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1. Mean Field Games PDEs

(MFE)


−∂u
∂t − ν∆u + H(∇u) = F (x ,m) in (0,T )× Rd

∂m
∂t − ν∆m − div(m∇H(∇u)) = 0 in (0,T )× Rd

u(T , x) = g(x), m(0, x) = mo(x),

m(x , t) = equilibrium distribution of the agents at time t ;

u(x , t) = value function of the representative agent

Data: ν ≥ 0, H = L∗, e.g., H(p) = |p|2
2 ,

F : Rd × P1(Rd )→ R = running cost , g = terminal cost,
mo ≥ 0 = initial distribution of the agents,

∫
Rd mo(x)dx = 1.

1st equation is backward H-J-B, 2nd equation is forward K-F-P eq.
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Control interpretation of the MFE

u(x , t) = inf E [

∫ T

t
L(α(s)) + F (y(s),m(s))ds + g(y(T ))]

over controls α and trajectories of

dy(s) = α(s)ds +
√

2νdW (s), y(t) = x

dy(s) = −∇H(∇u(y(s), s))ds +
√

2νdW (s)

= optimal trajectory of the representative agent

m(x , t) = distribution of particles moving along optimal trajectories

In particular, for ν = 0 and H(p) = |p|2/2 the dynamics with
optimal feedback is ẏ(s) = −∇u(y(s), s)

and the KFP equation becomes

∂m
∂t
− div(m∇u) = 0
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Agent-based models

They typically are nonlocal continuity equations of the form

∂tm − div(m Q[m]) = 0 Q : Pp(Rd )→ C1(Rd ,Rd )

The aggregation equation (Bertozzi, Carrillo, Laurent and many
others):

Q[m](x , t) = ∇
∫

Rd
k(x − y)dm(y)

I k(x) = −|x |e−a|x|, a > 0,

I k(x) = e−|x| − Fe−|x|/L, 0 < F < 1, L > 1

Nonlinear friction equation of granular flows (Toscani et al.): same
form with

k(x) = |x |α/α, α > 0
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Models of crowd dynamics (Cristiani-Piccoli-Tosin)

I ∂tm−div(m(v +Q[m])) = 0, v = v(x), Q[m] = ∇
∫

Rd
k(x−y)dm(y)

k = φ(|x |) with compact support, φ decreasing for small |x |, then
increasing

I models with "social forces", or mesoscopic, or kinetic:
state variables: position and velocity (x , v) ∈ R2d

∂tm + v · Dxm − divv (mQ[m]) = 0 in (0,T )× R2d

Q[m](x , v) = ∇v
∫

R2d k(x − y , v − v∗)m(y , v∗, t)dydv∗

Flocking models: as the last one with different k , e.g.

Cucker-Smale : k(x , v) = |v |2
(α+|x |2)β , α > 0, β ≥ 0
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Question: connection among MFGs and ABMs?

For MFG with dynamics ẏ = α the equation for the density m is

∂m
∂t
− div(m∇H(∇u)) = 0

which is a continuity equation with Q[m] = ∇H(∇u) and u depends
on m in a non-local way via the HJB equation, so the dependence is
not explicit.

For MFG with dynamics ÿ = α the density m solves

∂tm + v · Dxm − divv (m∇v H(∇u)) = 0

which is a kinetic equation with Q[m] = ∇v H(∇u) and u depends on m
via the HJB equation.

Q.: can one connect in a rigorous way the classical ABMs to some
MFGs ?
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Stochastic case: Bertucci-Lasry-Lions 2018

(MF0)



−∂tuλ + λuλ −∆uλ + Q[mλ] · Duλ +
|Duλ|2

2
= F (x),

∂tmλ −∆mλ − div(mλ(Duλ + Q[mλ])) = 0 in Rd × R+

mλ(0) = m0, in Rd

λ = the discount factor in the cost functional associated to the HJB
equation =
"inter temporal preference parameter that measures the weight of
anticipation for a given agent",

the dynamics of an agent in the MFG is

dy(s) = (α(s)−Q[mλ])ds +
√

2νdW (s), y(t) = x
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The limit λ→∞

Theorem (Bertucci-Lasry-Lions)

Q : P1(Rd )→ Lip(Rd ), ‖Q[m]‖∞ ≤ C, ∀m =⇒

any solution (uλ,mλ) of (MF0) is bounded uniformly in λ and

for any λn →∞ such that mλn → m the limit m is a solution of the
continuity equation

∂tm −∆m − div(m Q[m]) = 0.

So "any" ABM model (with diffusion), defined by Q , has at least one
solution that is the limit of the solution of a MFG.

Martino Bardi (Università di Padova) MFGs and aggregation models Marseille, June 4, 2019 9 / 26



The setting of Degond-Herty-Liu 2017

Here MPC = Model Predictive Control
We address the horizontal ? =⇒ ? with a different approach.
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The control problem for a single agent is

ẏ = v(y) + α, y(t) = x , inf
α(·)

∫ T

t
[
|α|2

2
+ F (y(s),m(s))]ds

MPC approximation:

y(t + ∆t) = x + ∆t(v(x) + α), min
α

[
∆t
|α|2

2
+ F (y(t + ∆t),m(t))

]
Note that the scaling with ∆t means that the control is cheap.
Taking the derivative w.r.t. α we get the optimal control ᾱ if

∆t [ᾱ + DF (x ,m(t))] = 0.

This suggests that, for short horizon T and cheap control, the optimal
feedback should be approximated by the
steepest decent of the running cost ᾱ ≈ −DF (x ,m(t)) .
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2. Convergence: a) the basic model

(MF1)



−∂tuλ + λuλ − v(x) · Duλ +
λ

2
|Duλ|2 = F (x ,mλ(t))

∂tmλ − div(mλ(λDuλ − v(x))) = 0 in Rd × R+

mλ(0) = m0, in Rd uλ bounded.

λ > 0, v ∈W 2,∞,

m0 ∈ P1(Rd ) has bounded density and compact support

F : Rd × P1(Rd )→ R continuous and

‖F (·,m)‖C2 ≤ C ∀m ∈ P1(Rd ), ‖DF (·,m)− DF (·, m̄)‖∞ ≤ Cd1(m, m̄)

Note: 1. no terminal condition for the HJB equation.
2. H(p) = λ|p|2/2 =⇒ DH(p) = λp
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Existence and representation of (uλ,mλ)

Theorem (see Cardaliaguet’s Lect. Notes on Lions’ lectures)
(MF1) has a solution (viscosity sense for HJB, distribution sense for
KFP). Any solution satisfies

uλ(x , t) = inf
∫ +∞

t
e−λ(s−t)

[
1

2λ
|α(s)|2 + F (y(s),mλ(s))

]
ds,

for ẏ(s) = v(y(s)) + α(s), s > t , y(t) = x .

Rmks.:
1. Meaning of λ large: high discount factor (the near future counts
much more than the far future) and cheap control.

2. In general the solution of (MF1) is NOT UNIQUE, the monotonicity
condition on F of Lasry and Lions in NOT satisfied for F modelling
aggregation.
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Convergence Theorem for (MF1)
Under the previous assumptions, as λ→∞, any solution of (MF1)
satisfies

mλ → m in C([0,T ],P1) and weak∗ in L∞([0,T ]× Rd ) ∀T > 0,

m the unique solution (distribution sense) of the continuity equation{
∂tm − div(m(DF (x ,m)− v(x))) = 0 in Rd × R+

m(0) = m0, in Rd .

λuλ(x , t)→ F (x ,m(t)) loc. uniformly, λDuλ(x , t)→ DF (x ,m(t)) a.e..

Remarks.
1. Thm. says that the optimal feedback −Duλ is close to
the scaled gradient descent of the running cost − 1

λDF ,
which is perhaps new even for pure control problems with frozen m.
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Remarks continued

2. F (x ,m) = k ∗m(x) with k ∈ C2 ∩W 2,∞

fits the assumptions of the Theorem.

3. The MFG system (MF1) has many solutions in general, and

ALL of them converge to the limit continuity equation that has a

unique solution (by, e.g, Piccoli-Rossi 2013).
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Applications and extensions

The aggregation equation and model 1 of crowd dynamics are

∂tm − div(m(D k ∗m − v(x))) = 0

but k = φ(|x |) NOT C1 in x = 0, but semiconcave if there is
repulsion at short distance.
We can replace the condition ‖D2F (x ,m)‖∞ ≤ C for all m with the
semiconcavity of F uniformly in m

F (x + h,m)− 2F (x ,m) + F (x − h,m)≤C|h|2 ∀m ∈ P1.

In the nonlinear friction equation k /∈ L∞, so ‖F (x ,m)‖∞ ≤ C for
all m is false.
We have extensions to the case

−Co ≤ F (x ,m) ≤ Co(1 + |x |2) for all m.

N.B. Even existence of solutions to (MF1) is new in this case.
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2. b) Convergence for controlled acceleration

(MF2)



−∂tuλ + λuλ − v · Dxuλ +
λ

2
|Dv uλ|2 = F (x , v ,mλ(t))

∂tmλ + v · Dxmλ − divv (mλλDv uλ) = 0 in R2d × R+

mλ(0) = m0, in R2d .

λ > 0, m0 ∈M, i.e., m0 ∈ P1(R2d ) with bounded density and
compact support

F : Rd ×M→ R continuous and ∀x , v ∈ Rd , m ∈M,

−Co ≤ F (x , v ,m) ≤ Co(1 + |v |2),

|DxF (x , v ,m(x , v)| ≤ C, |Dv F (x , v ,m(x , v))| ≤ C(1 + |v |)

|D2F (x , v ,m)| ≤ C
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Representation of uλ
Any solution (uλ,mλ) satisfies

uλ(x , v , t) = inf
∫ +∞

t
e−λ(s−t)

[
1

2λ
|α(s)|2 + F (y(s), v(s),mλ(s))

]
ds,

ẏ(s) = v(s), v̇(s) = α(s), s > t , y(t) = x , v(t) = v .

There is no existence theory for (MF2) available in the literature:

we prove directly the existence of a solution satisfying the estimates
we need, and show convergence for it.

See also ongoing work by Achdou-Mannucci-Marchi-Tchou.

Martino Bardi (Università di Padova) MFGs and aggregation models Marseille, June 4, 2019 18 / 26



Convergence Theorem for (MF2)
Under the previous assumptions there is a solution to (MF2) such that

mλ → m in C([0,T ],P1) and weak∗ in L∞([0,T ]× R2d ) ∀T > 0,

as λ→∞, m = unique solution of the continuity equation{
∂tm + v · Dxm − div(m Dv F (x , v ,m)) = 0 in R2d × R+

m(0) = m0, in R2d ,

λuλ(x , v , t)→ F (x , v ,m(t)) loc. uniformly,

λDv uλ(x , v , t)→ Dv F (x , v ,m(t)) a.e..

1. Thm. says that the optimal feedback −Dv uλ is close to
the scaled gradient descent of the running cost − 1

λDv F ,
which is perhaps new even for pure control problems with frozen m.
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Examples

1 F (x , v ,m) = k ∗m(x , v) with k ∈ C2 ∩ L∞ .

2 Same with Cucker-Smale kernel :

k(x , v) =
|v |2

(α + |x |2)β
, α > 0, β ≥ 0.

3 in crowd dynamics with social forces k = φ(|x |) may be
not C1 in x = 0, but it is semiconcave if there is
repulsion at short distance: we can extend the result to this case.
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Outline fo the proof for (MF1): estimates for HJB

Step 1: Convergence in HJB

−∂tuλ + λuλ − v(x) · Duλ +
λ

2
|Duλ|2 = F (x ,mλ(t))

For a suitable C > 0, F (x ,mλ(t))
λ − C

λ2 is a subsolution and
F (x ,mλ(t))

λ + C
λ2 is a supersolution, so

sup
Rd×R+

|λuλ − F (·,mλ)| ≤ C
λ
, ∀λ ≥ 1.

Step 2: Semiconcavity estimate for uλ:

uλ(x + h, t)− 2uλ(x , t) + uλ(x − h, t) ≤ C
λ
|h|2,

=⇒ λDuλ(x , t)→ DF (x ,m) a.e. if F (x ,mλ)→ F (x ,m) loc. unif.
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Step 3: Lipschitz estimate for uλ:

|uλ(x , t)− uλ(x + h, t)| ≤ C|h|
λ

Step 4: can define a flow Φ(x , t , s) such that mλ(s) = Φ(·,0, s)#m0
and

|Φ(x ,0, s)− Φ(x ,0, s′)| ≤ ‖λDuλ‖∞|s − s′| ≤ C|s − s′|

Step 5: Estimates on the KFP equation:

d1(mλ(s),mλ(s′)) ≤
∫

Rd |Φ(x ,0, s)− Φ(x ,0, s′)|dm0(x)≤ C|s − s′|

where d1 is the Kantorovich-Rubinstein or 1-Wasserstein distance
on P1(Rd ) .
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‖mλ(t)‖∞ ≤ CT‖m0‖∞∫
Rd |x |2mλ(t)dx ≤ C(M2(m0) + T ).

=⇒ compactness of {mλ} in C([0,T ],P1)

and weak∗ in L∞(Rd × [0,T ]) , ∀T > 0.

For any sequence λn such that mλn → m as above

F (x ,mλn (t))→ F (x ,m(t)) loc. uniformly by the continuity of F in P1.

=⇒ λnDuλn (x , t)→ DF (x ,m(t)) a.e.

=⇒ m solves ∂tm − div(m(DF (x ,m)− v(x))) = 0.

DF Lip in m =⇒ uniqueness for this equation, so mλ → m ,

and then also λuλ → F (·,m) and λDuλ → DF (·,m) . QED
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Outline fo the proof for (MF2)

We use the vanishing viscosity approximation to (MF2) to build a
solution satisfying all the estimates we need.

Estimates for HJB:

L∞ estimates −C
λ ≤ uλ(x , v , t) ≤ C

λ (1 + |v |2)

Lipschitz estimates |uλ(x , v , t)− uλ(x + h, v , t)| ≤ C |h|λ ,

|uλ(x , v , t)− uλ(x , v + h, t)| ≤ |h|λ C(1 + |v |)

Semiconcavity estimate for (MF2)

uλ(x +h, v +h1, t)−2uλ(x , t)+uλ(x−h, v−h1, t) ≤
C
λ

(|h|2 + |h1|2).
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Estimates for KFP:

d1(mλ(s),mλ(s′)) ≤ CT (1 + M1(m0))|s − s′|

where d1 is the Kantorovich-Rubinstein on P1(R2d ) .

‖mλ(t)‖∞ ≤ CT‖m0‖∞∫
Rd (|x |2 + |v |2)mλ(t)dx ≤ C(M2(m0) + T ).

After these estimates the proof is the same as for (MF1).
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Thanks for your attention !
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