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Risk-sensitive control

Consider a stochastic control system

dXs = f (Xs, αs) ds + σ(Xs) dWs, Xt = x ∈ Rd , 0 ≤ t ≤ T

with Ws a Brownian motion, αs = control (adapted to Ws),
σ a volatility matrix, and a finite horizon loss functional

CT (t , x , α.) :=

∫ T

t
L(Xs, αs)ds + G(XT ).

The usual cost functional is JT (t , x , α.) := E [CT (t , x , α.)].

The Risk-sensitive cost functional is

IT (t , x , α.) := δ logE
[
e

1
δ

CT (t ,x ,α.)
]

δ > 0 = risk sensitivity index (small δ = great sensitivity).
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Note:

IT = E [CT ] +
1
2δ

Var(CT ) + O(
1
δ

) as δ →∞,

and in general IT takes into account all moments of the cost CT , not
only E .
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The risk-sensitive H-J equation

The risk-sensitive value function is v(x) := infα. IT (t , x , α.).

From the Hamilton-Jacobi-Bellman equation for infα. E
[
e

1
δ

CT

]
easy calculations give for v

−vt + H̃(x ,Dv)− 1
2δ |σ(x)T Dv |2 = tr

(
σσT (x)

2 D2v
)

in (0,T )× Rd ,

H̃(x ,p) := supa∈A[−f (x ,a) · p − L(x ,a)]

with the terminal condition v(T , x) = G(x).

This is a H-J equation with a non-convex Hamiltonian

H = H̃ − |σ(x)T p|2,

perhaps a H-J-Isaacs equation.

A classical Verification Theorem holds, see Fleming and Soner’s book.
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Robust control

Now consider the stochastic control system with an additional
disturbance β

dXs = [f (Xs, αs)+τ(Xs)βs] ds +σ(Xs) dWs, Xt = x ∈ Rd , 0 ≤ t ≤ T

with Ws, αs = , and σ as before, τ a given matrix and β an UNKNOWN
disturbance (typically unbounded).

Following Fleming (1960) we can perform a worst case analysis by
modelling β as an adversary playing strategies (adapted to Ws) in a
0-sum differential game.
The value function is, for δ > 0

V (x) := inf
α.

sup
β.

E

[∫ T

t
L(Xs, αs)− δ

2
|βs|2ds + G(XT )

]
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H-J-Isaacs equation for robust control

Th H-J-I equation associated to V by Dynamic Programming is

−vt + H(x ,Dv) = tr
(
σσT (x)

2 D2v
)

in (0,T )× Rd ,

H(x ,p) := supa∈A infb∈Rm [−(f (x ,a) + τ(x)b) · p − L(x ,a) + δ
2 |b|

2]

= H̃(x ,p)−|τ(x)T p|2

It is the same PDE as in risk-sensitive control if τ = σ !

So risk-sensitive control can be interpreted as robust control, and both
as 0-sum stochastic differential games.

Large engineering literature on these subjects and on the related H∞

control, see, e.g., Basar and Bernhard’s book.
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Saddle feedback trajectory for the 0-sum game

A Verification Theorem holds for the 0-sum stochastic differential game
if the H-J-I equation + terminal condition v(T , x) = G(x) has a smooth
solution V . It produces a saddle point in feedback form.

If H̃ is smooth and infa[...] is attained at a single point it is also known
that the trajectory associated to the saddle strategies satisfies

dXs = DpH(Xs,DV (Xs))

as in the case of a single player!

This allows to derive, at least formally, the MFG system of PDEs for a
large population of identical agents with independent Brownian noises
and independent deterministic disturbances, see
Tembine, Zhu, Basar 2014 for risk sensitive and
Bauso, Tembine, Basar 2016 for robust control.
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Robust Mean Field Games

Assume now the cost functional of a representative agent in a
population is of the form

E

[∫ T

t
L(Xs, αs) + F (Xs,m(s, ·))− δ

2
|βs|2ds + G(XT ,m(T , ·))

]
,

where F ,G : Rd × P(Rd )→ R depend on the distribution of the
population of agents m(·, ·).
If the agent and the disturbance β "behave optimally", i.e., choose a
feedback saddle of their 0-sum game, the probability distribution µ(t , x)
of the agent solves the Kolmogorov-Fokker-Plank equation

µt − div(DpH(x ,Dv)µ) = tr D2
(
σσT (x)

2
µ

)
in (0,T )× Rd

Assume also that we are given the initial distribution of the
representative agent µ(0, x) = ν(x)
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The PDE system for robust MFG

We have an MFG equilibrium if all players are identical and "behave
optimally", so µ(t , x) = m(t , x) and it satisfies

−vt + H(x ,Dv) = tr
(
σσT (x)

2 D2v
)

+ F (x ,m(t , ·)) in (0,T )× Rd ,

v(T , x) = G(x ,m(T , ·))

mt − div(DpH(x ,Dv)m) =
∑

i,j ∂ij

(
σσT (x)

2 µ
)

i,j
in (0,T )× Rd ,

m(0, x) = ν(x),

where
H(x ,p) := supa[−f (x ,a) · p − L(x ,a)]−|τ(x)T p|2

v is the value function of a representative agent.
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Known results

Tembine, Zhu, Basar 2014: model and numerical simulations for
risk-sensitive MFG
Bauso, Tembine, Basar 2016: same for robust MFG
Moon, Basar 2017: LQ risk-sensitive and robust MFG
Tran preprint 2017: existence and uniqueness (small data) for toy
model with periodic BC
Existence for periodic BC and regularity: Some results can be
adapted from general theory Lasry - Lions (2006 -... ),
Cardaliaguet, Porretta, Gomes and coworkers, etc....
We are more interested in
- Neumann boundary conditions in a bounded smooth domain, or
- problem in all Rd with growth conditions or integrabilty conditions
at infinity.
Main difference in the non-convex case: Uniqueness ?

From now on, for simplicity, σ > 0 scalar constant.
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The Lasry-Lions monotonicity condition

A sufficient condition for uniqueness of classical solutions is

p → H(x ,p) convex∫
Rn

[F (x ,m)− F (x , m̄)]d(m − m̄)(x) > 0, ∀m 6= m̄ ∈ P(Rd )∫
Rn

[G(x ,m)−G(x , m̄)]d(m − m̄)(x) ≥ 0, ∀m, m̄ ∈ P(Rd )

the costs are "increasing with the density" in L2.
(See Cardaliaguet’s notes for the proof)

Example
F is "local", i.e., F (·,m)(x) = f (x ,m(x)) and f is increasing in m(x):
the more is crowded the place where I am, the more I pay.
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A non-local example

Notation: Mean of µ ∈ P1(Rn), M(µ) :=
∫
R y µ(dy).

Variant of the L-L uniqueness result: replace the strict monotonicity of
F with: F and G depend on m only via M(m) and∫

Rn
[F (x ,m)− F (x , m̄)]d(m − m̄)(x) > 0, ∀M(m) 6= M(m̄)

Example

F (x , µ) = βxM(µ), G(x , µ) = γxM(µ)

β, γ ∈ R. Then∫
Rn [F (x ,m)− F (x , m̄)]d(m − m̄)(x) = β(M(m)−M(m̄))2 ≥ 0,

and the condition above is satisfied if β > 0, γ ≥ 0.
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Uniqueness for non-convex H?

Lions lecture at College de France 2009: uniqueness for short horizon
T .
It turns that variants of that unpublished idea work for

non-convex but smooth H

non-monotone costs F and G,

boundary conditions different from periodic

smallness of some other data instead of T

MFG with several populations of agents, i.e. systems of n HJB
and n KFP equations.
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Thm. [B.-Fischer]: uniqueness for short horizon in Rd

Assume H ∈ C2 with respect to p, ν ∈ P ∩ L∞(Rd ),

‖F (·, µ)− F (·, µ̄)‖2 ≤ LF‖µ− µ̄‖2,

‖DG(·, µ)− DG(·, µ̄)‖2 ≤ LG‖µ− µ̄‖2
(v1,m1), (v2,m2) two classical solutions of the MFG PDEs with
D(v1 − v2) ∈ L2([0,T ]× Rd ), and

|DpH(x ,Dvi)|, |D2
pH(x ,Dvi)| ≤ CH .

Then ∃ T̄ = T̄ (d ,LF ,LG, ‖ν‖∞,CH) > 0 such that ∀T < T̄ ,

v1(·, t) = v2(·, t) and m1(·, t) = m2(·, t) for all t ∈ [0,T ].

Corollary (Uniqueness for "small data")
Uniqueness remains true for all T > 0 if either LF ,LG are small,
or sup |D2

pH(x ,Dvi)| is small.
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Sketch of proof

Assume for simplicity H = H(p) only and σ = 1.
For two solutions (v1,m1), (v2,m2) take v := v1 − v2 , m := m1 −m2,
write the PDEs for (v ,m): the 1st is
−vt + B(t , x) · Dv = ∆v + F (x ,m1)− F (x ,m2) in (0,T )× Rd ,

v(T , x) = G(x ,m1(T ))−G(x ,m2(T )).

with B(t , x) :=
∫ 1

0 DH(Dv2 + s(Dv1 − Dv2))ds ∈ L∞((0,T )× Rd ).

Then by energy estimates we get

‖Dv(t , ·)‖L2
x
≤ C1

∫ T

t
‖F (·,m1(s))− F (·,m2(s))‖L2

x
ds +

C2‖DG(·,m1(T ))− DG(·,m2(T ))‖L2
x
.
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The Lipschitz assumption on F and DG implies

‖Dv(t , ·)‖L2
x
≤ C1LF

∫ T

t
‖m(s, ·)‖L2

x
ds + C2LG‖m(T , ·)‖L2

x

Similarly, from the 2nd equation can estimate

‖m(t , ·)‖L2
x
≤ C3

∫ t

0
‖Dv(s, ·)‖L2

x
ds

Now set φ(t) := ‖Dv(t , ·)‖L2
x

and combine the inequalities to get

φ(t) ≤ C4

∫ T

t

∫ τ

0
φ(s)ds dτ + C5

∫ T

0
φ(s)ds

and Φ := sup0≤t≤T φ(t) satisfies

Φ ≤ Φ(C4T 2/2 + C5T )

so Φ = 0 for T small enough.
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Remark: a crucial estimate is

‖mi(t , ·)‖∞ ≤ C(T , ‖DH(Dvi)‖∞)‖ν‖∞, i = 1,2, ∀ t ∈ [0,T ],

that we prove by probabilistic methods.

Example (Regularizing costs)

F (x , µ) = F1

(
x ,
∫

Rd
k1(x , y)µ(y)dy

)
,

with k1 ∈ L2(Rd × Rd ), |F1(x , r)− F1(x , s)| ≤ L1|r − s| ;

G(x , µ) = g1(x)

∫
Rd

k2(x , y)µ(y)dy + g2(x)

with g1,g2 ∈ C1(Rd ), Dg1 bounded, k2,Dxk2 ∈ L2(Rd × Rd ).
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Example ( Local costs)
G = G(x) independent of m(T ) and F of the form

F (x , µ) = f (x , µ(x))

with f : Rd × [0,+∞)→ R such that

|f (x , r)− f (x , s)| ≤ Lf |r − s| ∀ x ∈ Rd , r , s ≥ 0.

Then F is Lipschitz in L2 with LF = Lf .

Remark: no convexity assumption on H, nor monotonicity of F and G,

but the minimal regularity of H is C1,1 w.r.t. p.
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More on uniqueness?

Questions: are the conditions for uniqueness merely technical or close
to necessary? how far from optimal?

Related very recent papers (with periodic BC):

Cirant, Gianni, Mannucci preprint 2018: short-time existence and
uniqueness for parabolic systems more general than MFG

Cirant, Goffi preprint 2018: short-time existence and uniqueness
for MFG with non-local terms.

Nonetheless, are there examples of multiple solutions? even for short
time horizon?
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Examples of non-uniqueness: stationary MFGs

The stationary MFG PDEs:

(MFE)


−∆v + H(x ,∇v) + λ = F (x ,m) in Td ,

∆m + div(∇pH(x ,∇v)m) = 0 in Td ,∫
Td m(x)dx = 1, m > 0,

∫
Td v(x)dx = 0,

has uniqueness for F monotone increasing and H convex. Otherwise:
Lasry-Lions for H(x ,p) = |p|2 via a Hartree equation of Quantum
Mechanics,

Gueant 2009 for (local) logarithmic utility F = − log m

M.B. 2012 and M.B. - F. Priuli 2014 for LQG models in Rd

M. Cirant 2015 and Y. Achdou - M.B. - M. Cirant 2016 for systems
of two populations with Neumann boundary conditions.

Question: counter-examples for the evolutive case?

How far from the monotonicity condition? Also for T small?
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Existence of two solutions

Theorem (Any T > 0)

Assume d = 1, H(p) = |p| , F ,G ∈ C1, σ > 0 and C2, M(ν) = 0 , and

∂F
∂x

(x , µ)

{
≤ 0 if M(µ) > 0,
≥ 0 if M(µ) < 0.

∂G
∂x

(x , µ)

{
≤ 0 and not ≡ 0 if M(µ) > 0,
≥ 0 and not ≡ 0 if M(µ) < 0,

=⇒ ∃ solutions (v ,m) , (v̄ , m̄) with

vx (t , x) < 0, v̄x (t , x) > 0 for all 0 < t < T .

T > 0 can also be small: H convex but not C1.
No assumption on the monotonicity of F ,G w.r.t. µ.
We have also a probabilistic formulation and proof of
non-uniqueness under less assumptions on σ.
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Explicit example of non-uniqueness

F (x , µ) = βxM(µ) + f (µ), G(x , µ) = γxM(µ) + g(µ),

with β, γ ∈ R , f ,g : P1(R)→ R , e.g., f ,g depend only on the
moments of µ .
There are two different solutions if

β ≤ 0, γ < 0,

By the L-L monotonicity result there is uniqueness if f = g ≡ 0 and

β > 0, γ ≥ 0.

If β < 0, γ < 0 F and G are not decreasing in M(µ), but an agent has a
negative cost, i.e., a reward, for having a position x with the same sign
as the average position M(m) of the whole population. Conversely, the
conditions for uniqueness express aversion to crowd.
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Explicit example of non-uniqueness

F (x , µ) = βxM(µ) + f (µ), G(x , µ) = γxM(µ) + g(µ),

with β, γ ∈ R , f ,g : P1(R)→ R , e.g., f ,g depend only on the
moments of µ .
There are two different solutions if

β ≤ 0, γ < 0,

By the L-L monotonicity result there is uniqueness if f = g ≡ 0 and

β > 0, γ ≥ 0.
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Existence of two solutions - 2

Theorem (H smooth and T > ε)
Same assumptions as previous Thm., BUT, for some δ, ε > 0,

H(p) = |p|, for |p| ≥ δ

∂G
∂x

(x , µ)

{
≤ −δ if M(µ) ≥ ε,
≥ δ if M(µ) ≤ −ε,

=⇒ for T ≥ ε ∃ solutions (v ,m) , (v̄ , m̄) with

vx (t , x) ≤ −δ, v̄x (t , x) ≥ δ for all 0 < t < T .

Example

H(p) := max
|γ|≤1

{
−pγ +

1
2
δ(1− γ2)

}
=

{
p2

2δ + δ
2 , if |p| ≤ δ,

|p|, if |p| ≥ δ,
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Idea of proof

 −vt + |vx | = σ2(x)
2 vxx + F (x ,m(t , ·)), v(T , x) = G(x ,M(m(T ))),

mt − (sign(vx )m)x =
(
σ2(x)

2 m
)

xx
, m(0, x) = ν(x).

Ansatz: sign(vx ) = −1 and m solves

mt + mx =

(
σ2(x)

2
m
)

xx
, m(0, x) = ν(x).

Then m is the law of the process

X (t) = X (0) + t +

∫ t

0
σ(X (s))dW (s)

with X (0) ∼ ν , so M(m(t)) = E[X (t)] = M(ν) + t= t > 0 ∀t .

(E-) −vt − vx =
σ2(x)

2
vxx + F (x ,m), v(T , x) = G(x ,m(T )).
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Then w = vx satifies

−wt−wx − σσxwx −
σ2

2
wxx =

∂F
∂x

(x ,m) ≤ 0

w(T , x) =
∂G
∂x

(x ,m(T )) ≤ 0 and not ≡ 0,

Similarly we can build a solution with sign(v̄x ) = 1 and m̄ solving

m̄t − m̄x =
σ2(x)

2
m̄xx , m̄(0, x) = ν(x),

so that M(m̄(t , ·)) = −t < 0 and ∂F
∂x (x , m̄(t , ·)), ∂G

∂x (x , m̄(T )) ≥ 0.
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Other examples of non-uniqueness in finite horizon
MFGs

For periodic boundary conditions:

A. Briani, P. Cardaliaguet 2016: for a potential MFG

M. Cirant, D. Tonon 2017: for a focusing MFG

M. Cirant 2018: bifurcation of periodic solutions from stationary
one.
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Neumann boundary conditions

For Ω bounded and smooth,



−∂tv + H(x ,Dv) = ∆v + F (x ,m(t , ·)) in (0,T )× Ω,

v(T , x) = G(x ,m(T , ·)), ∂nv = 0 on ∂Ω× (0,T ),

∂tm − div(DpH(x ,Dv)m) = ∆m in (0,T )× Ω,

m(0, x) = ν(x), ∂nm + mDpH(x ,Du) · n = 0 on ∂Ω× (0,T )
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Theorem [M.B. - M. Cirant]: uniqueness for small data

Assume H ∈ C(Ω× Rd ), C2 in p, ν ∈ P ∩ L∞(Ω),

‖F (·, µ)− F (·, µ̄)‖2 ≤ LF‖µ− µ̄‖2,

‖DG(·, µ)− DG(·, µ̄)‖2 ≤ LG(‖µ− µ̄‖2
(v ,m), (v̄ , m̄) two classical solutions and

|DpH(x ,Dv)|, |DpH(x ,Dv̄)| ≤ C1,

|D2
pH(x ,Dv)|, |D2

pH(x ,Dv̄)| ≤ C2.

Then ∃ T̄ = T̄ (d ,LF ,LG, ‖ν‖∞,C1,C2) > 0 such that ∀T < T̄ ,

v(·, t) = v̄(·, t) and m(·, t) = m̄(·, t) ∀ t ∈ [0,T ].

The same conclusion holds for all T > 0 if LF and LG are small, or C2
is small.
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Remarks

1. A crucial estimate for the proof is, for some r > 1,C > 0,

‖m‖∞ ≤ C[1 + ‖ν‖∞ + (1 + T )‖DpH(·,Dv)‖∞]r .

2. The bound T̄ on the horizon length may depend on the two
solution via C1 and C2.
It depends only on the data if we have an a-priori bound on
Dv ,Dv̄ .
This can be got from classical parabolic regularity under, e.g., the
additional assumptions

I F ,G bounded, respectively, in C1,β(Ω),C2,β(Ω) uniformly w.r.t.
m ∈ P(Ω) (regularizing costs)

I H ∈ C1(Ω× Rd ) with at most quadratic growth

|H(x ,p))| ≤ C0(1 + |p|2), |DpH(x ,p)|(1 + |p|) ≤ C0(1 + |p|2).
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Theorem [Y. Achdou - M.B. - M. Cirant]: existence

Assume
F ,G continuous in Ω× P(Ω) with the Kantorovich distance,
F ,G regularizing, as in Rmk. 2,
H ∈ C1(Ω× Rd ) with at most quadratic growth, as in Rmk. 2,
ν ∈ C2,β(Ω).
Compatibility conditions of data at the boundary:
∀ x ∈ ∂Ω, µ ∈ P(Ω)), u with ∂nu(x) = 0

∂nG (x , µ)(x) = 0, ∂nν(x) + ν DpH(x ,Du(x)) · n = 0.

Then ∀ T > 0 there exists a classical solution of the MFG system
with Neumann conditions.
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Robust MFG with Neumann conditions

For the stochastic system with control αs and disturbance β
d-dimensional

dXs = [f (Xs) + g(Xs)αs + τ(Xs)βs] ds + dWs,

with g and τ scalar C1 functions, f ∈ C1, consider the trajectories that
are reflected at the boundary of Ω (Skorokhod problem): this leads to
Neumann conditions for the H-J-Isaacs equation.
The functional that α minimizes and β maximizes is

E

[∫ T

0

(
F (Xs,m(s, ·)) +

|αs|2

2
− δ |βs|2

2

)
ds + G(XT ,m(T , ·))

]

This leads to the Hamiltonian

H(x ,p) = −f (x) · p + g2(x)
|p|2

2
−τ2(x)

|p|2

2δ
.
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Corollary: well-posedness for robust MFG sysyem

Take

H(x ,p) = −f (x) · p + g2(x)
|p|2

2
−τ2(x)

|p|2

2δ
,

F ,G regularizing and "Lip in L2",
ν ∈ C2,β(Ω) satisfying the compatibility condition

∂nν(x)− ν(x)f (x) · n(x) = 0 ∀ x ∈ ∂Ω.

Then
for all T > 0 there is a classical solution of of the MFG system with
Neumann conditions,
there exists T > 0 such that for all T ∈ (0, T̄ ] such solution is
unique.
T < T̄ Lipschitz dependence on initial data

‖m(t , ·)− m̄(t , ·)‖22 ≤
CT

δ
‖ν − ν̄‖22
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MFG with several populations, Achdou - M. B. - Cirant

Motivation for 2 population: models of segregation phenomena in
urban settlements, inspired by the Nobel laureate T. Schelling:



−∂tvk + Hk (x ,Dvk ) = ∆vk + F k (x ,m1(t , ·),m2(t , ·)) in (0,T )× Ω,

vk (T , x) = Gk (x ,m1(T , ·),m2(T , ·)), ∂nvk = 0 on ∂Ω× (0,T ),

∂tmk − div(DpHk (x ,Dvk )mk ) = ∆mk in (0,T )× Ω, k = 1,2,

mk (0, x) = νk (x), ∂nmk + mkDpHk (x ,Duk ) · n = 0 on ∂Ω× (0,T )

Same existence - uniqueness result as for 1 population, under the
same structure conditions;
the monotonicity condition a la Lasry-Lions is very restrictive,
makes no sense for the segregation model.
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Remarks and perspectives

We have examples of non-uniqueness for 2 populations
The proof of uniqueness for small data is flexible: it can be used if
H(x ,p)− F (x ,m) is replaced by H(x ,p,m) smooth, and in
principle also for mean-field control (control of McKean-Vlasov
SDEs); a hard point is the L∞ estimate for m(t , ·).

Questions
The existence theory is not complete: results in all Rd and for
local cost F are known only for H convex (Lions, Caradliaguet;
Porretta 2016);
are there examples of non-uniqueness due only to the
non-convexity of H?
For 1st order MFG (no noise) the theory is completely open if H is
not convex (and not coercive).
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Thanks for your attention !
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