Liouville properties of fully nonlinear elliptic operators and some applications

Martino Bardi and Annalisa Cesaroni

Department of Mathematics University of Padua, Italy

"New Trends in nonlinear PDEs: from theory to applications." School of Mathematics, Cardiff June 20-24, 2016

A (10) A (10)

Fully nonlinear (degenerate) elliptic equations in \mathbb{R}^N

(E)
$$F(x, u, Du, D^2u) = 0$$
 in \mathbb{R}^N .

Questions:

- are subsolutions bounded from above constant?
- are supersolutions bounded from below constant?

N.B.: different from the same question for solutions, which follows from Harnack inequality.

Outline

- Liouville properties for
 - Hamilton-Jacobi-Bellman operators
 - Quasilinear hypoelliptic operators
 - fully nonlinear uniformly elliptic operators (via comparison with Pucci)
- Application 1 : large-time stabilization in parabolic equations

$$u_t + F(x, Du, D^2u) = 0$$
 in $(0, +\infty) \times \mathbb{R}^N$.

 Application 2 - Ergodic HJB equation, i.e., critical value of the operator F:

$$F(x, D_{\chi}, D^2_{\chi}) = c$$
 + growth at ∞ of χ .

4 D N 4 B N 4 B N 4 B N

in the unknowns (c, χ) .

• $F = -\Delta u$ Liouville for subsols. $\iff N \leq 2$;

- Cutrì Leoni (2000): $F = \tilde{F}(x, D^2u) + h(x)u^p$, \tilde{F} uniformly elliptic, via Hadamard-type theorems
- Capuzzo Dolcetta Cutrì (2003): $F = \tilde{F}(x, D^2u) + g(|x|)|Du| + h(x)u^p$ with g "small at ∞ "
- Chen Felmer (2013): similar smallness conditions on the terms in *Du*
- for subelliptic operators: Capuzzo Dolcetta Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007), Kogoj - Lanconelli (2009, 2015),

Our goal: use the terms with *Du* as "good terms".

< ロ > < 同 > < 回 > < 回 >

4/23

- $F = -\Delta u$ Liouville for subsols. $\iff N \leq 2$;
- Cutrì Leoni (2000): $F = \tilde{F}(x, D^2u) + h(x)u^p$, \tilde{F} uniformly elliptic, via Hadamard-type theorems
- Capuzzo Dolcetta Cutrì (2003): $F = \tilde{F}(x, D^2u) + g(|x|)|Du| + h(x)u^p$ with g "small at ∞ "
- Chen Felmer (2013): similar smallness conditions on the terms in *Du*
- for subelliptic operators: Capuzzo Dolcetta Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007), Kogoj - Lanconelli (2009, 2015),

Our goal: use the terms with *Du* as "good terms".

- $F = -\Delta u$ Liouville for subsols. $\iff N \leq 2$;
- Cutrì Leoni (2000): $F = \tilde{F}(x, D^2u) + h(x)u^p$, \tilde{F} uniformly elliptic, via Hadamard-type theorems
- Capuzzo Dolcetta Cutrì (2003): $F = \tilde{F}(x, D^2u) + g(|x|)|Du| + h(x)u^p$ with g "small at ∞ "
- Chen Felmer (2013): similar smallness conditions on the terms in Du
- for subelliptic operators: Capuzzo Dolcetta Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007), Kogoj - Lanconelli (2009, 2015),

Our goal: use the terms with *Du* as "good terms".

- $F = -\Delta u$ Liouville for subsols. $\iff N \leq 2$;
- Cutrì Leoni (2000): $F = \tilde{F}(x, D^2 u) + h(x)u^p$, \tilde{F} uniformly elliptic, via Hadamard-type theorems
- Capuzzo Dolcetta Cutrì (2003): $F = \tilde{F}(x, D^2u) + g(|x|)|Du| + h(x)u^p$ with g "small at ∞ "
- Chen Felmer (2013): similar smallness conditions on the terms in *Du*
- for subelliptic operators: Capuzzo Dolcetta Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007), Kogoj - Lanconelli (2009, 2015),

Our goal: use the terms with *Du* as "good terms".

- $F = -\Delta u$ Liouville for subsols. $\iff N \leq 2$;
- Cutrì Leoni (2000): $F = \tilde{F}(x, D^2 u) + h(x)u^p$, \tilde{F} uniformly elliptic, via Hadamard-type theorems
- Capuzzo Dolcetta Cutrì (2003): $F = \tilde{F}(x, D^2u) + g(|x|)|Du| + h(x)u^p$ with g "small at ∞ "
- Chen Felmer (2013): similar smallness conditions on the terms in *Du*
- for subelliptic operators: Capuzzo Dolcetta Cutrì (1997), Bonfiglioli-Lanconelli-Uguzzoni (book 2007), Kogoj - Lanconelli (2009, 2015),

Our goal: use the terms with Du as "good terms".

Liouville for HJB operators: abstract assumptions

$$L^{\alpha}u := tr(a(x,\alpha)D^2u) + b(x,\alpha) \cdot Du$$

Concave H-J-B operator

$$G[u] := \inf_{\alpha \in \mathcal{A}} \{ -L^{\alpha}u + c(x, \alpha)u \}$$

with coefficients a, b, c continuous in x uniformly in $\alpha \in A$, A a metric space. Assume

- Comparison Principle in bounded open sets Ω : u, v sub- and supersolutions of G[u] = 0 in Ω , $u \le v$ on $\partial\Omega$, $\implies u \le v$ in Ω ;
- **2** Strong Maximum Principle: $G[u] \le 0$ in Ω and $\exists x_o$ such that $u(x_o) = \max_{\Omega} u \implies u$ is constant.

(a) there exist Lyapunov function: $\exists R_o \ge 0$, $w \in LSC(\mathbb{R}^N)$ s. t. $G[w] \ge 0$ for $|x| > R_o$, $\lim_{|x| \to \infty} w(x) = +\infty$.

Liouville for HJB operators: abstract assumptions

$$L^{\alpha}u := tr(a(x,\alpha)D^{2}u) + b(x,\alpha) \cdot Du$$

Concave H-J-B operator

$$G[u] := \inf_{\alpha \in A} \{ -L^{\alpha}u + c(x, \alpha)u \}$$

with coefficients a, b, c continuous in x uniformly in $\alpha \in A$, A a metric space. Assume

- Comparison Principle in bounded open sets Ω : u, v sub- and supersolutions of G[u] = 0 in Ω , $u \le v$ on $\partial\Omega$, $\implies u \le v$ in Ω ;
- **2** Strong Maximum Principle: $G[u] \le 0$ in Ω and $\exists x_o$ such that $u(x_o) = \max_{\Omega} u \implies u$ is constant.

Solution: ∃ $R_o \ge 0$, $w \in LSC(\mathbb{R}^N)$ s.t. $G[w] \ge 0 \text{ for } |x| > R_o, \quad \lim_{|x| \to \infty} w(x) = +\infty.$

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ト

Theorem 1

Assume (1), (2) and (3), $u \in USC(\mathbb{R}^N)$ satisfies $G[u] \leq 0$ in \mathbb{R}^N ,

(G)
$$\limsup_{|x|\to\infty}\frac{u(x)}{w(x)}\leq 0,$$

and either $u \ge 0$ or $c(x, \alpha) \equiv 0 \implies u$ is constant.

Rmk.: (G) is satisfied if u is bounded above.

Sketch of proof: assume $c(x, \alpha) \equiv 0$.

• Step 1: $\eta > 0$ $u_{\eta}(x) := u(x) - \eta w(x)$, $C_{\eta} := \max_{|x| \le R_o} u_{\eta}(x)$.

 \implies $\lim_{|x|\to\infty} u_{\eta}(x) = -\infty$ and $\exists M$ such that

$$u_{\eta}(\mathbf{x}) \leq C_{\eta} \quad \forall |\mathbf{x}| \geq \mathbf{M}.$$

• Step 2: $G[w] \ge 0 \implies -L^{\alpha}w \ge 0 \quad \forall \alpha, |x| > R_o$, thus $G[u_{\eta}] = \inf_{\alpha \in A} \{-L^{\alpha}u + \eta L^{\alpha}w\} \le \inf_{\alpha \in A} \{-L^{\alpha}u\} = G[u] \le 0, |x| > R_o.$

• Step 3: Comparison Principle in $\Omega = \{R_o < |x| < M\}$ with C_η : $G[C_\eta] = 0 \Rightarrow u_\eta(x) \le C_\eta$ in $\Omega \Rightarrow u_\eta(x) \le C_\eta \forall |x| \ge R_o$. As $\eta \to 0+ \implies u(x) \le \max_{|x| \le R_o} u(x) \forall x$ $\implies u$ attains its maximum over \mathbb{P}^N

• Step 4: Strong Maximum Principle $\implies u$ is constant.

• Step 2: $G[w] \ge 0 \implies -L^{\alpha}w \ge 0 \quad \forall \alpha, |x| > R_o$, thus $G[u_{\eta}] = \inf_{\alpha \in \mathcal{A}} \{-L^{\alpha}u + \eta L^{\alpha}w\} \le \inf_{\alpha \in \mathcal{A}} \{-L^{\alpha}u\} = G[u] \le 0, |x| > R_o.$

• Step 3: Comparison Principle in $\Omega = \{R_o < |x| < M\}$ with C_η : $G[C_\eta] = 0 \Rightarrow u_\eta(x) \le C_\eta$ in $\Omega \Rightarrow u_\eta(x) \le C_\eta \forall |x| \ge R_o$. As $\eta \to 0+ \implies u(x) \le \max_{|x| \le R_o} u(x) \forall x$ $\implies u$ attains its maximum over \mathbb{R}^N .

• Step 4: Strong Maximum Principle $\implies u$ is constant.

• Step 2:
$$G[w] \ge 0 \implies -L^{\alpha}w \ge 0 \quad \forall \alpha, |x| > R_o$$
, thus
 $G[u_{\eta}] = \inf_{\alpha \in A} \{-L^{\alpha}u + \eta L^{\alpha}w\} \le \inf_{\alpha \in A} \{-L^{\alpha}u\} = G[u] \le 0, |x| > R_o.$

• Step 3: Comparison Principle in $\Omega = \{R_o < |x| < M\}$ with C_η : $G[C_\eta] = 0 \Rightarrow u_\eta(x) \le C_\eta$ in $\Omega \Rightarrow u_\eta(x) \le C_\eta \forall |x| \ge R_o$. As $\eta \to 0+ \implies u(x) \le \max_{|x| \le R_o} u(x) \forall x$ $\implies u$ attains its maximum over \mathbb{R}^N .

• Step 4: Strong Maximum Principle \implies *u* is constant.

7/23

HJB: explicit sufficient conditions

(a)
$$a = \sigma \sigma^{T}(x, \alpha)$$
 and
 $\forall R > 0 \exists K_{R} : \sup_{|x| \leq R} (|\sigma| + |b| + |c|) \leq K_{R},$
 $\sup_{|x|,|y| \leq R, \alpha \in A} (|\sigma(x, \alpha) - \sigma(y, \alpha)| + |b(x, \alpha) - b(y, \alpha)|) \leq K_{R}|x - y|;$
(b) $c(x, \alpha) \geq 0$, c continuous in x uniformly in $|x| \leq R, \alpha \in A;$
(c) $\xi^{T}a(x, \alpha)\xi \geq |\xi|^{2}/K_{R} \quad \forall \xi \in \mathbb{R}^{N}, |x| \leq R, \alpha \in A.$
(d) $\sup_{\alpha \in A} (tr a(x, \alpha) + b(x, \alpha) \cdot x - c(x, \alpha)|x|^{2}/2) \leq 0$ for $|x| \geq R_{o}$.
(a), (b), (c) \Longrightarrow Comparison Principle on bounded sets and Strong Maximum Principle.

A (10) A (10)

HJB: Liouville for subquadratic subsolutions

Corollary

Assume L^{α} satisfy (a), (b), (c), (d), $u \in USC(\mathbb{R}^N)$ satisfies $G[u] \leq 0$ and

$$\limsup_{|x|\to+\infty} \frac{u(x)}{|x|^2} \leq 0.$$

Assume either $u \ge 0$ or $c(x, \alpha) \equiv 0$, then u is a constant.

Proof.

Take the Lyapunov function $w(x) = |x|^2/2$. Since

$$L^{\alpha}w = tr a(x, \alpha) + b(x, \alpha) \cdot x$$

(d) implies $G[w] = \inf_{\alpha \in \mathcal{A}} \{-L^{\alpha}w + c(x,\alpha)|x|^2/2\} \ge 0$ for $|x| \ge R_o$.

3

(d) is satisfied $\forall c \ge 0$ if

$$a = o(|x|^2)$$
 as $|x| \to \infty$

and the drift *b* is a controlled perturbation of a mean reverting drift of Ornstein-Uhlenbeck type:

$$b(x, \alpha) = \gamma(\mathbf{m} - \mathbf{x}) + \tilde{b}(x, \alpha), \qquad \lim_{x \to \infty} \sup_{\alpha \in A} \frac{\tilde{b}(x, \alpha) \cdot x}{|x|^2} = 0$$

for some $m \in \mathbb{R}^N$, $\gamma > 0$.

Quasilinear hypoelliptic equations

Consider

(Q)
$$-tr(\sigma\sigma^{T}(x)D^{2}u) + \inf_{\alpha \in A} \{-b(x,\alpha) \cdot Du + c(x,\alpha)u\} = 0, \text{ in } \mathbb{R}^{N}$$

with σ , *b*, *c* loc. Lipschitx in *x*. Assume

• $\forall R > 0$, either $\inf_{|x| \le R, \alpha \in A} c(x, \alpha) > 0$ or

 $\exists i: \inf_{|x| \le R} \inf_{j=1,..,m} \sigma_{ij}^2(x) > 0, \text{ (non-degeneracy in one direction)}$

- \implies Comparison Principle on bounded sets [M.B. P. Mannucci 2006]
 - the columns σ_j of σ are smooth and rank $Lie[\sigma_1, ..., \sigma_m](x) = N, \forall x$
 - \implies Strong Maximum principle [M.B. F. Da Lio 2003]

•
$$|\sigma(x)|^2 + \sup_{\alpha \in \mathcal{A}} (b(x, \alpha) \cdot x - c(x, \alpha)|x|^2/2) \le 0, \quad |x| \ge R_o$$

which implies $w(x) = |x|^2/2$ is a Lyapunov function,

> = nan

Liouville for subquadratic subsolutions of (Q)

Corollary

Under the assumptions on (Q), let $u \in USC(\mathbb{R}^N)$ be a subsolution to (Q),

$$\limsup_{|x|\to+\infty}\frac{u(x)}{|x|^2}\leq 0,$$

and either $u \ge 0$ or $c(x, \alpha) \equiv 0$,

Then *u* is a constant.

不同 トイモトイモ

Uniformly elliptic operators

Pucci extremal operators, for $0 < \lambda \leq \Lambda$:

$$\mathcal{M}^{-}(X) := \inf\{-\operatorname{tr}(MX) : M \in S^{N}, \lambda I \leq M \leq \Lambda I\}$$
$$= -\Lambda \sum_{e_{i} > 0} e_{i} - \lambda \sum_{e_{i} < 0} e_{i}$$

$$\mathcal{M}^+(X)$$
 := sup{...same...} = $-\lambda \sum_{e_i>0} e_i - \Lambda \sum_{e_i<0} e_i$.

F is uniformly elliptic if there exist constants $0 < \lambda \le \Lambda$ such that

$$\operatorname{Atr}(Q) \leq F(x,t,p,X) - F(x,t,p,X+Q) \leq \operatorname{Atr}(Q),$$

for all $x, p \in \mathbb{R}^N$, $t \in \mathbb{R}$, $X, Q \in S^N$, $Q \ge 0$, or equivalently

 $\mathcal{M}^{-}(X) \leq F(x,t,p,X) - F(x,t,p,0) \leq \mathcal{M}^{+}(X).$

13/23

$$(\mathsf{P}+\mathsf{H}) \qquad \mathcal{M}^{-}(D^{2}u) + \inf_{\alpha \in \mathcal{A}} \{ c(x,\alpha)u - b(x,\alpha) \cdot Du \} = 0 \quad \text{in } \mathbb{R}^{N}$$

Previous sufficient condition ($w = |x|^2/2$): $\sup_{\alpha \in A}(b(x, \alpha) \cdot x - c(x, \alpha)|x|^2/2) \leq -N\Lambda$ for $|x| \geq R_o$. We improve it to

(P)
$$\sup_{\alpha \in \mathcal{A}} (b(x, \alpha) \cdot x - c(x, \alpha)|x|^2 \log(|x|)) \le \lambda - (N-1)\Lambda$$
 for $|x| \ge R_o$.

(P), *u* subsolution to (P+H), $\limsup_{|x|\to+\infty} \frac{u(x)}{\log |x|} \le 0$, either $u \ge 0$ or $c(x, \alpha) \equiv 0 \implies u$ is a constant

14/23

Proof:
$$w(x) = \log |x| \implies \mathcal{M}^-(D^2w) = (\lambda - (N-1)\Lambda)/|x|^2$$
.

Martino Bardi (University of Padua) Liouville properties of fully nonlinear operators Cardiff, June 22, 2016

Liouville for uniformly elliptic operators

Corollary

F uniformly elliptic, $F(x, t, p, 0) \ge \inf_{\alpha \in A} \{ c(x, \alpha)t - b(x, \alpha) \cdot p \}$,

b, c satisfy (P) , u subsolution to (E) , $\limsup_{|x| \to +\infty} \frac{u(x)}{\log |x|} \le 0$,

either $u \ge 0$ or $c(x, \alpha) \equiv 0 \implies u$ is a constant.

Proof.

u satisfies

 $\mathcal{M}^{-}(D^{2}u) + \inf_{\alpha \in \mathcal{A}} \{ c(x, \alpha)u - b(x, \alpha) \cdot Du \} \leq F(x, u, Du, D^{2}u) \leq 0 \quad \text{ in } \mathbb{R}^{N},$

so we apply the result for (P+H).

くロン 不通 とくほ とくほ とうほう

Remarks

Symmetric results hold for supersolutions v ∈ LSC(ℝ^N) of (E) such that

$$\liminf_{|x| \to +\infty} \frac{v(x)}{\log |x|} \ge 0$$

if F is uniformly elliptic and

 $F(x, t, p, 0) \leq \sup_{\alpha \in A} \{ c(x, \alpha)t - b(x, \alpha) \cdot p \}.$

• Example: Liouville holds for sub- and supersolutions of (E) if F = F(x, p, X) is "almost 1-homogeneous" in p

(Fh) $-b_1(x) \cdot p - g_1(x)|p| \le F(x,p,0) \le -b_2(x) \cdot p + g_2(x)|p|$

with $g_i \ge 0$ bounded and locally Lipschitz, i = 1, 2, if

(P') $b_i(x) \cdot x + g_i(x)|x| \le \lambda - (N-1)\Lambda$ for $|x| \ge R_o, i = 1, 2$.

Remarks

Symmetric results hold for supersolutions v ∈ LSC(ℝ^N) of (E) such that

$$\liminf_{|x|\to+\infty}\frac{v(x)}{\log|x|}\ge 0$$

if F is uniformly elliptic and

$$F(x, t, p, 0) \leq \sup_{\alpha \in A} \{ c(x, \alpha)t - b(x, \alpha) \cdot p \}.$$

Example: Liouville holds for sub- and supersolutions of (E) if
 F = F(x, p, X) is "almost 1-homogeneous" in p

(Fh)
$$-b_1(x) \cdot p - g_1(x)|p| \le F(x,p,0) \le -b_2(x) \cdot p + g_2(x)|p|$$

with $g_i \ge 0$ bounded and locally Lipschitz, i = 1, 2, if

 $(\mathsf{P}') \quad b_i(x) \cdot x + g_i(x)|x| \leq \lambda - (N-1)\Lambda \quad \text{for } |x| \geq R_o, i = 1, 2.$

16/23

Application 1: parabolic equations

(CP)
$$\begin{cases} u_t + F(x, Du, D^2 u) = 0 & \text{in } (0, +\infty) \times \mathbb{R}^N \\ u(0, x) = h(x) & \text{in } \mathbb{R}^n, \end{cases}$$

with *F* uniformly elliptic, satisfying (Fh) , (P') , and the standard assumptions for the Comparison Principle ("Lipschitz in x") ,

 $h \in BUC(\mathbb{R}^N).$

Proposition

There exist a unique solution u bounded and Hölder continuous in $[0, +\infty) \times \mathbb{R}^N$.

Proof based on viscosity methods, e.g. Perron, and Krylov-Safonov estimates.

17/23

Martino Bardi (University of Padua) Liouville properties of fully nonlinear operators Cardiff, June 22, 2016

Large-time stabilization (in space)

Theorem

There exist constants $\overline{u}, \underline{u} \in \mathbb{R}$ such that

 $\limsup_{t\to+\infty} u(t,x) = \overline{u}, \quad \liminf_{t\to+\infty} u(t,x) = \underline{u}, \quad \forall \, x \in \mathbb{R}^N.$

Idea of proof: the relaxed semi-limits

$$\limsup_{t \to +\infty, y \to x} u(t, y), \quad \liminf_{t \to +\infty, y \to x} u(t, y)$$

are sub- and supersolutions of (E).

 In some cases (e.g., *F*, *h* periodic in *x*) *u* = *u* and lim_{t→+∞} *u*(*t*, *x*) =constant is locally uniform [Alvarez - M.B. 2010]

• In general, for some (bounded) initial data h, $\overline{u} > \underline{u}$, even for $u_t = u_{xx}$ in dim. N = 1. [Eidelman-Kamin-Tedeev 2009, Collet-Eckmann 1992]

Martino Bardi (University of Padua) Liouville properties of fully nonlinear operators Cardiff, June 22, 2016 18 / 23

Large-time stabilization (in space)

Theorem

There exist constants $\overline{u}, \underline{u} \in \mathbb{R}$ such that

 $\limsup_{t\to+\infty} u(t,x) = \overline{u}, \quad \liminf_{t\to+\infty} u(t,x) = \underline{u}, \quad \forall \, x \in \mathbb{R}^N.$

Idea of proof: the relaxed semi-limits

$$\limsup_{t \to +\infty, y \to x} u(t, y), \quad \liminf_{t \to +\infty, y \to x} u(t, y)$$

are sub- and supersolutions of (E).

- In some cases (e.g., *F*, *h* periodic in *x*) *u* = *u* and lim_{t→+∞} *u*(*t*, *x*) =constant is locally uniform [Alvarez - M.B. 2010]
- In general, for some (bounded) initial data h, $\overline{u} > \underline{u}$, even for $u_t = u_{xx}$ in dim. N = 1. [Eidelman-Kamin-Tedeev 2009, Collet-Eckmann 1992]

Application 2: ergodic HJB equations

(EE)
$$\inf_{\alpha \in A} \{-tr \, a(x, \alpha) D^2 \chi - b(x, \alpha) \cdot D \chi - l(x, \alpha)\} = c \quad x \in \mathbb{R}^N$$

Theorem

Assume $\forall M > 0 \exists R > 0$ such that

(L)
$$\sup_{a \in A} \{ tr \, a(x, \alpha) + b(x, \alpha) \cdot x \} \leq -M \quad \text{for } |x| \geq R.$$

Then exists a unique constant $c \in \mathbb{R}$ for which (EE) has a solution χ such that

(G)
$$\lim_{|x|\to+\infty}\frac{\chi(x)}{|x|^2}=0.$$

Moreover $\chi \in C^2(\mathbb{R}^N)$ and is unique up to additive constants.

Comments

• The "critical value problem" (EE) arises in

- ergodic stocastic control [P.L.Lions,..., Ichihara, Borkar, Cirant,]
- homogenization [P.L.Lions-Papanicolaou-Varadhan, Evans,...]
- singular perturbations [O. Alvarez M.B., C. Marchi,],
- weak KAM theory [Fathi,....],
- Mean-Field Games [Lasry-Lions, M.B.,]

• Condition (L) is stronger than the previous ones and implies that the Lyapunov function $w(x) = |x|^2/2$ satifies

 $\lim_{|x|\to\infty} G[w] = +\infty.$

Martino Bardi (University of Padua) Liouville properties of fully nonlinear operators Cardiff, June 22, 2016 20 / 23

The "critical value problem" (EE) arises in

- ergodic stocastic control [P.L.Lions,..., Ichihara, Borkar, Cirant,]
- homogenization [P.L.Lions-Papanicolaou-Varadhan, Evans,...]
- singular perturbations [O. Alvarez M.B., C. Marchi,],
- weak KAM theory [Fathi,....],
- Mean-Field Games [Lasry-Lions, M.B.,]
- Condition (L) is stronger than the previous ones and implies that the Lyapunov function $w(x) = |x|^2/2$ satifies

$$\lim_{|x|\to\infty} G[w] = +\infty.$$

A (1) A (2) A (2) A

Steps of the proof

• Discounted HJB equation: for $\delta > 0$

$$\delta u_{\delta} + F(x, Du_{\delta}, D^2u_{\delta}) = 0 \qquad \text{ in } \mathbb{R}^N,$$

has a unique solution s.t. $\|u_{\delta}\|_{\infty} \leq \|I\|_{\infty}/\delta$ and $\forall h \in (0, 1] \exists R_h$:

$$(\mathsf{G}\delta) \qquad -h\frac{|x|^2}{2} + \min_{|x|\leq R_h} u_\delta \leq u_\delta(x) \leq \max_{|x|\leq R_h} u_\delta + h\frac{|x|^2}{2},$$

• $v_{\delta} = u_{\delta} - u_{\delta}(0)$ are uniformly bounded and Hölder continuous on compact sets (by Krylov-Safonov)

 δu_δ(0) → −c and v_δ → χ loc. uniformly as δ → 0 and (Gδ) implies the sub-quadratic growth (G) of χ.

(日)

Steps of the proof

• Discounted HJB equation: for $\delta > 0$

$$\delta u_{\delta} + F(x, Du_{\delta}, D^2u_{\delta}) = 0 \qquad \text{ in } \mathbb{R}^N,$$

has a unique solution s.t. $\|u_{\delta}\|_{\infty} \leq \|I\|_{\infty}/\delta$ and $\forall h \in (0, 1] \exists R_h$:

$$(\mathsf{G}\delta) \qquad -h\frac{|\boldsymbol{x}|^2}{2} + \min_{|\boldsymbol{x}| \leq R_h} u_\delta \leq u_\delta(\boldsymbol{x}) \leq \max_{|\boldsymbol{x}| \leq R_h} u_\delta + h\frac{|\boldsymbol{x}|^2}{2},$$

• $v_{\delta} = u_{\delta} - u_{\delta}(0)$ are uniformly bounded and Hölder continuous on compact sets (by Krylov-Safonov)

• $\delta u_{\delta}(0) \rightarrow -c$ and $v_{\delta} \rightarrow \chi$ loc. uniformly as $\delta \rightarrow 0$ and (G δ) implies the sub-quadratic growth (G) of χ .

イロト 不得 トイヨト イヨト

Steps of the proof

• Discounted HJB equation: for $\delta > 0$

$$\delta u_{\delta} + F(x, Du_{\delta}, D^2u_{\delta}) = 0 \qquad \text{ in } \mathbb{R}^N,$$

has a unique solution s.t. $\|u_{\delta}\|_{\infty} \leq \|I\|_{\infty}/\delta$ and $\forall h \in (0, 1] \exists R_h$:

$$(\mathsf{G}\delta) \qquad -h\frac{|x|^2}{2} + \min_{|x|\leq R_h} u_\delta \leq u_\delta(x) \leq \max_{|x|\leq R_h} u_\delta + h\frac{|x|^2}{2},$$

• $v_{\delta} = u_{\delta} - u_{\delta}(0)$ are uniformly bounded and Hölder continuous on compact sets (by Krylov-Safonov)

 δu_δ(0) → -c and v_δ → χ loc. uniformly as δ → 0 and (Gδ) implies the sub-quadratic growth (G) of χ.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Uniqueness of *c* and of *χ* up to additive constants.
 Assume there exist two solutions of (EE) (*c*₁, *χ*₁), (*c*₂, *χ*₂) and suppose *c*₁ ≤ *c*₂. Use Theorem 1:

 $G[\chi_1 - \chi_2]$

 $= \inf_{\alpha \in \mathcal{A}} \{-tr a(x,\alpha)(D^2\chi_1 - D^2\chi_2) - b(x,\alpha) \cdot (D\chi_1 - D\chi_2)\}$

$$\leq \inf_{\alpha \in A} \{-tr \, a(x,\alpha) D^2 \chi_1 - b(x,\alpha) \cdot D \chi_1 - l(x,\alpha)\}$$

+ $\sup_{\alpha \in A} \{ tr \ a(x, \alpha) D^2 \chi_2 + b(x, \alpha) \cdot D \chi_2 + l(x, \alpha) \}$

 $= c_1 - c_2 \leq 0$

The first Corollary of Thm. 1 $\implies \chi_1 - \chi_2 = constant$

 \implies $C_1 = C_2.$

Uniqueness of *c* and of *χ* up to additive constants.
 Assume there exist two solutions of (EE) (*c*₁, *χ*₁), (*c*₂, *χ*₂) and suppose *c*₁ ≤ *c*₂. Use Theorem 1:

$$G[\chi_1 - \chi_2]$$

$$= \inf_{\alpha \in A} \{-tr a(x, \alpha)(D^2\chi_1 - D^2\chi_2) - b(x, \alpha) \cdot (D\chi_1 - D\chi_2)\}$$

$$\leq \inf_{\alpha \in A} \{-tr a(x, \alpha)D^2\chi_1 - b(x, \alpha) \cdot D\chi_1 - l(x, \alpha)\}$$

$$+ \sup_{\alpha \in A} \{tr a(x, \alpha)D^2\chi_2 + b(x, \alpha) \cdot D\chi_2 + l(x, \alpha)\}$$

$$= c_1 - c_2 \leq 0$$

The first Corollary of Thm. 1 $\implies \chi_1 - \chi_2 = \text{constant}$

$$\implies$$
 $C_1 = C_2.$

Uniqueness of *c* and of *χ* up to additive constants.
 Assume there exist two solutions of (EE) (*c*₁, *χ*₁), (*c*₂, *χ*₂) and suppose *c*₁ ≤ *c*₂. Use Theorem 1:

$$G[\chi_1 - \chi_2]$$

$$= \inf_{\alpha \in A} \{-tr a(x, \alpha)(D^2\chi_1 - D^2\chi_2) - b(x, \alpha) \cdot (D\chi_1 - D\chi_2)\}$$

$$\leq \inf_{\alpha \in A} \{-tr a(x, \alpha)D^2\chi_1 - b(x, \alpha) \cdot D\chi_1 - l(x, \alpha)\}$$

$$+ \sup_{\alpha \in A} \{tr a(x, \alpha)D^2\chi_2 + b(x, \alpha) \cdot D\chi_2 + l(x, \alpha)\}$$

$$= c_1 - c_2 \leq 0$$

The first Corollary of Thm. 1 $\implies \chi_1 - \chi_2 = \text{constant}$

$$\implies$$
 $c_1 = c_2.$

M.B., A. Cesaroni: Liouville property and critical value...
 J. D. E. to appear

Related papers:

- M.B., A. Cesaroni, L. Manca: Convergence by viscosity methods in multiscale financial models..., Siam J. Financial Math. (2010)
- M.B., A. Cesaroni, L. Rossi: Nonexistence of nonconstant solutions of some degenerate Bellman equations.... ESAIM-COCV in print
- D. Castorina, A. Cesaroni and L. Rossi: A parabolic HJB equation degenerating at the boundary, Comm. Pure Appl. Anal. 2016
- A. Arapostathis, V.S. Borkar, M.K. Ghosh: Ergodic control of diffusion processes. Cambridge University Press 2012.

Thanks for your attention!

M.B., A. Cesaroni: Liouville property and critical value...
 J. D. E. to appear

Related papers:

- M.B., A. Cesaroni, L. Manca: Convergence by viscosity methods in multiscale financial models..., Siam J. Financial Math. (2010)
- M.B., A. Cesaroni, L. Rossi: Nonexistence of nonconstant solutions of some degenerate Bellman equations.... ESAIM-COCV in print
- D. Castorina, A. Cesaroni and L. Rossi: A parabolic HJB equation degenerating at the boundary, Comm. Pure Appl. Anal. 2016
- A. Arapostathis, V.S. Borkar, M.K. Ghosh: Ergodic control of diffusion processes. Cambridge University Press 2012.

Thanks for your attention!