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Two-scale systems

Dynamical systems with two groups of variables evolving on different
time-scales (xs, yτ ), τ = s/ε, 0 < ε << 1, governed by ODEs

ẋs = f (xs, ys) xs ∈ Rn,

ẏs = 1
ε g(xs, ys) ys ∈ Rm,

or by Stochastic DEs

dxs = f (xs, ys) ds + σ(xs, ys) dWs

dys = 1
ε g(xs, ys) ds + 1√

ε
ν(xs, ys) dWs

Hope to simplify the model in the limit ε → 0:

a Singular Perturbation problem.
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The theory is classical for Ordinary Differential Equations, see
Levinson and Tychonov 1952, O’Malley’s book 1974, and has a large
literature also for systems with controls,

ẋs = f (xs, ys, αs)

ẏs = 1
ε g(xs, ys, αs),

αs a measurable control function taking values in a given set A, see
Kokotović - Khalil - O’Reilly book 1986 (deterministic case)
Bensoussan 1988, Kushner 1990 also stochastic case:

dxs = f (xs, ys, αs) ds + σ(xs, ys, αs) dWs

dys = 1
ε g(xs, ys, αs) ds + 1√

ε
ν(xs, ys, αs) dWs

Main motivation: reducing the dimension of the state space.

There are many different models in Physics, Engineering, Finance,....
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Example 1: Mechanical system with Large Damping

The large time behavior of

Ẍ = F (X , t)− Ẋ
ε

is described by x(s) := X (s/ε) that solves

ε2ẍ = F (x , s/ε)− ẋ .

In the autonomous case ( F = F (x) ) this writes

ẋs = ys

ẏs = F (xs)−ys

ε2 ,

The limit is the Quasi-Static approximation

ẋ = F (x).

F. Hoppensteadt, "Quasi-Static state analysis...", Courant L. N. 2010
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Example 2: Control systems with stable fast variables

In Example 1 the formal limit

ẋs = f (xs, ys), 0 = g(xs, ys)

is correct: it fits in the Reduced Order Method. For control system the
ROM gives in the limit the DIFFERENTIAL-ALGEBRAIC system

ẋs = f (xs, ys, αs), 0 = g(xs, ys, αs),

provided that (roughly speaking) the "fast subsystem" (with frozen x)

ẏτ = g(x , yτ , ατ )

has an equilibrium regime with an asymptotically stabilizing feedback,
see Kokotović - Khalil - O’Reilly book 1986.
Examples in Engineering: high gain feedback, cheap control,....
BUT, many other models do NOT have this stability property!
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Example 3: Control systems in oscillating media

The homogenization problem

ẋs = f
(

xs,
xs

ε
, αs

)
, J =

∫ t

0
l
(

xs,
xs

ε
, αs

)
ds + h

(
xt ,

xt

ε

)
by setting ys = xs/ε can be written as

ẋs = f (xs, ys, αs)

ẏs = 1
ε f (xs, ys, αs)

J =
∫ t

0 l (xs, ys, αs) ds + h (xt , yt)

that is a Singular Perturbation problem with g = f .
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Example 4: Financial models

The evolution of a stock S with stochastic volatility σ is

d log Ss = γ ds + σ(ys) dWs

dys = 1
ε (m − ys) + ν√

ε
dW̃s

see Fouque - Papanicolaou - Sircar, book 2000, for empirical data and
many examples.

Merton portfolio optimization problem with stochastic volatility:
invest βs in the stock Ss, 1− βs in a bond with interest rate r .
Then the wealth xs evolves as

dxs = (r + (γ − r)βs)xs ds + xsβs σ(ys) dWs

dys = 1
ε (m − ys) ds + ν√

ε
dW̃s

Problem: maximize the expected utility at time t , E [h(xt)], h increasing
concave function.
Martino Bardi (Università di Padova) Multiscale problems ENSTA, Paris, March 2011 8 / 29



Example 5: Control systems on thin structures

State constraint on the z variables

ẋs = f (xs, zs, αs)

żs = g(xs, zs, αs) |zs| ≤ ε,

by setting ys = zs/ε becomes

ẋs = f (xs, εys, αs)

ẏs = 1
ε g(xs, εys, αs) |ys| ≤ 1.

This can be used to justify models of optimal control on graphs or
networks.
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The H-J approach to Singular Perturbations

General control system with TWO controllers

dxs = f (xs, ys, αs, βs) ds + σ(xs, ys, αs, βs) dWs, xs ∈ Rn, αs ∈ A, βs ∈ B,

dys = 1
ε g(xs, ys, αs, βs) ds + 1√

ε
ν(xs, ys, αs, βs) dWs, ys ∈ Rm,

x0 = x , y0 = y

Cost-payoff functional (α minimizes, βs maximizes)

Jε(t , x , y , α, β) :=

∫ t

0
l(xs, ys, αs, βs) ds + h(xt , yt)

Lower value function, where Γ(t) are the nonanticipating strategies,
B(t) the open-loop controls

uε(t , x , y) := inf
α∈Γ(t)

sup
β∈B(t)

E [Jε(t , x , y , α[β], β)]
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H-J-Bellman-Isaacs equation for the SP problem

Dynamic Programming method:
in the deterministic case σ, ν ≡ 0, the value function solves

(CPε)


∂uε

∂t + H
(

x , y , Dxuε,
Dy uε

ε

)
= 0 in (0,+∞)× Rn × Rm,

uε(0, x , y) = h(x , y) in Rn × Rm,

H(x , y , p, q) = min
β∈B

max
α∈A

{−p · f (x , y , α, β)− q · g(x , y , α, β)− l(x , y , α, β)} ,

in the viscosity sense.
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In the stochastic case σ 6= 0 or ν 6= 0 the H-J-B-I equation is

∂uε

∂t
+ min

β∈B
max
α∈A

[
Lε

α,βuε − l(x , y , α, β)
]

= 0 in (0,+∞)× Rn × Rm,

Lε
α,β = infinitesimal generator of the process with constant controls α, β

it is of 2nd order involving also D2
xx , D2

yy/ε, D2
xy/

√
ε.

This H-J-B-I PDE is (degenerate) parabolic.

Again, uε is the unique viscosity solution of the Cauchy problem.
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Plan of the method:

1 pass to the limit as ε → 0 in the PDE
2 associate to the limit PDE a "limit control problem"

1 was developed in the papers

O. ALVAREZ - M. B. : SIAM J. Cont. ’01, Arch. Rat. Mech. Anal. ’03,
Memoir A.M.S. ’10;

O. A. - M. B. - C. MARCHI : J. D. E. ’07, ’08 (more than 2 scales)

under boundedness assumptions on the fast state variables,
and for unbounded but uncontrolled fast variables in

M. B. - A. CESARONI - L. MANCA : SIAM J. Financial Math. 2010

M. B. - A. CESARONI : European J. Control 2011

Methods are related to HOMOGENIZATION of H- J equations:

P.L.Lions- Papanicolaou- Varadhan 1986, L.C.Evans 1989, ...

Martino Bardi (Università di Padova) Multiscale problems ENSTA, Paris, March 2011 13 / 29



Plan of the method:

1 pass to the limit as ε → 0 in the PDE
2 associate to the limit PDE a "limit control problem"

1 was developed in the papers

O. ALVAREZ - M. B. : SIAM J. Cont. ’01, Arch. Rat. Mech. Anal. ’03,
Memoir A.M.S. ’10;

O. A. - M. B. - C. MARCHI : J. D. E. ’07, ’08 (more than 2 scales)

under boundedness assumptions on the fast state variables,
and for unbounded but uncontrolled fast variables in

M. B. - A. CESARONI - L. MANCA : SIAM J. Financial Math. 2010

M. B. - A. CESARONI : European J. Control 2011

Methods are related to HOMOGENIZATION of H- J equations:

P.L.Lions- Papanicolaou- Varadhan 1986, L.C.Evans 1989, ...

Martino Bardi (Università di Padova) Multiscale problems ENSTA, Paris, March 2011 13 / 29



Plan of the method:

1 pass to the limit as ε → 0 in the PDE
2 associate to the limit PDE a "limit control problem"

1 was developed in the papers

O. ALVAREZ - M. B. : SIAM J. Cont. ’01, Arch. Rat. Mech. Anal. ’03,
Memoir A.M.S. ’10;

O. A. - M. B. - C. MARCHI : J. D. E. ’07, ’08 (more than 2 scales)

under boundedness assumptions on the fast state variables,
and for unbounded but uncontrolled fast variables in

M. B. - A. CESARONI - L. MANCA : SIAM J. Financial Math. 2010

M. B. - A. CESARONI : European J. Control 2011

Methods are related to HOMOGENIZATION of H- J equations:

P.L.Lions- Papanicolaou- Varadhan 1986, L.C.Evans 1989, ...

Martino Bardi (Università di Padova) Multiscale problems ENSTA, Paris, March 2011 13 / 29



1 Search effective Hamiltonian H and effective initial data h s. t.

uε(t , x , y) → u(t , x) as ε → 0,

u solution of

(CP)

{
∂u
∂t + H

(
x , Dxu, D2

xxu
)

= 0 in (0,+∞)× Rn,

u(0, x) = h(x) in Rn

2 Intepret the effective Hamiltonian H as the Bellman-Isaacs
Hamiltonian for a new effective system

ẋs = f (xs, ηs, θs) xs ∈ Rn, ηs ∈ E(xs), θs ∈ Θ(xs)

and effective cost functional

J(t , x , η, θ) :=

∫ t

0
l(xs, ηs, θs) ds + h(xt).

This is a variational limit of the initial n + m-dimensional problem.
Step 2 is largely OPEN !
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Definition of H: deterministic case σ ≡ 0, ν ≡ 0

Consider the fast subsystem with frozen x and ε = 1

(FS) ẏτ = g(x , yτ , ατ , βτ ), y0 = y

and the family of value functions in Rm with parameters x , p ∈ Rn

w(t , y ; x , p) := inf
α∈Γ(t)

sup
β∈B(t)

∫ t

0
L(yτ , α[β]τ , βτ ; x , p) dτ,

L(y , α, β; x , p) := p · f (x , y , α, β) + l(x , y , α, β)

Say (FS) is ERGODIC if, for all x , p,

lim
t→+∞

w(t , y ; x , p)

t
= constant (in y ), uniformly in y

=: −H(x , p)
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Example: (FS) uncontrolled, i.e.

ẏτ = g(x , yτ ),

and ergodic in the classical sense with a UNIQUE INVARIANT
MEASURE µx . Then

−H(x , p) =

∫
Rm

min
α∈A

L(y , α; x , p) dµx(y).

NO explicit formula for H in general!

Definition of H in general non-deterministic case: fast subsystem

dyτ = g(x , yτ , ατ , βτ ) dτ + ν(x , yτ , ατ , βτ ) dWτ , y0 = y ,

L = trace
(
MσσT (x , y , α, β)

)
/2 + ... (M a n × n symmetric matrix)

w(t , y ; x , p, M) = inf
α

sup
β

E
[∫ t

0
Ldτ

]
, lim

t→+∞
w/t =: −H(x , p, M)
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Weak convergence theorem

Meta-Theorem

Fast subsystem (FS) ergodic =⇒

uε(t , x , y) → u(t , x) as ε → 0,

(in the sense of relaxed semilimits, or weak viscosity limits),
and u solves (in viscosity sense)

∂u
∂t

+ H
(

x , Dxu, D2
xxu

)
= 0

This is in fact a Theorem if the fast variables y live on the torus TM

(i.e., all data are Zm- periodic in y ), or in all RM but the process

dyτ = g(x , yτ ) dτ + ν(x , yτ ) dWτ

is an UN-controlled NON-degenerate diffusion.
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The effective initial data h

For the Fast Subsystem with frozen x

(FS) dyτ = g(x , yτ , ατ , βτ ) dτ + ν(x , yτ , ατ , βτ ) dWτ , y0 = y ,

consider now the value function

v(t , y ; x) := inf
α∈Γ(t)

sup
β∈B(t)

E [h(x , yt)]

Definition: (FS) is STABILIZING (to a constant) for the cost h if, ∀ x ,

lim
t→+∞

v(t , y ; x) = constant (in y ), uniformly in y =: h(x)

Convergence Theorem at t = 0

Fast subsystem (FS) stabilizing for the cost h =⇒

lim
t→0

lim
ε→0

uε(t , x , y) = h(x)

(in the sense of relaxed semilimits, or weak viscosity limits).
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Main convergence theorem

Corollary

Fast subsystem (FS) ERGODIC and STABILIZING =⇒

∃ H and h continuous, H degenerate elliptic, such that

uε(t , x , y) → u(t , x) as ε → 0, u solution of

(CP)


∂u
∂t + H

(
x , Dxu, D2

xxu
)

= 0 in (0,+∞)× Rn,

u(0, x) = h(x) in Rn.

If moreover, H is regular enough w.r.t. x , then (CP) has a unique
solution and

uε → u locally uniformly.

Martino Bardi (Università di Padova) Multiscale problems ENSTA, Paris, March 2011 19 / 29



Conclusion

The initial (n + m)-dimensional H-J-B-I equation is split into

two m-dimensional ergodic-type problems
(one for H and one for h),

a n-dimensional "effective" PDE

=⇒ we got the desired SEPARATION OF SCALES for the H-J-B-I
equation.

Martino Bardi (Università di Padova) Multiscale problems ENSTA, Paris, March 2011 20 / 29



Conclusion

The initial (n + m)-dimensional H-J-B-I equation is split into

two m-dimensional ergodic-type problems
(one for H and one for h),

a n-dimensional "effective" PDE

=⇒ we got the desired SEPARATION OF SCALES for the H-J-B-I
equation.

Martino Bardi (Università di Padova) Multiscale problems ENSTA, Paris, March 2011 20 / 29



The next steps

Main remaining questions:
1 when is (FS) ergodic and stabilizing ?

2 can we find effective dynamics f , σ, running cost l , and control
constraints E ,Θ associated to H ?

Some answers:
1 for bounded fast variables (related to homogenization):

uniformly nondegenerate fast subsystem (FS),
deterministic fast subsystem (FS) controllable by one player from
each point to any other point in a uniformly bounded time,
under nonresonance conditions on the torus;

for unbounded fast variables: uncontrolled diffusion processes
with a unique invariant measure;

2 several examples but no general recipe.
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The case of uncontrolled fast variables

dxs = f (xs, ys, αs, βs) ds + σ(xs, ys)dWs

dys = 1
ε g(xs, ys) ds + 1√

ε
ν(xs, ys) dWs,

Jε(t , x , y , α, β) :=
∫ t

0 l(xs, ys, αs, βs) ds + h(xt , yt)

Assume there exists a unique invariant measure µx of

(FS) dyτ = g(x , yτ ) dτ + ν(x , yτ ) dWτ ,

Denote 〈φ〉(x) :=
∫

φ(x , y)dµx(y). Then effective H and h are

h(x) = 〈h〉(x)

H(x , p, M) = 〈min
β∈B

max
α∈A

{
−trace(MσσT )/2− f · p − l

}
〉
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Corollary

For split systems and cost, i.e.,

f = f0(x , y) + f1(x , α, β), l = l0(x , y) + l1(x , α, β),

the linear averaging of the data is the correct limit, i.e.,

lim
ε→0

uε(t , x , y) = u(t , x) :=

inf
α∈Γ(t)

sup
β∈B(t)

E
[∫ t

0
〈l〉(xs, α[β]s, βs) ds + 〈h〉(xt)

]
,

dxs = 〈f 〉(xs, α[β]s, βs) ds + 〈σσT 〉1/2(xs) dWs

Proof: H(x , p, M) = −trace(M〈σσT 〉)/2 + minB maxA {−〈f 〉 · p − 〈l〉} .

A similar result was proved by Kushner (book, 1990) for a single
controller by probabilistic methods.
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In general, for system or cost NOT split,

H(x , p, M) = 〈min
B

max
A
{...}〉6= min

B
max

A
〈{...}〉

and the limit control problem is not obvious.
For some classical problems we derived the explicit form of the
effective control problem:

Merton portfolio optimization with stochastic volatility,

Ramsey model of optimal economic growth with (fast) random
parameters,

Vidale - Wolfe advertising model with random parameters,

advertising game in a duopoly with Lanchester dynamics and
random parameters.

Often they involve a nonlinear average of some parameter.
E.g., the limit of Merton problem is still a Merton problem with constant
volatility the harmonic average σ := 〈σ−2〉−1/2.
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We can give a general representation formula for the effective control
problem by enlarging the control set.
Assume for simplicity σ ≡ 0 (deterministic slow subsystem) and a
single controller (B singleton).
Define Ex := L1 ((Rm, µx); A) ⊃ A and for α̃ ∈ Ex

f (x , α̃) :=

∫
Rm

f (x , y , α̃(y)) dµx(y), l(x , α̃) :=

∫
Rm

l(x , y , α̃(y)) dµx(y).

Then

H(x , p) = 〈max
α∈A

{−f · p − l} 〉 = max
α̃∈Ex

{
−f (x , α̃) · p − l(x , α̃)

}
and the effective control problem is

ẋs = f (xs, α̃s), x0 = x , α̃s ∈ Exs

min J(t , x , α̃.) =
∫ t

0 l(xs, α̃s) ds + 〈h〉(xt).
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A one-dimensional homogenization problem

ẋs = g (xs) αs, J =

∫ t

0
l
(

xs,
xs

ε

)
ds+h

(
xt ,

xt

ε

)
, −1 ≤ αs ≤ 1, g > 0.

Here ẏs = 1
ε g(xs)αs depends on the control.

The value function uε(t , x) solves the H-J equation

∂uε

∂t
+ g(x)

∣∣∣∣∂uε

∂t

∣∣∣∣ = l
(

x ,
xs

ε

)
, uε(0, x) = h

(
x ,

xs

ε

)
.

For l(x , ·), h(x , ·) 1-periodic and min l(x , ·) = 0 the limit PDE is

∂u
∂t

+

(
g(x)

∣∣∣∣∂u
∂t

∣∣∣∣− 〈l〉(x)

)+

= 0, u(0, x) = min
y∈[0,1]

h (x , y) .

The effective control problem is

ẋs = g(xs)αs, J =

∫ t

0
|αs|〈l〉(xs)ds + min

y∈[0,1]
h(xt , y), −1 ≤ αs ≤ 1.
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ẋs = g(xs)αs, J =

∫ t

0
|αs|〈l〉(xs)ds + min

y∈[0,1]
h(xt , y), −1 ≤ αs ≤ 1.

Martino Bardi (Università di Padova) Multiscale problems ENSTA, Paris, March 2011 26 / 29



Homogenization of a 2-D differential game

ẋs = g1(xs, zs)αs, −1 ≤ αs ≤ 1, g1 > 0

żs = g2(xs, zs)βs, −1 ≤ βs ≤ 1, g2 > 0

Jε(t , x , z, α, β) :=
∫ t

0

[
l1

(
xs, zs,

xs
ε

)
+ l2

(
xs, zs,

zs
ε

)]
ds + h

(
xt , zt ,

xs
ε , zs

ε

)
min[0,1] l1(x , z, ·) = 0, max[0,1] l2(x , z, ·) = 0

and assume h has a saddle

min
ξ∈[0,1]

max
η∈[0,1]

h(x , z, ξ, η) = max
η∈[0,1]

min
ξ∈[0,1]

h(x , z, ξ, η) =: hS(x , z)

The limit differential game has the same system and controls, and the
effective cost-payoff

J =

∫ t

0
[|αs|〈l1〉(xs, zs) + |βs|〈l2〉(xs, zs)] ds + hS(xt , zt)

joint work with G.Terrone.
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Work in progress on homogenization of control systems and games:

the last two examples extend to n-dimensional systems provided
the oscillations are at 1-dimensional scale;

an "abstract" representation of some effective control problems
can be obtained by the limit occupational measures studied by
Artstein, Gaitsgory, Borkar,..., (joint work with Gabriele
TERRONE);

homogenization of deterministic differential games is wide open:
there are easy examples of non-convergence of the value
functions and only a few known cases of convergence (see also
Cardaliaguet ’09)
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Thanks for your attention !
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