$ in Ω_{δ} for δ small, because, if not,

 $u - \varepsilon w$ has a max at $x_o \in \Omega_\delta$, but

 $F[\varepsilon w](x_o) = \varepsilon F[w] > 0$ by the Lemma, contradiction with $F[u] \le 0$.

$$\implies \quad u(x) \leq \max_{\Omega \setminus \Omega_{\delta}} \ u - \varepsilon \log d(x) \ \text{ in } \ \Omega_{\delta} \ \ \forall \, \varepsilon > 0$$

$$\implies \max_{\Omega} u \leq \max_{\Omega \setminus \Omega_{\delta}} u.$$

(SMP) \implies $u \equiv$ constant.

イロト 不得 トイヨト イヨト 二日

A Liouville-type property 2: supersolutions

• (B2)
$$\exists \delta, k > 0, \gamma < 2\beta - 1$$
 such that $\forall \overline{x} \in \partial \Omega, \forall \alpha \in A$

$$\begin{cases} \sigma^{T}(\overline{x}, \alpha) Dd(\overline{x}) = 0, \\ b(x, \alpha) \cdot Dd(x) + tr(a(x, \alpha)D^{2}d(x)) \geq k d^{\gamma}(x), \forall x \in \Omega_{\delta} \end{cases}$$

• Strong Minimum Principle:

 $u \in LSC(\Omega)$ solving $F[u] \ge 0$ in Ω and $\exists x_o$ such that

 $u(x_o) = \min_{\Omega} u \implies u \text{ is constant.}$

Sufficient conditions [M.B. - F. Da Lio]: $a(x, \alpha) > 0 \ \forall x \in \Omega, \alpha \in A$. N.B.: (B2) $\Longrightarrow \Omega$ invariant.

Theorem (1bis)

(BC2)

(H), (SMinP), (B2), $u \in LSC(\Omega)$ visco. supersol. $F[u] \ge 0$ in Ω , and

$$\limsup_{x \to \partial \Omega} \frac{u(x)}{-\log d(x)} \geq 0$$

 \Rightarrow u is constant.

Application 1: control with exit time

Assume

(L) $\eta = \beta = 1$ in (H), i.e., b, σ Lipschitz uniformly in α .

 $\implies \forall \alpha_{.} \in A$ admissible control, exists a unique trajectory of the control diffusion process

$$\begin{cases} dX_t^{\alpha \cdot} = b(X_t^{\alpha \cdot}, \alpha_t) dt + \sqrt{2}\sigma(X_t^{\alpha \cdot}, \alpha_t) dW_t \\ X_0^{\alpha \cdot} = x \in \overline{\Omega}, \end{cases}$$

Define

$$\tau_{X}^{\alpha.} := \inf\{t \ge 0 \mid X_{t}^{\alpha.} \notin \Omega\} \in [0, +\infty]$$
$$G(x, \alpha) := \begin{cases} \phi(X_{\tau_{X}}^{\alpha.}) & \tau_{X}^{\alpha.} < +\infty \\ 0 & \tau_{X}^{\alpha.} = +\infty, \end{cases} \quad v(x) := \inf_{\alpha. \in \mathcal{A}} \mathbb{E}\left[G(x, \alpha)\right]$$

By a Dynamic Programming Principle we expect F[v] = 0 in Ω and then $v \equiv$ constant under the assumptions of Thm. 1.

Martino Bardi (University of Padua)

HJB degenerating at the boundary

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Application 1: control with exit time

Assume

(L) $\eta = \beta = 1$ in (H), i.e., b, σ Lipschitz uniformly in α .

 $\implies \forall \alpha_{.} \in A$ admissible control, exists a unique trajectory of the control diffusion process

$$\begin{cases} dX_t^{\alpha \cdot} = b(X_t^{\alpha \cdot}, \alpha_t) dt + \sqrt{2}\sigma(X_t^{\alpha \cdot}, \alpha_t) dW_t \\ X_0^{\alpha \cdot} = x \in \overline{\Omega}, \end{cases}$$

Define

$$\begin{aligned} \tau_{x}^{\alpha.} &:= \inf\{t \geq 0 \mid X_{t}^{\alpha.} \notin \Omega\} \in [0, +\infty] \\ G(x, \alpha) &:= \begin{cases} \phi(X_{\tau_{x}^{\alpha.}}^{\alpha.}) & \tau_{x}^{\alpha.} < +\infty \\ 0 & \tau_{x}^{\alpha.} = +\infty, \end{cases} \quad v(x) &:= \inf_{\alpha. \in \mathcal{A}} \mathbb{E}\left[G(x, \alpha)\right] \end{aligned}$$

By a Dynamic Programming Principle we expect F[v] = 0 in Ω and then $v \equiv$ constant under the assumptions of Thm. 1.

Martino Bardi (University of Padua)

イベト イモト イモト

Theorem (2)

Assume (L), (SMP), (B1), and • A compact and { $(b(x, \alpha), a(x, \alpha)) \mid \alpha \in A$ } convex $\forall x \in \overline{\Omega}$ • $\exists \underline{x} \in \partial\Omega, \ \underline{\alpha} \in A$ such that $\phi(\underline{x}) = \min \phi$ and (ND) {either $\sigma^{T}(\underline{x}, \underline{\alpha}) Dd(\underline{x}) \neq 0$, (a) or $b(\underline{x}, \underline{\alpha}) \cdot Dd(\underline{x}) + tr(a(\underline{x}, \underline{\alpha})D^{2}d(\underline{x})) < 0$. (b)

Then

$$v(x) = \min\{\min\phi, \mathbf{0}\} \qquad \forall x \in \Omega.$$

Rmk.: (ND) (a) is a non-degeneracy condition of the diffusion at $\underline{x} \in \partial \Omega$, (b) says that $b(\underline{x}, \underline{a})$ points outward Ω at \underline{x} : the control $\underline{\alpha}$ "does the opposite" than $\overline{\alpha}$ in condition (B1).

Martino Bardi (University of Padua)

HJB degenerating at the boundary

Theorem (2)

Assume (L), (SMP), (B1), and • A compact and { $(b(x, \alpha), a(x, \alpha)) \mid \alpha \in A$ } convex $\forall x \in \overline{\Omega}$ • $\exists \underline{x} \in \partial\Omega, \ \underline{\alpha} \in A$ such that $\phi(\underline{x}) = \min \phi$ and (ND) $\begin{cases} either \ \sigma^{T}(\underline{x}, \underline{\alpha}) Dd(\underline{x}) \neq 0, \quad (a) \\ or \ b(\underline{x}, \underline{\alpha}) \cdot Dd(\underline{x}) + tr(a(\underline{x}, \underline{\alpha}) D^{2}d(\underline{x})) < 0. (b) \end{cases}$

Then

$$v(x) = \min\{\min\phi, \mathbf{0}\} \quad \forall x \in \Omega.$$

Rmk.: (ND) (a) is a non-degeneracy condition of the diffusion at $\underline{x} \in \partial \Omega$, (b) says that $b(\underline{x}, \underline{a})$ points outward Ω at \underline{x} : the control $\underline{\alpha}$ "does the opposite" than $\overline{\alpha}$ in condition (B1).

Application 2: ergodic HJB equation

Further data: running cost $: \mathbb{R}^n \times A \to \mathbb{R}$ satisfying

(H')
$$|I(x,\alpha) - I(y,\alpha)| \le B|x-y|^{\gamma}.$$

Ergodic H-J-Bellman equation:

(EBE)
$$\sup_{\alpha \in A} \left\{ -\operatorname{tr} \left(a(x, \alpha) D^2 u(x) \right) - b(x, \alpha) \cdot Du(x) - l(x, \alpha) \right\} = c$$

in Ω + boundary conditions, in the unknowns (*c*, *u*).

Motivations: ergodic stochastic control (with state constraints), homogenization, singular perturbations, weak KAM theory, Mean Field Games,....

Notation: $H(x, Du, D^2u) :=$ left-hand side of (EBE).

Theorem (3)

Assume (H), (H'), (B2) (i.e., $\overline{\Omega}$ invariant), and $a(x, \alpha) > 0 \quad \forall x \in \Omega, \alpha \in A$. Then • \exists unique $c \in \mathbb{R}$ such that (EBE) has a visco. sol. χ :

(BC)
$$\lim_{x\to\partial\Omega}\frac{\chi(x)}{-\log d(x)}=0,$$

• $\chi \in C^2(\Omega)$ and is unique up to addition of constants.

The proof is constructive: appoximate (EBE) with

$$(\lambda \mathsf{BE})$$
 $\lambda u_{\lambda} + H(x, Du_{\lambda}, D^2u_{\lambda}) = 0, \qquad x \in \Omega,$

for $\lambda > 0$, the HJB equation of discounted, infinite horizon stochastic control with state constrained in Ω . Idea: let $\lambda \rightarrow 0+$.

Proposition

Under the assumptions of Thm. 3

- \exists unique bounded solution $u_{\lambda} \in C^{2}(\Omega)$ of (λBE) and $||u_{\lambda}||_{\infty} \leq ||I||_{\infty}/\lambda;$
- [●] ∀ K ⊂⊂ Ω, ∀ x̃ ∈ Ω, the family $(u_{\lambda} u_{\lambda}(x))_{\lambda \in (0,1]}$ is bounded in C^{1,θ}(K), for some θ ∈ (0, 1).
- (i) for all h > 0, there exists $\delta_h > 0$ such that

 $h\log(d(x)) + \min_{\Omega \setminus \Omega_{\delta_h}} u_{\lambda} \le u_{\lambda}(x) \le -h\log(d(x)) + \max_{\Omega \setminus \Omega_{\delta_h}} u_{\lambda}.$

 $\forall \lambda \in (0, 1], x \in \Omega_{\delta_h}.$

Main ingredient of the proof: Krylov-Safonov estimates for uniformly elliptic operators.

Martino Bardi (University of Padua)

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Proposition

Under the assumptions of Thm. 3

- \exists unique bounded solution $u_{\lambda} \in C^{2}(\Omega)$ of (λBE) and $\|u_{\lambda}\|_{\infty} \leq \|I\|_{\infty}/\lambda$;
- [●] ∀ K ⊂⊂ Ω, ∀ x̃ ∈ Ω, the family $(u_{\lambda} u_{\lambda}(x))_{\lambda \in (0,1]}$ is bounded in C^{1,θ}(K), for some θ ∈ (0, 1).
- ③ for all h > 0, there exists $\delta_h > 0$ such that

 $h\log(d(x)) + \min_{\Omega \setminus \Omega_{\delta_h}} u_{\lambda} \le u_{\lambda}(x) \le -h\log(d(x)) + \max_{\Omega \setminus \Omega_{\delta_h}} u_{\lambda}.$

 $\forall \lambda \in (0, 1], x \in \Omega_{\delta_h}.$

Main ingredient of the proof: Krylov-Safonov estimates for uniformly elliptic operators.

Martino Bardi (University of Padua)

3

イロト 不得 トイヨト イヨト

Proposition

Under the assumptions of Thm. 3

- \exists unique bounded solution $u_{\lambda} \in C^{2}(\Omega)$ of (λBE) and $\|u_{\lambda}\|_{\infty} \leq \|I\|_{\infty}/\lambda$;
- [●] ∀ K ⊂⊂ Ω, ∀ x̃ ∈ Ω, the family $(u_{\lambda} u_{\lambda}(x̃))_{\lambda \in (0,1]}$ is bounded in C^{1,θ}(K), for some θ ∈ (0, 1).
- **(**) for all h > 0, there exists $\delta_h > 0$ such that

 $h\log(d(x)) + \min_{\Omega \setminus \Omega_{\delta_h}} u_{\lambda} \le u_{\lambda}(x) \le -h\log(d(x)) + \max_{\Omega \setminus \Omega_{\delta_h}} u_{\lambda}.$

 $\forall \lambda \in (0, 1], \ \mathbf{x} \in \Omega_{\delta_h}.$

Main ingredient of the proof: Krylov-Safonov estimates for uniformly elliptic operators.

Steps of the proof of Thm. 3

•
$$\lambda u_\lambda(ilde{x})
ightarrow -c$$
 as $\lambda
ightarrow 0+$

- *u_λ* − *u_λ*(*x̃*) → *χ* solution of (EBE), locally uniformly on a subsequence;
- χ satisfies (BC) by point 3 of the Proposition.
- Uniqueness: (c_1, χ_1), (c_2, χ_2) solutions of (EBE), w.l.o.g. $c_1 \ge c_2$.

$$F[\chi_1 - \chi_2] = \sup_{\alpha \in \mathcal{A}} \left\{ -\operatorname{tr}(a(x,\alpha)D^2(\chi_1 - \chi_2)) - b(x,\alpha) \cdot D(\chi_1 - \chi_2) \right\}$$

$$\geq \sup_{\alpha \in \mathcal{A}} \left\{ -\operatorname{tr}(a(x,\alpha)D^2\chi_1) - b(x,\alpha) \cdot D\chi_1 - l(x,\alpha) \right\}$$

$$+ \inf_{\alpha \in \mathcal{A}} \left\{ \operatorname{tr}(a(x,\alpha)D^2\chi_2)) + b(x,\alpha) \cdot D\chi_2 + l(x,\alpha) \right\}$$

$$= c_1 - c_2 \ge 0.$$

By Theorem 1bis $\chi_1 - \chi_2 \equiv \text{constant}$, and then $c_1 = c_2$.

Stochastic control formula for c

Corollary

Assume in addition (L). Then

$$\boldsymbol{c} = \lim_{\lambda \to 0+} \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\lambda \int_0^\infty \boldsymbol{e}^{-\lambda t} l(\boldsymbol{X}_t^{\alpha}, \alpha_t) dt \right],$$

uniformly w.r.t. $x = X_0^{\alpha}$,

i.e., c = vanishing discount limit of minimum long-time average cost, for all initial positions *x*.

Remark. Uniqueness holds also in the larger class: for some $\kappa > 0$

 $\lim_{x\to\partial\Omega}\chi(x)d(x)^{\kappa}=0.$

Martino Bardi (University of Padua)

HJB degenerating at the boundary

Rennes, June 2, 2016 16 / 19

Stochastic control formula for c

Corollary

Assume in addition (L). Then

$$\boldsymbol{c} = \lim_{\lambda \to 0+} \inf_{\alpha \in \mathcal{A}} \mathbb{E} \left[\lambda \int_0^\infty \boldsymbol{e}^{-\lambda t} l(\boldsymbol{X}_t^{\alpha}, \alpha_t) dt \right],$$

uniformly w.r.t. $x = X_0^{\alpha}$,

i.e., c = vanishing discount limit of minimum long-time average cost,

for all initial positions *x*.

Remark. Uniqueness holds also in the larger class: for some $\ \kappa > 0$

 $\lim_{x\to\partial\Omega}\chi(x)d(x)^{\kappa}=0.$

D. Castorina, A. Cesaroni and L. Rossi studied the evolutive problem

$$u_t + H(x, Du, D^2u) = 0$$

with initial conditions and (infinite) boundary conditions, and showed

$$u(x,t) - ct \rightarrow \chi(x) + k$$
, as $t \rightarrow +\infty$,

where (c, χ) solves (EBE) and $k \in \mathbb{R}$ depends on u(x, 0).

Using that $\chi(x) - ct$ is a solution of the parabolic equation $\forall t \in \mathbb{R}$, they also show that χ is bounded, which improves the existence part of Thm. 3.

- M.B., A. Cesaroni, L. Rossi: Nonexistence of nonconstant solutions of some degenerate Bellman equations.... ESAIM-COCV in print
- D. Castorina, A. Cesaroni and L. Rossi: A parabolic HJB equation degenerating at the boundary, Comm. Pure Appl. Anal. 2016
- J.M. Lasry, P.-L. Lions: Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints, I. Math. Ann. 1989
- T. Leonori, A. Porretta: Gradient bounds for elliptic problems singular at the boundary. Arch. Ration. Mech. Anal. 2011
- A. Arapostathis, V.S. Borkar, M.K. Ghosh: Ergodic control of diffusion processes. Cambridge University Press 2012.

Thanks for your attention!