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Multiagent systems

Consider a population of N agents, whose state is driven by

dX i
s = αi

sds + σidW i
s, s > t , X i

t = x i ∈ Rd , i = 1, . . . ,N

W i
s independent Brownian motions, αi

s = control of i-th player, and a
finite horizon cost functional of the i-th player:

J i
T (t , x1, .., xN , α1, .., αN) := E

[∫ T

t
Li(αi

s) + F i

(
X i

s,

∑
k 6=i δX k

s

N − 1

)
ds

]
,

Li is the running cost of using the control αi
s,

F i : Rd × { prob. measures} → { Lip functions }, δx is the Dirac
mass at x

N.B.: J i
T depends on the players k 6= i only via their empirical measure

1
N−1

∑
k 6=i δX k

s
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Nash equilibrium feedbacks for N-person games

N. E. are N-tuple of individual feedbacks (α1, .., αN) such that

J i
T (α1, . . . , αN) ≤ J i

T (α1, .., αi−1, αi , αi+1, .., αN) ∀αi ∀i .
In principle such equilibria can be synthesised by solving a system of
N parabolic HJB PDEs in Nd dimensions for the value functions vi ,
i = 1, ...,N, nonlinear and strongly coupled (e.g., Bensoussan and
Frehse books and papers, ’80s - now)

This is highly unfeasible in practice, especially if d or N are large
(curse of dimensionality already for N = 1.....).

Moreover, Nash equilibria are highly non-unique and unstable.

Problem: if the players can be assumed to have the same parameters
(e.g., agents in the stock market, families consuming energy...), can we
give a macroscopic description of the whole population simpler to
handle?
Similar ideas: kinetic models in gas dynamics, mean-field theories in
Quantum Physics...
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Heuristic derivation of the MFG equations

Assume identical players:

σi = σ, Li = L, F i = F , i = 1, ...,N.

The dynamics of a generic agent is

dXs = αs ds + σ dWs, Xt = x ∈ Rd

with Ws a Brownian motion, αs = control, σ > 0 volatility,
and the his cost functional is

JT (t , x , α.) := E

[∫ T

t
L(αs) + F (Xs,menv (s))ds

]
+ G(XT ,menv (T )),

where menv (s) is the distribution of the other agents in the
environment, assumed given, g is the terminal cost.
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Define the value function

v(t , x) := inf
α.

JT (t , x , α.).

Then v(t , x) solves the Hamilton-Jacobi-Bellman equation{
−∂v
∂t − ν∆v + H(∇v) = F (x ,menv ) in (0,T )× Rd

v(T , x) = G(x ,menv )

where ν := σ2/2, ∆ := ∆x , ∇ := ∇x , and H is the Hamiltonian
associated to L:

H(p) := sup
α∈Rd
{p · α− L(α)}

Moreover the feedback control

α̂(t , x) = −∇H(∇v(t , x))

is optimal.
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The optimal process

dX̂t = −∇H(∇v(X̂t ))dt + σdWt

has a distribution whose density m solves the

Kolmogorov-Fokker-Plank equation{
∂m
∂t − ν∆m − div(m∇H(∇v)) = 0 in (0,T )× Rd

m(0, x) = mo(x)

where mo ≥ 0,
∫

Rd mo(x)dx = 1,

is the distribution of the initial position of the system.

Martino Bardi (Università di Padova) MFGs in Padova Padova, May 9, 2019 7 / 33



The PDEs for value and density of the optimal process are
−∂v
∂t − ν∆v + H(∇v) = F (x ,menv ) in (0,T )× Rd

∂m
∂t − ν∆m − div(m∇H(∇v)) = 0 in (0,T )× Rd

v(T , x) = G(x ,menv ), m(0, x) = mo(x),

and menv 7→ v , v 7→ m are well-defined maps.

If menv 7→ v 7→ m has a fixed point , i.e. m = menv ,

then m is an equilibrium distribution of the agents,

each behaving optimally as long as the population distribution remains
the same.
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Mean Field Games PDEs

We have heuristically derived the basic system of 2 evolutive PDEs of
MFGs

(MFE)


−∂v
∂t − ν∆v + H(∇v) = F (x ,m(t)) in (0,T )× Rd

∂m
∂t − ν∆m − div(m∇H(∇v)) = 0 in (0,T )× Rd

v(T , x) = G(x ,m(T )), m(0, x) = mo(x),

Data: ν,H,F ,mo,g ; Unknowns:
m(t , x) = equilibrium distribution of the agents at time t ;
v(t , x)= value function of the representative agent

1st equation is backward parabolic H-J-B with a possibly non-local cost
term F (x ,m) ,
2nd equation is forward parabolic K-F-P equation, linear in m.
3rd line: terminal and initial conditions.
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Well-posedness?

Existence: proved under various different sets of assumptions:
J.M. Lasry and P.L. Lions (2006 -...) , mostly for periodic data and
boundary conditions, i.e. on the torus Td instead of Rd ,
see [P. Cardaliaguet, Notes 2010],
M. Huang, P. Caines and R. Malhame (2006 -...), mostly for LQG
models,
Carmona and Delarue by probabilistic methods, two huge books 2018.

Uniqueness: is not expected in general, true for
H convex under the increasing monotonicity condition on the costs∫

Rd
[F (x ,m1)− F (x ,m2)]d(m1 −m2)(x) > 0, ∀m1 6= m2,

which means crowd aversion (Lasry-Lions), idem for G.
for small data or short horizon T : less known until recently, see
below...
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The large population limit

1. Synthesis of ε-Nash equilibria (Huang-Caines-Malhame 2006):

given a solution (v ,m) of the PDE system (MFE) the candidate optimal
feedback is α̂(t , x) := −∇H(∇v(t , x)) .

Assume all the players use this feedback: α̃i
s := α̂(s,X i

s).
Then ∀ ε > 0 ∃Nε such that ∀N ≥ Nε, ∀ i = 1, ..,N, ∀ admissible αi ,

J i
T (t , x1, .., xN , α̃1, .., α̃N) ≤ J i

T (t , x1, .., xN , α̃1, .., αi , .., α̃N) + ε

2. Convergence of Nash equilibria for N person games to a MF
equilibrium and rigorous derivation of the MFG system: much more
complicated.
2a. For problem with ergodic cost functional: Lasry-Lions 2006,
M.B. - F. Priuli 2014 (LQG models)
2b. By the Probabilistic approach to MFG : M. Fischer 14, D. Lacker
14 -18,
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2c. Convergence of solutions of the system of N HJB PDEs for the
finite horizon problem to a solution of the evolutive MFG system of
PDEs (MFE):
Cardaliaguet - Delarue - Lasry - Lions preprint 9/2015, book to appear.

Problem is related to propagation of chaos in statistical phisics.

Covers also the case of common noise, i.e., the noises W i
s are NOT

independent.

Main tool: the master equation, a fully nonlinear PDE in infinite
dimensions.
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Examples of applications:
Economics

I financial markets (price formation and dynamic equilibria, formation
of volatility)

I general economic equilibrium with rational expectations
I environmental policy,

Engineering
I wireless power control
I demand side management in electric power networks,
I traffic problems

Social sciences
I crowd motion (mexican wave "la ola", pedestrian dynamics,

congestion phenomena,...)
I opinion dynamics and consensus problems,
I models of population distribution (e.g., segregation).
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Part II. 1. Non-uniqueness of solutions

Notation: Mean of µ ∈ P1(Rn), M(µ) :=
∫
R y µ(dy).

Theorem (An explicit example, M.B. - M. Fischer 2018)
Assume d = 1, H(p) = |p| (i.e., control α ∈ [−1,1]),

F ,G ∈ C1, ν > 0, M(m0) = 0 , and

F (x , µ) = βxM(µ), G(x , µ) = γxM(µ), β, γ ∈ R.

Then, if β ≤ 0, γ < 0 , ∀T > 0 ∃ solutions (v ,m) , (v̄ , m̄) with

vx (t , x)<0, v̄x (t , x)>0 for all 0 < t < T .

If, instead, β > 0, γ ≥ 0 , the solution is unique.

If β < 0, γ < 0 an agent has a negative cost, i.e., a reward, for having a
position x with the same sign as the average position M(m) of the
whole population.
Conversely, the conditions for uniqueness express aversion to crowd.
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Thm. [B.-Fischer]: uniqueness for short horizon in Rd

Assume H ∈ C2 with respect to p, m0 ∈ P ∩ L∞(Rd ),

‖F (·, µ)− F (·, µ̄)‖2 ≤ LF‖µ− µ̄‖2,

‖DG(·, µ)− DG(·, µ̄)‖2 ≤ LG‖µ− µ̄‖2
Then any (v1,m1), (v2,m2) two classical solutions of the MFG PDEs
(v1,m1), (v2,m2) coincide if

either the time horizon T is small enough
or LF ,LG are small
or sup |D2

pH(x ,Dvi)| i = 1,2, is small.

Remark: no convexity assumption on H, nor monotonicity of F and G,

but the minimal regularity of H is C1,1 : see the preceding
counterexample!
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II.2: Robust control

Consider a stochastic control system with an additional disturbance β

dXs = [f (Xs) + g(Xs)αs + τ(Xs)βs] ds + σ dWs, Xt = x

with τ a given matrix, and β an UNKNOWN disturbance modeled as
an adversary choosing a control function whereas α plays causal
strategies: a 0-sum differential game. The value function is, for δ > 0

V (x) := inf
α.

sup
β.

E

[∫ T

t
L(α[β]s) + F (Xs)− δ

2
|βs|2ds + G(XT )

]
with β open loop control and α[·] non-anticipating strategy.
The H-J-Isaacs equation associated to V by Dynamic Programming is

−vt + H(x ,Dv) = ν∆v + F (x)

H(x ,p) := inf
b∈Rm

sup
a∈A

[−(f (x) + g(x)a + τ(x)b) · p − L(a) +
δ

2
|b|2]

= sup
a∈A

[(−f (x)− g(x)a) · p − L(a)]−|τ(x)T p|2
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The PDE system for robust MFG

For the previous nonconvex H we derive heuristically the MFG system

−vt + H(x ,Dv) = ν∆v + F (x ,m(t , ·))

v(T , x) = G(x ,m(T , ·))

mt − div(DpH(x ,Dv)m) = ν∆m

m(0, x) = m0(x),

Known partial results
Bauso, Tembine, Basar 2016: model and numerical simulations,
no rigorous results
Moon, Basar 2017: LQ risk-sensitive and robust MFG (also
Bauso, Mylvaganam, Astolfi 2016; Huang, Huang 2017)
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Robust MFG with bounded state domain

For a bounded smooth domain Ω consider the trajectories of the
system that are reflected at the boundary of Ω : this leads to Neumann
boundary conditions for the H-J-I and KFP equations (n is the exterior
normal):

∂nv = 0, ∂nm + mDpH(x ,Du) · n = 0 on ∂Ω× (0,T )

Theorem (M.B. - Cirant 2018)

Assume F ,G regularizing and Lip in L2, m0 ∈ C2,β(Ω) satisfying the
compatibility condition

∂nm0(x)−m0(x)f (x) · n(x) = 0 ∀ x ∈ ∂Ω. Then
for all T > 0 there is a classical solution of the robust MFG system
with Neumann conditions,
there exists T > 0 such that for all T ∈ (0, T̄ ] such solution is
unique.
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II.3 The fractional MFG system, [Cirant - A. Goffi ’18]

The MFG system involving the fractional Laplacian operator (−∆)s

instead of the usual Laplacian is

(1)


−∂tu + (−∆)su + H(x ,Du) = F [m](x) in Td × (0,T )

∂tm + (−∆)sm − div(mDpH(x ,Du)) = 0 in Td × (0,T )

m(x ,0) = m0(x), u(x ,T ) = uT (x) in Td ,

where H = H(x ,p) ∼ CH |Du|γ , γ > 1 for |p| large, F is a regularizing
coupling, uT ∈ C4+α(Td ), m0 ∈ C4+α(Td ), Td = d−dimensional torus.
Remark. Such systems arise when the underlying dynamics is driven
by a 2s-stable Lévy process instead of the Brownian motion.
Motivations. Systems with nonlocal diffusion have been introduced by
[Chan-Sircar ’17] in MFG economic models; diffusion processes with
jumps have an increasing importance in financial models.
Remark . Stationary case in [A. Cesaroni, M. Cirant et al ’17].
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The Fractional Laplacian

Classical definitions: for s ∈ (0,1)

As integro-differential operator

(−∆)su(x) = cd ,sP.V.
∫

Rd

u(x)− u(y)

|x − y |d+2s dy

Via Fourier transform

(−∆)su = F−1(|ξ|2s(Fu))
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PDEs with fractional diffusion: Local vs Nonlocal

The Laplacian may be defined in R as follows

(2) (−∆u)(x) = lim
y→0

2
u(x)− u(x+y)+u(x−y)

2
|y |2

.

The fractional Laplacian can be written as

(−∆)su(x) = cs

∫
R

u(x)− u(x − y)

|y |1+2s dy = cs

∫
R

u(x)− u(x + ỹ)

|ỹ |1+2s dỹ .

After computing the average we get

(3) (−∆)su(x) = cs

∫
R

u(x)− u(x+y)+u(x−y)
2

|y |1+2s dy

The main difference is that to compute (2) it is sufficient to know only
the value of u in a neighborhood of x , while for (3) we need to know
the value of u in the whole real line.
Remark. This is why such PIDE are usually called nonlocal.
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Existence is tackled via vanishing viscosity, namely one considers the
viscous system

(4)


−∂tu − σ∆u + (−∆)su + H(x ,Du) = F [m](x) in QT

∂tm − σ∆m + (−∆)sm − div(mDpH(x ,Du)) = 0 in QT

m(x ,0) = m0(x), u(x ,T ) = uT (x) in Td .

and then pass to the limit as σ → 0 .

Theorem (Existence for the viscous system (4))
Under the previous assumptions on H and F, for all σ > 0 and
s ∈ (0,1), there exists a classical solution (uσ,mσ) to the viscous
(fractional) MFG system (4).

- Semiconcavity estimates independent of σ for the solution u of the
HJB equation uniform Lipschitz estimates via duality methods.

- Some estimates independent of σ for the solution m of the FP
equation and its time derivative in some energy spaces of the form
L2(0,T ; Wµ,2(Td )) for some µ ∈ R.
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Existence and regularity of solutions

Theorem
Let H be convex. Under the same assumptions of the above result, let
(uσ,mσ) be a solution to (4). Then, as σ → 0 and up to subsequences,
uσ → u uniformly, Duσ → Du strongly, mσ → m weakly.

- If s ∈ (0,1/2], then (u,m) is a weak energy solution to (1).

- If s ∈ (1/2,1), then ∂tu, ∂tm, (−∆)su, (−∆)sm belong to some
Cᾱ,

ᾱ
2s (QT ), ᾱ ∈ (0,1), and (u,m) is classical solution to (1) .

Regularity: Generalize the classical spaces C2+α,1+α/2 and W 2,1
p ,

associated to the heat operator ∂t −∆, to the operator ∂t + (−∆)s :
- Fractional parabolic Hölder spaces
- Parabolic Bessel potential spaces
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Uniqueness of solutions, perspectives

Theorem
System (1) admits a unique solution in the following cases:
(a) F monotone as before and H convex ;
(b) for short horizon: for s ∈ (1

2 ,1), there exists T ∗ > 0, depending on
d , s,H,F ,m0,uT such that for all T ∈ (0,T ∗], (1) has at most a
solution (u,m).

The approach extends to Rd and to more general
integro-differential operators

I[u](x , t) =

∫
Rd

u(x + z, t)− u(x , t)− Du(x , t) · zν(dz)

where ν is a Lévy measure, as appearing in finance models.
Similar procedures work for MFG models with Caputo
time-fractional derivative [F. Camilli - A. Goffi, ongoing], being
mostly based on results for abstract evolution equations.
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II.4 Beyond the monotonicity of the costs

MFGs with costs F increasing with respect to m has been treated in
generality with several techniques and carry many good properties:

uniqueness of solutions,
regularity of solutions as a byproduct of “competition” effects,
stability in the long time regime, i.e. convergence of the
time-dependent problem to the stationary one corresponding to
ergodic control.

However, very seldom this assumption is satisfied in applications, e.g.
[Gonzalez, Gualdani, Sola-Morales, 16], [Carmona, Graves, 18], [Hongler et al., 16],
multi-population [Achdou-Bardi-Cirant, 16] , ...
M. Cirant explored MFG systems when f (·, x) is not increasing, in
particular: non-uniqueness, concentration phenomena and pattern
formation in the long time regime.
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MFGs with decreasing costs [Cirant, 16]

The MFG PDEs for ergodic control problems, i.e.,

cost funtional = limT→+∞
1
T E[

∫ T
0 (L(αs) + F (Xs,m(s)))ds]

are stationary with an additive eigenvalue λ = constant value function:

(5)

{
−ε∆u + H(∇u) + λ = f (x ,m(x)) ≈ −c mα + V (x)

−ε∆m − div(m∇H(∇u)) = 0,
∫

m = 1, m > 0.

model problem describing “aggregation”, i.e., cost decreasing w.r.t m.

Theorem
Suppose that H ≈ |p|γ , γ > 1. Two main regimes are identified:

Subcritical: if α < γ′/d , there exists a smooth solution (u, λ,m);
if γ′/d ≤ α < γ′/(d − γ′) a solution exists under additional
smallness conditions on c .
Supercritical: if α > γ′/(d − γ′), (5) may not have solutions.

Martino Bardi (Università di Padova) MFGs in Padova Padova, May 9, 2019 26 / 33



MFGs with decreasing costs [Cirant, 16]

The MFG PDEs for ergodic control problems, i.e.,

cost funtional = limT→+∞
1
T E[

∫ T
0 (L(αs) + F (Xs,m(s)))ds]

are stationary with an additive eigenvalue λ = constant value function:

(5)

{
−ε∆u + H(∇u) + λ = f (x ,m(x)) ≈ −c mα + V (x)

−ε∆m − div(m∇H(∇u)) = 0,
∫

m = 1, m > 0.

model problem describing “aggregation”, i.e., cost decreasing w.r.t m.

Theorem
Suppose that H ≈ |p|γ , γ > 1. Two main regimes are identified:

Subcritical: if α < γ′/d , there exists a smooth solution (u, λ,m);
if γ′/d ≤ α < γ′/(d − γ′) a solution exists under additional
smallness conditions on c .
Supercritical: if α > γ′/(d − γ′), (5) may not have solutions.

Martino Bardi (Università di Padova) MFGs in Padova Padova, May 9, 2019 26 / 33



Concentration of mass in the small noise limit
[Cirant-Cesaroni, 19]

Concentration phenomena for ergodic problems in the vanishing
viscosity regime ε→ 0

(6)

{
−ε∆u + H(∇u) + λ = f (x ,m(x)) ≈ −mα + V (x)

−ε∆m − div(m∇H(∇u)) = 0,
∫

Rd m = 1, m > 0.

Theorem
Under the assumptions that V (∞) = +∞ and α be “subcritical”,

For all ε→ 0 there exists a triple (uε,mε, λε) solving (6).

There exist sequences ε→ 0 and xε ∈ Rd , such that for all η > 0 there
exists Rε → 0 s.t., ∫

B(xε,Rε)

mε dx ≥ 1− η,

and xε approaches one of the (flattest) minima of V .
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II. 5 Time-periodic solutions [Cirant et al.]

The existence of periodic in time solutions to the parabolic system{
−∂tu −∆u + H(∇u) = f (m(x , t)) on Td × (−∞,+∞)

∂tm −∆m − div(m∇H(∇u)) = 0

has been obtained in [Cirant, Cirant-Nurbekyan 18] . The issue arises
naturally in economic models, and was numerically observed in
multi-population models of segregation [Achdou-M.B.-Cirant, 17] .

Theorem
f ′(1) < −4π2 =⇒ ∃ non-trivial solutions (un,mn), defined for
t ∈ (−∞,+∞), approaching a trivial solution (f (1)t ,1) as n→∞, and
Tn > 0 such that mn(·, t) = mn(·, t+Tn) for all t .

Proof by bifurcation methods. Bifurcation suggests (see also [Cirant,
Verzini 17]) that when the cost is not increasing, it is natural to expect the
existence of several families of solutions.
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II. 6 Deterministic Mean Field Games

If the system is noiseless Ẋs = αs , , i.e., σ = 0 = ν,
the MFG PDEs formally become

−∂v
∂t + H(∇v) = F (x ,m) in (0,T )× Rd

∂m
∂t − div(m∇H(∇v)) = 0 in (0,T )× Rd

v(T , x) = G(x ,m(T )), m(0, x) = mo(x).

Troubles: v solving the HJB equation is not smooth, the vector field
∇H(∇v) can be undefined and discontinuos.
However, H(p)→ +∞ as |p| → ∞ and F ,G smooth imply v is
semiconcave in x , i.e., for some C > 0 x 7→ v(x , t)− C|x |2 is concave,
which implies ∇H(∇v) ∈ L∞.
Then the system has a solution with the HJB equation satisfied in
"viscosity sense" and KFP in the sense of distributions [Cardaliaguet,
Notes 2010].
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Non-coercive first order Mean Field Games
P. Mannucci, C. Marchi, C. Mariconda, N. Tchou ’19


−∂tu + H(x ,Du) = F (x ,m) IR2 × (0,T )

∂tm − div(m ∂pH(x ,Du)) = 0 IR2 × (0,T )

m(x ,0) = m0(x), u(x ,T ) = G(x ,m(T )) IR2

H(x ,p) =
1
2

(p2
1 + h(x1)2p2

2), p = (p1,p2), x = (x1, x2).

h ∈ C2(IR) is bounded and possibly vanishing, e.g.,

h(x1) =
x1

(1 + x2
1 )1/2

(or also h(x1) = sin x1).
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These systems arise when the generic player wants to choose the
control α = (α1, α2) ∈ L2([t ,T ]; R2) so to minimize the cost∫ T

t

[
1
2
|α(τ)|2 + F (x(τ),m)

]
dτ + G(x(T ),m(T ))

with the dynamics x(·) is{
x ′1(s) = α1(s), x1(t) = x1
x ′2(s) = h(x1(s))α2(s), x2(t) = x2.

When h = 0: x1 = 0 is a forbidden direction.

Theorem
‖F (·,m)‖C2 ≤ C , ‖G(·,m)‖C2 ≤ C for all m ∈ P1

=⇒ exists a solution to the MFG system.
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MFG with control on acceleration (double integrator)
Y. Achdou, P. Mannucci, C. Marchi, N. Tchou

The generic player wants to choose the control α so to minimize∫ T

t

[
1
2
|α(τ)|2 + F (x(τ), v(τ),m)

]
dτ + G(x(T ),m(T ))

where F and G are C2-bounded and x(·) is the double integrator{
x ′(s) = v(s)
v ′(s) = α(s).

The MFG system is
−∂tu + H(x , v ,Dxu,Dv u) = F (x , v ,m) IR2N × (0,T )

∂tm − div(m ∂pH(x , v ,Dxu,Dv u)) = 0 IR2N × (0,T )

m(x ,0) = m0(x), u(x ,T ) = G(x ,m(T )) IR2N

H(x , v ,px ,pv ) =
1
2
|pv |2 − v · px , (x , v) ∈ IR2N ,p = (px ,pv ).
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Thanks for your attention !
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