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Plan

@ Connecting MFGs to kinetic models ?
» Mean Field Games and their system of PDEs

» Agent-based models
» Large interest rate limit for stochastic MFG: Bertucci-Lasry-Lions

» The setting of Degond-Herty-Liu
@ Convergence of MFGs to nonlocal continuity equations

» a) MFG with controlled velocity — aggregation equation

» b) MFG with controlled acceleration — kinetic equations of flocking
type
» Outline of the proof for controlled velocity

» Outline of the proof for controlled acceleration

Martino Bardi (Universita di Padova) MFGs and aggregation models Marseille, June 4, 2019 2/26



1. Mean Field Games PDEs

—% _ yAu+ H(Vu) = F(x,m) in(0,T)xR?
(MFE) 9m _ yAm — div(mVH(Vu)) =0 in (0, T) x R?
U(T,X):g(X), m(O,x):mo(X),

m(x, t) = equilibrium distribution of the agents at time f;

u(x, t) = value function of the representative agent

Data: v >0, H=L* e.g., H(p) = @,
F :RY x P;(R%) — R =running cost, g = terminal cost,

my > 0 = initial distribution of the agents, fRd Mo(x)dx = 1.

1st equation is backward H-J-B, 2nd equation is forward K-F-P eq.
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Control interpretation of the MFE

o
-
u(x, t) = inf E /t L(a(s)) + F(y(s), m(s))ds + g(y(T))]
over controls « and trajectories of
dy(s) = a(s)ds + vV2vdW(s), y(t)=x
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Control interpretation of the MFE

°
u(x, t) = inf E[/tT L(a(s)) + F(y(s), m(s))ds + g(y(T))]
over controls « and trajectories of
dy(s) = a(s)ds + vV2vdW(s), y(t)=x
@ dy(s) = —VH(Vu(y(s),s))ds + vV2vdW(s)
= optimal trajectory of the representative agent

@ m(x, t) = distribution of particles moving along optimal trajectories
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Control interpretation of the MFE

°
u(x, t) = inf E[/tT L(a(s)) + F(y(s), m(s))ds + g(y(T))]
over controls « and trajectories of
dy(s) = a(s)ds +vV2vdW(s), y(t)=x
@ dy(s) = —VH(Vu(y(s),s))ds + vV2vdW(s)
= optimal trajectory of the representative agent
@ m(x, t) = distribution of particles moving along optimal trajectories

@ In particular, for v =0 and H(p) = |p|?/2 the dynamics with
optimal feedback is  y(s) = —Vu(y(s), s)
and the KFP equation becomes
om

Martino Bardi (Universita di Padova) MFGs and aggregation models Marseille, June 4, 2019 4/26



Agent-based models

They typically are nonlocal continuity equations of the form

om—div(mQ[m)) =0  Q:Pp(R% — C'(R RY)

@ The aggregation equation (Bertozzi, Carrillo, Laurent and many
others):

Qmi(x.) =V [ k(x— y)dm(y)

> k(x) = —|x|e~a¥ ~ a>0,

> k(x)=e X —Fe"XI/L 0<F<1, L>1
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Agent-based models

They typically are nonlocal continuity equations of the form

om—div(mQ[m)) =0  Q:Pp(R% — C'(R RY)

@ The aggregation equation (Bertozzi, Carrillo, Laurent and many
others):

Qmi(x.) =V [ k(x— y)dm(y)

> k(x) = —|x|e~a¥ ~ a>0,
> k(x)=e X —Fe"XI/L 0<F<1, L>1

@ Nonlinear friction equation of granular flows (Toscani et al.): same
form with
k(x) = |x]|%/«, a>0
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@ Models of crowd dynamics (Cristiani-Piccoli-Tosin)
» Oym—div(m(v+Q[m])) =0, v = v(x), Q(m] = V/ k(x—y)dm(y)
R<

k = ¢(|x|) with compact support, ¢ decreasing for small |x|, then
increasing
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@ Models of crowd dynamics (Cristiani-Piccoli-Tosin)

» Oym—div(m(v+Q[m])) =0, v = v(x), Q(m] = V/Rd k(x—y)dm(y)

k = ¢(|x|) with compact support, ¢ decreasing for small |x|, then

increasing

» models with "social forces", or mesoscopic, or kinetic:
state variables: position and velocity (x, v) € R??

om+v-Dym— div,(mQ[m]) =0  in(0,T) x R?
QIm](x,v) =V [pe k(X — y, v — vi.)m(y, v, t)dydv,
@ Flocking models: as the last one with different k, e.g.

Cucker-Smale : k(x,v) = %, a>0,>0
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Question: connection among MFGs and ABMs?

For MFG with dynamics y = o the equation for the density m is

%T —div(mVH(Vu)) =0

which is a continuity equation with Q[m] = VH(Vu) and u depends
on min a non-local way via the HJB equation, so the dependence is
not explicit.

For MFG with dynamics y = o the density m solves
om+ v - Dym— div,(mV,H(Vu)) =0

which is a kinetic equation with Q[m] = V,H(Vu) and u depends on m
via the HJB equation.

Q.: can one connect in a rigorous way the classical ABMs to some
MFGs ?
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Stochastic case: Bertucci-Lasry-Lions 2018

\DUA|2

=0ty + Auy — Auy + Q[my] - Duy + ———

(MFO) 9 gymy — Amy — div(ma(Duy + Q[my])) =0 in RY x Ry

m,\(O) = My, in Rd

A = the discount factor in the cost functional associated to the HJB
equation =

"inter temporal preference parameter that measures the weight of
anticipation for a given agent",

the dynamics of an agent in the MFG is
dy(s) = (a(s) — Qlmy])ds + V2vdW(s), y(t) = x
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The limit A\ — oo

Theorem (Bertucci-Lasry-Lions)
Q: Py(RY — Lip(RY), [Q[M]|e < C, ¥Mm —

any solution (uy, my) of (MFO) is bounded uniformly in A and

for any A\, — oo such that my, — m the limit m is a solution of the
continuity equation

otm — Am — div(m Q[m]) = 0.

So "any" ABM model (with diffusion), defined by Q@ , has at least one
solution that is the limit of the solution of a MFG.
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The setting of Degond-Herty-Liu 2017

Here MPC = Model Predictive Control
We address the horizontal ? — ? with a different approach

Differential game
with
N particles

Controlled

dynamics of
N particles using
best-reply strategy

Meanfield game
HIB equation for
the value function

Kinetic equation for
the controlled
dynamics using

best-reply strategy

MFGs and aggregation models

Marseille, June 4, 2019
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The control problem for a single agent is
] T | |2
= v(y)+a. — x, mf/ 195+ Fly(s), m(s)lds
MPC approximation:
2

y(t+ At) = x + At(v(x) + ), m|n [At‘z + F(y(t + At), m(t))

Note that the scaling with At means that the control is cheap.
Taking the derivative w.r.t. « we get the optimal control & if

At[a + DF(x, m(t))] = 0.

This suggests that, for short horizon T and cheap control, the optimal
feedback should be approximated by the

steepest decent of the running cost & ~ —DF(x, m(t)) .

Martino Bardi (Universita di Padova) MFGs and aggregation models Marseille, June 4, 2019 11/26



2. Convergence: a) the basic model

A
=0ty + AUy — V(X) - Duy + E‘DU,\’2 = F(X, m,\(t))

(MF1) drmy — div(my(ADus — v(x))) =0  in RY x R,

my(0)=my, inRY  u, bounded.

A>0, ve Wae
mg € P;1(RY) has bounded density and compact support
F:RY x P;(R%) — R continuous and

IF(-.m)llcz < C ¥m e Py(R?), |DF(-,m) — DF(-, )| < Cdy(m, M)

Note: 1. no terminal condition for the HJB equation.
2. H(p)=ApP/2 = DH(p)=p
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Existence and representation of (uy, m,)

Theorem (see Cardaliaguet’s Lect. Notes on Lions’ lectures)

(MF1) has a solution (viscosity sense for HJB, distribution sense for
KFP). Any solution satisfies

unest) = inf [ " g A (s [2& a(8)2 + F(y(s), ma(s))] s,

for y(s)=v(y(s))+a(s), s>t, y(t)=x.

Rmks.:
1. Meaning of \ large: high discount factor (the near future counts
much more than the far future) and cheap control.

2. In general the solution of (MF1) is NOT UNIQUE, the monotonicity
condition on F of Lasry and Lions in NOT satisfied for F modelling
aggregation.

Martino Bardi (Universita di Padova) MFGs and aggregation models Marseille, June 4, 2019 13/26



Convergence Theorem for (MF1)

Under the previous assumptions, as A — oo, any solution of (MF1)
satisfies

my — m in C([0, T],Py) and weak® in L>°([0, T] x RY) V T > 0,
m the unique solution (distribution sense) of the continuity equation

dym — div(m(DF(x,m) — v(x))) =0  inRY x R,
{ m(0) = mp,  in RY.

Aun(x, t) — F(x,m(t)) loc. uniformly, ADuy(x,t) — DF(x, m(t)) a.e..

Remarks.
1. Thm. says that the optimal feedback —Du,, is close to

the scaled gradient descent of the running cost —‘XDF,
which is perhaps new even for pure control problems with frozen m.
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Remarks continued

2. F(x,m)=kxm(x) with ke C?nW2>
fits the assumptions of the Theorem.

3. The MFG system (MF1) has many solutions in general, and
ALL of them converge to the limit continuity equation that has a

unique solution (by, e.g, Piccoli-Rossi 2013).
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Applications and extensions

@ The aggregation equation and model 1 of crowd dynamics are
om —divim(Dk «m—v(x))) =0

but k = ¢(|x|) NOT C"in x = 0, but semiconcave if there is
repulsion at short distance.

We can replace the condition ||D?F(x, m)|. < C for all m with the
semiconcavity of F uniformly in m

F(x + h,m) — 2F(x,m) + F(x — h,m)<C|h[2 Vm € P;.
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Applications and extensions

@ The aggregation equation and model 1 of crowd dynamics are
om —divim(Dk «m—v(x))) =0

but k = ¢(|x|) NOT C"in x = 0, but semiconcave if there is
repulsion at short distance.

We can replace the condition ||D?F(x, m)|. < C for all m with the
semiconcavity of F uniformly in m

F(x + h,m) — 2F(x,m) + F(x — h,m)<C|h[2 Vm € P;.

@ In the nonlinear friction equation k ¢ L*°, so ||F(x, m)||- < C for
all mis false.
We have extensions to the case

—Co < F(x,m) < Co(1+ |x|?) forall m.

N.B. Even existence of solutions to (MF1) is new in this case.
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2. b) Convergence for controlled acceleration

A
—0tUx + Auy — v - Dyuy + E\Dvuﬂz = F(x,v,m\(t))

(MF2)

my(0) = mo, in R%.

A>0, mgeM,ie.,mge 731(R2d) with bounded density and
compact support

F:R9x M — R continuous and Vx,v € R%, me M,
—Co < F(x,v,m) < Co(1+|v[?),

|IDyF(x,v,m(x,v)| < C, |D,F(x,v,m(x,v))| <C(1+|v])
|D?F(x,v,m)| < C
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Representation of u,
Any solution (uy, m,) satisfies

v t) =i | T e A0 [2& (S + E(y(s), v{(s), ma(s))] s,

y(s)=v(s), v(s)=ua(s), s>t, y(t)=x, v(t)=v.

There is no existence theory for (MF2) available in the literature:

we prove directly the existence of a solution satisfying the estimates
we need, and show convergence for it.

See also ongoing work by Achdou-Mannucci-Marchi-Tchou.
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Convergence Theorem for (MF2)
Under the previous assumptions there is a solution to (MF2) such that

my — m in C(|0, T],P1) and weak* in L>°([0, T] x R?4) V¥ T > 0,
as A\ — oo, m = unique solution of the continuity equation

dm+ v - Dym—div(mDyF(x,v,m))=0  inR%? xR,
m(0) = mg,  in R%9,
Aux(x, v, t) — F(x,v,m(t)) loc. uniformly,

ADyuy(x,v,t) — DyF(x,v,m(t)) a.e..

1. Thm. says that the optimal feedback —D,uy is close to
the scaled gradient descent of the running cost —%DVF,
which is perhaps new even for pure control problems with frozen m.
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Examples

Q@ Fx,vym)=ksm(x,v) with ke C?nL>

@ Same with Cucker-Smale kernel :

v[?

KN ey

a>0,48>0.
© in crowd dynamics with social forces k = ¢(|x|) may be

not C' in x = 0, but it is semiconcave if there is
repulsion at short distance: we can extend the result to this case.
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Outline fo the proof for (MF1): estimates for HJB

Step 1: Convergence in HJB
A
— Oty + AUy — v(X) - Duy + E’DU/\‘Z = F(x,my\(t))

For a suitable C > 0, M ¢ is a subsolution and

Y
Fxm(® 4 € is a supersolution, so

sup |Auy — F(-,my)| < 9, YA > 1.
ROxR. A
Step 2: Semiconcavity estimate for uy:

ux(x + ht) —2ux(x,t) + un(x — h, t) < f]h\z,
= ADuy(x,t) — DF(x,m) a.e.if F(x,my\)— F(x,m) loc. unif.
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Step 3: Lipschitz estimate for uy:

lux(x,t) — ux(x + h, t)] < Cl\h'

Step 4: can define a flow ®(x,t,s) such that my(s) = ®(-,0, 8)#my
and

|®(x,0,8) — ®(x,0,5)| < ||ADuy||o|s — §'| < C|s - §|
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Step 3: Lipschitz estimate for uy:

lux(x,t) — ux(x + h, t)] < Cl\h'

Step 4: can define a flow ®(x,t,s) such that my(s) = ®(-,0, 8)#my
and

|®(x,0,8) — ®(x,0,5)| < ||ADuy||o|s — §'| < C|s - §|

Step 5: Estimates on the KFP equation:

@ di(my(s),m\(s)) < Jpa |P(X,0,8) — ®(x,0,8")|dmy(x)< C|s — §|

where d; is the Kantorovich-Rubinstein or 1-Wasserstein distance
on P;(RY) .
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o [Im(Blloc < Crllmollec

o [usIXPmy(t)dx < C(Ma(mg) + T).
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° [MA(B)]le < CrllMol|oo
[*) fRd |X’2m)\(t)dX < C(Mg(mo) + T)

== compactness of {m,} in C([0, T],Py)
and weak* in L~(RY x [0, T]), VT > 0.
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° [Mx(H)lloo < CTllMollo0
° Jro [X[Pmy(t)dx < C(Ma(mg) + T).
— compactness of {m,} in C(|0, T],Py)

and weak* in L~(RY x [0, T]), VT > 0.

For any sequence \, such that m,, — m as above

F(x, my,(t)) = F(x,m(t)) loc. uniformly by the continuity of F in P;.
= AnDuy,(x,t) — DF(x, m(t)) a.e.

= msolves  9ym — div(m(DF(x, m) — v(x))) = 0.
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() fRd |X’2m)\(t)dX < C(Ma(mg) + T).

o [Im(Blloc < Crllmollec

== compactness of {m,} in C([0, T],Py)
and weak* in L~(RY x [0, T]), VT > 0.

For any sequence \, such that m,, — m as above

F(x, my,(t)) = F(x,m(t)) loc. uniformly by the continuity of F in P;.

= AnDuy,(x,t) — DF(x, m(t)) a.e.
= msolves  9ym — div(m(DF(x, m) — v(x))) = 0.
DF Lip in m = uniqueness for this equation, so my — m,

and then also Auy — F(-,m) and A\Duy — DF(-,m). QED
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Ouitline fo the proof for (MF2)

We use the vanishing viscosity approximation to (MF2) to build a
solution satisfying all the estimates we need.

Estimates for HJB:
o L*estimates —$ <uy(x,v,t) < $(1+]|vP?)

@ Lipschitz estimates lux(x, v, t) —ux(x + h, v, t)| < C'h|

un(x, v, t) — un(x, v + h 1) < Zle(t + |v))

@ Semiconcavity estimate for (MF2)

UN(X+h, v+hy, ) —2ux(X, ) +Ur(x—h,v—hy, ) < (|h[2+]h1\ ).
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Estimates for KFP:

o di(mx(s),m(s)) < Cr(1+ Mi(mo))|s — &'|
where d; is the Kantorovich-Rubinstein on P;(R29) .
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Estimates for KFP:

o di(mx(s),m(s)) < Cr(1+ Mi(mo))|s — &'|
where d; is the Kantorovich-Rubinstein on P;(R29) .

o [Im(Bllec < Crllmolles

o JrulIXIZ + VR)my(t)dx < C(Ma(mo) + T).
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Estimates for KFP:

o di(mx(s),m(s)) < Cr(1+ Mi(mo))|s — &'|
where d; is the Kantorovich-Rubinstein on P;(R29) .

o Ml < Crlmol
o JrulIXIZ + VR)my(t)dx < C(Ma(mo) + T).

After these estimates the proof is the same as for (MF1).

Martino Bardi (Universita di Padova) MFGs and aggregation models Marseille, June 4, 2019

25/26



Thanks for your attention !
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