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Plan

1 What are Mean Field Games?
I a static game with many players
I a heuristic derivation of the MFG partial differential equations
I MFG as models of large populations of agents

2 Models of segregation
[joint work with Yves Achdou (Paris) and Marco Cirant (Milano)]

I Schelling’s model of urban settlements
I Mean-Field Games with two populations
I Qualitative properties: segregation?
I Numerical experiments

Ingredients:
a bit of Game Theory (Nash equilibria)
stochastic control
partial differential equations

Martino Bardi (University of Padua) Mean Field Games Adelaide, September 30, 2015 2 / 48



1. Introduction to MFG: motivations

Want to model dynamical phenomena with
many very similar rational agents
subject to noise
non-cooperative

Examples of applications:
Economics

I financial markets (price formation and dynamic equilibria, formation
of volatility)

I general economic equilibrium with rational expectations
I environmental policy,

Engineering
I wireless power control
I demand side management in electric power networks,
I traffic problems
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Social sciences
I crowd motion (mexican wave "la ola", pedestrian dynamics,

congestion phenomena,...)
I opinion dynamics and consensus problems,
I models of population distribution (e.g., segregation).

Goals and methods:
get macroscopic "mean field" continuum models, simpler than the
discrete models for N agents,
in analogy with the Mean Field theories in

I Statistical Physics (kinetic theory of gases, Boltzmann and Vlasov
equations)

I Quantum Mechanics and Quantum Chemistry (Hartree-Fock
models...)

mostly using Partial Differential Equations and Stochastic
methods.
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Basic references

Mathematical theory:
J.-M. Lasry, P.-L. Lions: C.R.A.S. Paris 2006, Jpn. J. Math. 2007
P.-L. Lions: movies of courses at College de France

Engineering problems with L-Q models:
M. Huang, P.E. Caines, R.P. Malhamé: Proc. IEEE Conf. 2003,
IEEE Trans. Automat. Control 2007, etc....

Applications:
O. Guéant, J.-M. Lasry, P.-L. Lions: Springer Lecture Notes 2011.
D.A. Gomes, L. Nurbekian, E.A. Pimentel, Economics models and
MFG theory, book to appear

Numerical methods and discrete models
Y. Achdou, I. Capuzzo-Dolcetta: SIAM J. Numer. Anal. 2010
D.A. Gomes, J. Mohr, R.R. Souza: J. Math. Pures Appl. 2010
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Games with many players

A (static) N-person game is defined by
Q = a (compact) metric space
Fi : QN → R continuous, i = 1, ...,N

Goal of the i th player : minimise Fi .

Definition of Nash equilibrium: (x1, . . . , xN) ∈ QN such that

Fi(x1, . . . , xN) ≤ Fi(x1, .., x i−1, xi , x i+1, .., xN) ∀ xi ∈ Q, ∀i .

Existence of the equilibria is classical, but there are many and can
have a complicate structure.

We’re interested in problems with N large.

Question: is there a simpler macroscopic model for large populations?
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Indistinguishable players

Main assumption: "homogeneous population", i.e.,

each cost is a symmetric function of the state of the other players.

For N large, symmetric functions can be approximated by functions

only of the empirical measure of their variables.

Then assume, for P(Q) := {probability measures on Q}

∃F : Q × P(Q)→ R such that the cost of the i-th player is

Fi = F

xi ,
1

N − 1

∑
k 6=i

δxk

 ,

depending on the other players only via their empirical measure,

with F continuous w.r.t. weak∗ convergence on P(Q),
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The large-population limit N →∞

Theorem [Lions, about 2006]

If (xN
1 , . . . , x

N
N) is a Nash equilibrium for the N-person game, then

(i)
1
N

N∑
k=1

δxN
k
→∗ m as N →∞,

up to subsequences, m solution of

(1) ∀ x ∈ supp m F (x ,m) = min
y∈Q

F (y ,m).

(ii)
∫

Q
(F (x ,m1)− F (x ,m2)) d(m1 −m2) > 0 ∀m1 6= m2,

i.e., F increasing =⇒ at most one solution of (1).

N.B.: F increasing means that players don’t like the crowd.
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A very simple example

Where do I put my towel on the beach?

xi ∈ R is the distance of the towel of the i−th person from the sea.

The cost of the i−th player is

Fi(x1, .., xN) = f (xi) + g
(

#{k : |xi − xk | < ε}
(N − 1)|Bε|

)
which becomes a function of the empirical density by choosing

F (x ,m) = f (x) + g(m ∗ 1Bε/|Bε|).

Note: f is minimal at the preferred position x ,

g ↑ means aversion to crowd (=⇒ uniqueness in (1)),

g ↓ means that people like crowd.
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An explicit solution

Letting formally ε→ 0 get F (x ,m) = f (x) + g(m(x)) and the MFG
equation (1) becomes

supp m ⊆ arg min (f (x) + g(m(x))) .

Sometimes can be solved explicitly, e.g.,

F (x ,m) =
|x − x |2

2
+ log(m(x)).

Must solve

if m(x) > 0
|x − x |2

2
+ log(m(x)) = λ := min F (y ,m(y))

Then m(x) = eλe−|x−x |2/2 and λ must be such that
∫

m(x) = 1

=⇒ the unique solution m is Gaussian with mean x .
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Comments

If the monotonicity of F fails can guess from the example the
non-uniqueness and singular solutions....

So far I present 1-shot or "static" MFG, but most of the theory is
on dynamic games, in fact differential games.
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Heuristic derivation of the main equations

Basic facts from stochastic control: an agent has dynamics

dXs = αs ds + σ dWs, Xt = x ∈ Rd

with Ws a Brownian motion, αs = control, σ > 0 volatility,
and the finite horizon cost functional:

JT (t , x , α.) := E

[∫ T

t
L(αs) + F (Xs,menv )ds

]
+ g(XT ).

Here
L is the running cost of using the control αs,

F : Rd × { prob. measures} → { Lip functions }
is the running cost of being in the state Xs, depending on the
distribution of the other agents in the environment menv ,
g is the terminal cost.
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Define the value function

v(t , x) := inf
α.

JT (t , x , α.).

Then v(t , x) solves the Hamilton-Jacobi-Bellman equation{
−∂v
∂t − ν∆v + H(∇v) = F (x ,menv ) in (0,T )× Rd

v(T , x) = g(x)

where ν := σ2/2, ∆ := ∆x , ∇ := ∇x , and H is the Hamiltonian
associated to L:

H(p) := sup
α∈Rd
{p · α− L(α)}

Moreover the feedback control

α̂(t , x) = −∇H(∇v(t , x))

is optimal.
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The optimal process

dX̂t = −∇H(∇v(X̂t ))dt + σdWt

has a distribution whose density m solves the

Kolmogorov-Fokker-Plank equation{
∂m
∂t − ν∆m + div(m∇H(∇v)) = 0 in (0,T )× Rd

m(0, x) = mo(x)

where mo ≥ 0,
∫

Rd mo(x)dx = 1,

is the distribution of the initial position of the system.
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The PDEs for value and density of the optimal process are
−∂v
∂t − ν∆v + H(∇v) = F (x ,menv ) in (0,T )× Rd

∂m
∂t − ν∆m + div(m∇H(∇v)) = 0 in (0,T )× Rd

v(T , x) = g(x), m(0, x) = mo(x),

and menv 7→ v , v 7→ m are well-defined maps.

If menv 7→ v 7→ m has a fixed point , i.e. m = menv ,

then m is an equilibrium distribution of the agents,

each behaving optimally as long as the population distribution remains
the same.
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Mean Field Games PDEs: evolutive

We have heuristically derived the basic system of 2 evolutive PDEs of
MFGs

(MFE)


−∂v
∂t − ν∆v + H(∇v) = F (x ,m) in (0,T )× Rd

∂m
∂t − ν∆m + div(m∇H(∇v)) = 0 in (0,T )× Rd

v(T , x) = g(x), m(0, x) = mo(x),

Data: ν,H,F ,mo,g ; Unknowns:
m(t , x) = equilibrium distribution of the agents at time t ;
v(t , x)= value function of the representative agent

1st equation is backward parabolic H-J-B with a possibly non-local cost
term F (x ,m) ,
2nd equation is forward parabolic K-F-P equation, linear in m.
3rd line: terminal and initial conditions.
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Well-posedness?

Existence was proved by Lasry and Lions under various sets of
assumptions (mostly for periodic data).
A simple example [P. Cardaliaguet, Notes 2010] is

H(p) = |p|2

g,F bounded and Lipschitz (w.r.t. Kantorovitch-Rubinstein
distance of prob measures)
mo Hölder,

∫
Rd |x |2mo(x)dx < +∞ .

Uniqueness is not expected in general, true for H convex under the
monotonicity condition (as in the static game)∫

Rd
[F (x ,m1)− F (x ,m2)]d(m1 −m2)(x) > 0, ∀m1 6= m2,

which means crowd aversion.

Martino Bardi (University of Padua) Mean Field Games Adelaide, September 30, 2015 17 / 48



Well-posedness?

Existence was proved by Lasry and Lions under various sets of
assumptions (mostly for periodic data).
A simple example [P. Cardaliaguet, Notes 2010] is

H(p) = |p|2

g,F bounded and Lipschitz (w.r.t. Kantorovitch-Rubinstein
distance of prob measures)
mo Hölder,

∫
Rd |x |2mo(x)dx < +∞ .

Uniqueness is not expected in general, true for H convex under the
monotonicity condition (as in the static game)∫

Rd
[F (x ,m1)− F (x ,m2)]d(m1 −m2)(x) > 0, ∀m1 6= m2,

which means crowd aversion.

Martino Bardi (University of Padua) Mean Field Games Adelaide, September 30, 2015 17 / 48



MFG with long-time-average cost

For the same control system

dXs = αsds + σdWs, X0 = x ∈ Rd

take the long-time-average (or "ergodic") cost functional:

J(x , α.) := lim inf
T→+∞

1
T

E

[∫ T

0
L(αt ) + F (Xt ,m)dt

]
,

Assume the dynamics is on the torus Td , i.e., F (·,m) is Zd -periodic, so
all admissible controls produce an ergodic diffusion process Xs.
Now the Hamilton-Jacobi-Bellman equation is

−ν∆v + H(∇v) + λ = F (x ,m) in Rd

If it has a solution pair λ, v(·), then the value and the optimal control
are

λ = inf
α.

J(x , α.) = J(x , α̂), α̂(x) = −∇H(∇v(x))
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Mean Field Games PDEs: stationary

The MFG PDEs now are elliptic, with an additive eigenvalue

(MFS)


−ν∆v + H(∇v) + λ = F (x ,m) in Td ,

ν∆m + div(∇H(∇v)m) = 0 in Td ,∫
Td m(x)dx = 1, m > 0,

Data: ν,H,F ;
Unknowns:
m(x) = equilibrium distribution of the agents = invariant measure of
the optimal process;
λ = value
v(x) , such that ∇H(∇v) = optimal feedback.
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Microscopic justification?

Main mathematical question: how are these systems of PDEs related
to Nash equilbria of N-person differential games, with large N?
The state of the i-th player is

dX i
s = αi

sds + σdW i
s, X i

s = x i ∈ Rd , i = 1, . . . ,N

W i
s independent Brownian motions, αi

s = control of i-th player,
long-time-average cost functional of the i-th player:

J i
T (t , x1, .., xN , α1, .., αN) := E

[∫ T

t
L(αi

s) + F

(
X i

s,

∑
k 6=i δX k

s

N − 1

)
ds

]
,

depending on the players k 6= i only via their empirical measure
1

N−1
∑

k 6=i δX k
s

, where δx is the Dirac mass at x .
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Nash equilibrium feedbacks for N players

Such equilibria can be synthesised by solving a system of
N parabolic HJB PDEs in Nd dimensions for the value functions vi ,
i = 1, ...,N, nonlinear and strongly coupled.

There is large theory on existence of solutions, mostly by Bensoussan
and Frehse (’80s - now).

Question: in what sense are they "close to" solutions of the MFG
system of PDEs as N →∞?

This is very hard in general and was largely open until this year, with
some (interesting) partial answers.
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On the large population limit 1: ε-equilibria

1. Synthesis of ε-Nash equilibria (Huang-Caines-Malhame 2006).

Given a solution (v ,m) of the evolutive MFG system of PDEs (MFE)

the candidate optimal feedback is α̂(t , x) := −∇H(∇v(t , x)) .

Assume all the players use this feedback: α̃i
s := α̂(s,X i

s).

Then ∀ ε > 0 ∃Nε such that ∀N ≥ Nε, ∀ i = 1, ..,N, ∀ admissible αi ,

J i
T (t , x1, .., xN , α̃1, .., α̃N) ≤ J i

T (t , x1, .., xN , α̃1, .., αi , .., α̃N) + ε
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On the large population limit 2: ergodic costs

2. For the long-time-average cost functional J the system of PDEs
producing the Nash equilibrium feedback can be simplified to

−ν∆vi + H(∇vi) + λi =
∫
Td(N−1)F

(
x ,

∑
k 6=i δxk

N−1

)∏
k 6=i dmk (xk ),

ν∆mi + div (∇H(∇vi)mi) = 0, in Td , i = 1, . . . ,N,∫
Td mi(x)dx = 1, mi > 0,

weakly coupled and in dimension d (instead of Nd !).

Theorem [Lasry-Lions ’06]

(i) the system has a solution λN
i , v

N
i ,m

N
i , i = 1, ..,N and for any solution

(λN
i , v

N
i ,m

N
i )i,N is relatively compact in R× C2(Td )×W 1,p(Td ) ,

(ii) fixed i , the lim of any converging subsequence as N →∞ solves
(MFS)

Martino Bardi (University of Padua) Mean Field Games Adelaide, September 30, 2015 23 / 48



On the large population limit: further results

3. Linear-Quadratic MFG with ergodic cost [M.B. - F. Priuli 2014]:

dX i
t = (AX i

t − αi
t )dt + σdW i

t , X i
0 = x i ∈ Rd , i = 1, . . . ,N

running cost = quadratic form in αi
t and X i

t :

the system of 2N PDEs for N-person Nash equilibria can be solved by
matrix Riccati equations,

the solution vN
i are quadratic and mN

i are Gaussian,

they converge as N →∞ to a solution of (MFE).

4. Probabilistic approach to MFG [M. Fischer ’14, D. Lacker ’14]:

convergence of Nash equilbria for N-person game with finite horizon to
an equilibrium of MFG by weak convergence methods, without PDEs.
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On the large population limit: the main result

Convergence of solutions of the system of N HJB PDEs for the finite
horizon problem to a solution of the evolutive MFG system of PDEs
(MFE):
Cardaliaguet - Delarue - Lasry - Lions preprint 9/2015.

Problem si related to propagation of chaos in statistical phisics.

Covers also the case of common noise, i.e., the noises W i
s are NOT

independent.

Main tool: the master equation, a fully nonlinear PDE in infinite
dimensions.
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2. Models of segregation: Schelling’s neighborhoods

In the 70s the economist Thomas Schelling made some simple
simulations to understand the formation of segregated neighbourhoods
in US cities.
Blue people and red people live in a chessboard.
Each individual is happy if the percentage of same-color individuals
among his neighbors is above a given threshold a.
If he’s not happy, he moves to another free house.

T. Schelling: Micromotives and Macrobehavior, 1978.
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Schelling’s experiments

30% similar wanted, 15% unhappy initially (x)
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converges quickly to 0 unhappy and 75% similar in average !
Islands form: segregation.
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... and with some noise

a = 35%, 85% similar in the end:

a = 70%, 96% similar in the end, but it keeps oscillating:
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Schelling’s conclusions

"The interplay of individual choices, where unorganized segregation is
concerned, is a complex system with collective results that bear no
close relation to the individual intent"
I.o.w., even in this oversimplified model, knowing individuals’ intent
does not allow you to foresee the social outcome, and knowing the
social outcome does not give you an accurate picture of individuals’
intent.
There are several videos on YouTube showing experiments of
Schelling’s neighbourhoods, and various free software is available
online to make such experiments.
This model is considered as a prototype of the modern field of artificial
societies.
Schelling also got the Nobel Prize in Economics in 2005 with R.
Aumann,
"for having enhanced our understanding of conflict and cooperation
through game-theory analysis".
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Cost functionals for N + N-person games

Want to build differential games and MFG with cost functionals
reproducing Schelling’s ideas and see the qualitative properties of
solutions, e.g., if segregation occurs.

Cost for the i-th player of the 1st population:
for 0 < aj < 1, aj = % similar wanted by population j

F 1,N
i (x1, . . . , xN , y1, . . . , yN) =(

]{xk ∈ U(xi) : k 6= i}
]{xk ∈ U(xi) : k 6= i}+ ]{yk ∈ U(xi)}

− a1

)−
,

Cost for the i-th player of the 2nd population:

F 2,N
i (x1, . . . , xN , y1, . . . , yN) =(

]{yk ∈ U(yi) : k 6= i}
]{yk ∈ U(yi) : k 6= i}+ ]{xk ∈ U(yi)}

− a2

)−
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Can also be written as

F 1,N
i (x1, . . . , xN , y1, . . . , yN) = F 1,N

xi ,
1

N − 1

∑
i 6=k

δxk ,
1
N

∑
δyk


F 1,N (xi ,m1,m2) :=

( ∫
U(xi ) m1∫

U(xi ) m1+ N
N−1

∫
U(xi ) m2

− a1

)−
,

F 2,N
i (x1, . . . , xN , y1, . . . , yN) = F 2,N

yi ,
1
N

∑
i 6=k

δxk ,
1

N − 1

∑
δyk


F 2,N (yi ,m1,m2) :=

( ∫
U(yi ) m2∫

U(yi ) m2+ N
N−1

∫
U(yi ) m1

− a2

)−
.
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Regularized cost functionals

F 1,N (x ,m1,m2) :=( ∫
Ω K (x − y)dm1(y)∫

Ω K (x − y)dm1(y) + N
N−1

∫
Ω K (x − y)dm2(y) + η1

− a1

)−
,

where K is a regularizing kernel with support in B(0, ρ), η1 > 0;

F 2,N (x ,m1,m2) :=( ∫
Ω K (x − y)dm2(y)∫

Ω K (x − y)dm2(y) + N
N−1

∫
Ω K (x − y)dm1(y) + η2

− a2

)−
,

η2 > 0. They are continuous on P(Ω)× P(Ω) and tend to an obvious
limit F i as N →∞ , since N

N−1 → 1.
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MFG PDEs for two populations: stationary

For two populations with ergodic costs the stationary equations are

(MFGs)


−ν∆vi + H i(x ,∇vi) + λi = F i(x ,m1,m2),

−ν∆mi − div(mi∇pH i(x ,∇vi)) = 0, i = 1,2.

1 Periodic boundary conditions:
I existence of solutions and estimates [M.B. - E. Feleqi 2014]
I convergence of N + N system of HJB-KFP equations to a solution

of (MFGs) [Feleqi 2013]

2 Neumann boundary conditions:{
∂nvi = 0, on ∂Ω
ν∂nmi + mi∇pH i(x ,∇vi) · n = 0, i = 1,2.

I existence of solutions and estimates [M. Cirant 2015]
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Evolutive MFG with Neumann boundary conditions

(MFGe)



−∂tvi − ν∆vi + H i(x ,∇vi) = F i(x ,m1,m2) in Ω× [0,T ]
∂tmi − ν∆mi = div(∇pH i(x ,mi∇vi)), i = 1,2,

∂nvi(x) = 0, on ∂Ω,
ν∂nmi(x , t) + miDpH i(x ,Dvi(x , t)) · n(x) = 0,

vi(x ,T ) = g(x), mi(x ,0) = mi,0(x), i = 1,2.

Theorem [Y. Achdou - M.B. - M. Cirant]
Assume H i satisfy DpH i(x ,p) · p ≥ −C(1 + |p|2),
F i takes value in a bounded set of W 1,∞(Ω), g ∈W 1,∞(Ω),
mi,0 ∈ C2,β(Ω) + compatibility conditions at ∂Ω.
Then (MFGe) has a classical solution.
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Qualitative properties: segregation?

The simplest example: no noise ν = 0 , d = 1 and H i(x ,p) = |p|2.
Then (MFGs) becomes

(v ′k )2

2 + λk = F k (x ,m1,m2) in (c,d),
(v ′kmk )′ = 0, k = 1,2,
Neumann B.C. in viscosity sense at c,d .

Explicit multiple solutions, if
– the threshold is below xenophobia: ak < 0.5 , k = 1,2,
– the size ρ of the neighbourhood U(x) is not large,
– F k is constant if both mk are constant:

1. uniform distribution: mk = 1
d−c , vk = 0, λk = F k (x ,m1,m2), k = 1,2

2. segregated solution (m1 and m2 have disjoint support):

m1(x) =
1

x2 − x1
χ[x1,x2](x), m2(x) =

1
x4 − x3

χ[x3,x4](x)

for any choice c = x0 < x1 < ... < x4 < x5 = d with xj+1 − xj > ρ.
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Segregation in a simplified problem

Each V k is local and linear:

(SS)



−νv ′′1 +
(v ′1)2

2 + λ1 = m2 in (c,d),

−νv ′′2 +
(v ′2)2

2 + λ2 = m1

−νm′′k + (v ′kmk )′ = 0, k = 1,2,

v ′k (c) = v ′k (d) = m′k (c) = m′k (d) = 0.

Theorem (Cirant JMPA 2015)
If 0 < ν < νo then (SS) has at least two different solutions, and the
non-constant solution satisfies

∫
Ω m1m2 ≤ Cν2.

This says that there is segregation in the vanishing viscosity limit.
Similar results hold also in higher space dimension for "variational"
systems.
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Numerical methods: stationary case [A. - B. - C.]

The system (MFGs) with the eigenvalues λi has no standard
approximation.
A natural approximation would be via the (MFGe) with large T (by
Cardaliaguet, Lasry, Lions, Porretta), but this is very heavy form the
computationally point of view.
We consider a finite difference version of the forward-forward system

∂tvi − νi∆vi + H i(x ,Dvi) = V i [m1,m2], Ω× (0,T )
∂tmi − νi∆mi − div(DpH i(x ,Dvi)mi) = 0,
∂nvi = 0, ∂nmi + miDpH i(x ,Dvi) · n = 0 ∂Ω× (0,T )
vi = 0, mi = m0

i Ω× {0},

for a large number of iterations (large T ).
Motivated by the ergodic theory for HJB equations, we expect that for
the numerical time-derivatives ∂tui → constant =: λi we are
approximating a solution of the stationary system (MFGs).
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1D simulations

There is always convergence for large number of time-steps.
If ν is large, convergence to constant m1,m2.
Here ν = .05, a = 0.4 (NOT xenophobic), and we see the segregation.

Solutions with many peaks are not detected by this method.
Same qualitative behavior for a = 0.7.
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Numerical methods: evolutive case

How to deal with the backward-forward time structure?
Define the operator mi 7→ µi ,
by solving discrete versions of HJB, KFP

−∂tvi − ν∆vi + H i(x , vi) = F i(x ,m1,m2), in Ω× [0,T ],
∂tµi − ν∆µi − div(DpH i(x ,Dvi)µi) = 0,
Neumann B.C.,
v(x ,T ) = vT (x), µi(x ,0) = mi,0(x), i = 1,2.

Find an approximate FIXED POINT mi via a Newton’s method.

Positivity of mi is preserved; any ν ≥ 0.01 is ok.
Initial guess m0(x , t) for fixed point of mi 7→ µi is extremely
important.

The experiments are done (for simplicity) with localized cost
functionals F i (depend only on mk (x)) and with a term that penalises
overcrowding.
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a = 0.4
ν = 0.15: large noise⇒ uniform distribution

ν = 0.05: small noise⇒ segregation
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a = 0.4
ν = 0.05

ν = 0.05, different initial guess in Newton’s method⇒ different
numerical solution!
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Large threshold: oscillations

a = 0.7: xenophobic populations,
same behavior as a = 0.4 for some time....

but then the populations move in the opposite direction.....
and later they keep oscillating: see the movie!
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Low threshold of happiness, i.e., not-xenophobic populations:
segregation
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Higher threshold of happiness, i.e., xenophobic populations:
oscillations
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Some conclusions

MFG is a young theory with many challenging open problems;

there are many potential applications, most yet to be found,
especially to economics and social sciences;

MFG with several interacting populations is at a very early stage
and much can be done, e.g.,
proving rigorously qualitative properties in segregation or
aggregation models.

Martino Bardi (University of Padua) Mean Field Games Adelaide, September 30, 2015 46 / 48



Some conclusions

MFG is a young theory with many challenging open problems;

there are many potential applications, most yet to be found,
especially to economics and social sciences;

MFG with several interacting populations is at a very early stage
and much can be done, e.g.,
proving rigorously qualitative properties in segregation or
aggregation models.

Martino Bardi (University of Padua) Mean Field Games Adelaide, September 30, 2015 46 / 48



Some conclusions

MFG is a young theory with many challenging open problems;

there are many potential applications, most yet to be found,
especially to economics and social sciences;

MFG with several interacting populations is at a very early stage
and much can be done, e.g.,
proving rigorously qualitative properties in segregation or
aggregation models.

Martino Bardi (University of Padua) Mean Field Games Adelaide, September 30, 2015 46 / 48



Further references

P. Cardaliaguet, J.M. Lasry, P.L. Lions, A. Porretta : long time
behaviour of MFG and convergence to the stationary PDEs

A. Bensoussan, J. Frehse, P. Yam: short book on MFG and
connections with Mean Field control

R. Carmona, F. Delarue: Probabilistic approach to MFG (also
book in progress)

F. Camilli, E. Carlini, C. Marchi 2015: Mean Field Games on
networks.
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Thanks for your attention!
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