Portfolio optimisation with Gaussian and non-Gaussian stochastic volatility

Martino Bardi

joint work with

Annalisa Cesaroni and Andrea Scotti

Department of Mathematics
University of Padua, Italy

Analysis and Geometry in Control Theory and its Applications
Rome, June 11th 2014
Financial models and Merton’s optimisation problem

Stochastic volatility, Gaussian or with jumps

Systems with random parameters and multiple scales

The Hamilton-Jacobi-Bellman approach to Singular Perturbations
 ▶ Tools
 ▶ Assumptions

Convergence results

Applications to financial models
Financial models and Merton’s optimisation problem

The evolution of the price of a stock S is described by

$$d \log S_s = \gamma ds + \sigma dW_s, \quad s = \text{time}, \quad W_s = \text{Wiener proc.},$$

whereas a riskless bond B evolves with

$$d \log B_s = r ds.$$

Invest u_s in the stock S_s, $1 - u_s$ in the bond B_s. Then the wealth x_s evolves as

$$d x_s = (1 - u_s)rx_s ds + u_s x_s (\gamma ds + \sigma dW_s)$$

$$= (r + (\gamma - r)u_s)x_s ds + x_s u_s \sigma dW_s$$

and want to maximize the expected utility at time $T > 0$ starting at $t < T$, so the value function is

$$V(t, x) = \sup_{u} E[g(x_T) | x_t = x]$$

for some utility g increasing and concave.
Financial models and Merton’s optimisation problem

The evolution of the price of a stock S is described by

$$d \log S_s = \gamma \, ds + \sigma \, dW_s, \quad s = \text{time}, \ W_s = \text{Wiener proc.},$$

whereas a riskless bond B evolves with

$$d \log B_s = r \, ds.$$

Invest u_s in the stock S_s, $1 - u_s$ in the bond B_s. Then the wealth x_s evolves as

$$d \ x_s = (1 - u_s) \ r x_s \, ds + u_s x_s (\gamma \, ds + \sigma \, dW_s)$$

$$= (r + (\gamma - r) u_s) x_s \, ds + x_s u_s \sigma \, dW_s$$

and want to maximize the expected utility at time $T > 0$ starting at $t < T$, so the value function is

$$V(t, x) = \sup_u E[g(x_T) | x_t = x]$$

for some utility g increasing and concave.
The HJB equation is

\[-\frac{\partial V}{\partial t} - rxV_x - \max_u \left\{ (\gamma - r)uxV_x + \frac{u^2x^2\sigma^2}{2} V_{xx} \right\} = 0\]

Assume the utility g has $g' > 0$ and $g'' < 0$. Then expect a value function strictly increasing and concave in x, i.e., $V_x^\epsilon > 0$, $V_{xx}^\epsilon < 0$.

If \max_u in HJB equation is attained in the interior of the constraint for u the equation becomes

\[-\frac{\partial V}{\partial t} - rxV_x + \frac{(\gamma - r)^2 V_x^2}{2\sigma^2 V_{xx}} = 0 \quad \text{in } (0, T) \times \mathbb{R}.

If $g(x) = ax^\delta/\delta$ with $a > 0$, $0 < \delta < 1$, a HARA function, the problem has the explicit solution

$$V(t, x) = a\frac{x^\delta}{\delta} e^{c(T-t)}, \quad c = \delta(r + \frac{(\gamma - r)^2}{4(1-\delta)\sigma}), \quad u^* = \frac{(\gamma - r)^2}{2(1-\delta)\sigma}.$$
The HJB equation is

\[-\frac{\partial V}{\partial t} - rxV_x - \max_u \left\{ (\gamma - r)uxV_x + \frac{u^2x^2\sigma^2}{2} V_{xx} \right\} = 0\]

Assume the utility \(g\) has \(g' > 0\) and \(g'' < 0\). Then expect a value function strictly increasing and concave in \(x\), i.e., \(V^e_x > 0\), \(V^e_{xx} < 0\). If \(\max_u\) in HJB equation is attained in the interior of the constraint for \(u\) the equation becomes

\[-\frac{\partial V}{\partial t} - rxV_x + \frac{(\gamma - r)^2 V_x^2}{2\sigma^2 V_{xx}} = 0 \quad \text{in} \ (0, T) \times \mathbb{R}.\]

If \(g(x) = ax^\delta/\delta\) with \(a > 0\), \(0 < \delta < 1\), a HARA function, the problem has the explicit solution

\[V(t, x) = a^\frac{\delta}{\delta} e^{c(T-t)}, \quad c = \delta(r + \frac{(\gamma - r)^2}{4(1 - \delta)\sigma}), \quad u^* = \frac{(\gamma - r)^2}{2(1 - \delta)\sigma}\]
Stochastic volatility

In reality the parameters of such models are not constants. In particular, the volatility σ is not a constant, it rather looks like an ergodic mean-reverting stochastic process, see next slide. Therefore it has been modeled as $\sigma = \sigma(y_s)$ with y_s either an Ornstein-Uhlenbeck diffusion process,

$$dy_s = -y_s \, ds + \tau \, d\tilde{W}_s$$

with \tilde{W}_s a Wiener process possibly correlated with W_s, Refs.: Hull-White 87, Heston 93, Fouque-Papanicolaou-Sircar 2000,... or by a non-Gaussian process

$$dy_s = -y_s \, ds + \tau \, dZ_s$$

where Z_s is a pure jump Lévy process with positive increments, Refs.: Barndorff-Nielsen and Shephard 2001.
Stochastic volatility

In reality the parameters of such models are not constants. In particular, the volatility σ is not a constant, it rather looks like an ergodic mean-reverting stochastic process, see next slide.

Therefore it has been modeled as $\sigma = \sigma(y_s)$ with y_s either an Ornstein-Uhlenbeck diffusion process,

$$dy_s = -y_s \, ds + \tau \, d\tilde{W}_s$$

with \tilde{W}_s a Wiener process possibly correlated with W_s, Refs.: Hull-White 87, Heston 93, Fouque-Papanicolaou-Sircar 2000,... or by a non-Gaussian process

$$dy_s = -y_s \, ds + \tau \, dZ_s$$

where Z_s is a pure jump Lévy process with positive increments, Refs.: Barndorff-Nielsen and Shephard 2001.
3.4 Scales in the Returns Process

Figure 3.7. 1996 S&P 500 returns computed from half-hourly data.
The diffusion model (Gaussian) was used for many papers in finance, see the refs. in the book by Fleming - Soner, 2nd ed., 2006, for Merton’s problem it was studied by Fleming - Hernandez 03.

The non-Gaussian model was used for option pricing (Nicolato - Venerdos 03, Hubalek - Sgarra 09, 11) and for portfolio optimisation by Benth - Karlsen - Reikvam 03.
Fast stochastic volatility

It is argued in the book

Fouque, Papanicolaou, Sircar: Derivatives in financial markets with stochastic volatility, 2000,

that the process y_s also evolves on a faster time scale than the stock prices: this models better the typical bursty behavior of volatility, see previous picture.

The equations for the evolution of a stock S with fast stochastic volatility σ proposed in [FPS] are Gaussian, with $\varepsilon > 0$,

\[
\begin{align*}
 d \log S_s &= \gamma \, ds + \sigma(y_s) \, dW_s \\
 dy_s &= -\frac{1}{\varepsilon} \, y_s + \frac{\tau}{\sqrt{\varepsilon}} \, d\tilde{W}_s
\end{align*}
\]

and they study the asymptotics $\varepsilon \to 0$ for many option pricing problems. We’ll study also the non-Gaussian volatility

\[
 dy_s = -\frac{1}{\varepsilon} \, y_s \, ds + dZ_{s/\varepsilon}
\]
Fast stochastic volatility

It is argued in the book

Fouque, Papanicolaou, Sircar: Derivatives in financial markets with stochastic volatility, 2000,

that the process y_s also evolves on a faster time scale than the stock prices: this models better the typical bursty behavior of volatility, see previous picture.

The equations for the evolution of a stock S with fast stochastic volatility σ proposed in [FPS] are Gaussian, with $\varepsilon > 0$,

\[
d \log S_s = \gamma \, ds + \sigma(y_s) \, dW_s
\]

\[
dy_s = -\frac{1}{\varepsilon} y_s + \frac{\tau}{\sqrt{\varepsilon}} \, d\tilde{W}_s
\]

and they study the asymptotics $\varepsilon \to 0$ for many option pricing problems. We’ll study also the non-Gaussian volatility

\[
dy_s = -\frac{1}{\varepsilon} y_s \, ds + dZ_{s/\varepsilon}
\]
Fast stochastic volatility

It is argued in the book
Fouque, Papanicolaou, Sircar: Derivatives in financial markets with stochastic volatility, 2000,
that the process y_s also evolves on a faster time scale than the stock prices: this models better the typical bursty behavior of volatility, see previous picture.
The equations for the evolution of a stock S with fast stochastic volatility σ proposed in [FPS] are Gaussian, with $\varepsilon > 0$,

$$\begin{align*}
 d \log S_s &= \gamma \, ds + \sigma(y_s) \, dW_s \\
 dy_s &= -\frac{1}{\varepsilon} y_s + \frac{\tau}{\sqrt{\varepsilon}} \, d\tilde{W}_s
\end{align*}$$

and they study the asymptotics $\varepsilon \to 0$ for many option pricing problems. We’ll study also the non-Gaussian volatility

$$dy_s = -\frac{1}{\varepsilon} y_s - ds + dZ_{s/\varepsilon}$$
Two-scale control systems with random parameters

We consider control systems either of the form (Gaussian volatility)

\[dx_s = f(x_s, y_s, u_s) \, ds + \sigma(x_s, y_s, u_s) \, dW_s \quad x_s \in \mathbb{R}^n, \]
\[dy_s = \frac{1}{\varepsilon} b(x_s, y_s) \, ds + \frac{1}{\sqrt{\varepsilon}} \tau(x_s, y_s) \, dW_s \quad y_s \in \mathbb{R}^m, \]

or of the form (Jump volatility)

\[dx_s = f(x_s, y_{s-}, u_s) \, ds + \sigma(x_s, y_{s-}, u_s) \, dW_s \quad x_s \in \mathbb{R}^n, \]
\[dy_s = -\frac{1}{\varepsilon} y_{s-} \, ds + dZ_{s/\varepsilon} \quad y_s \in \mathbb{R} \]

Basic assumptions

- \(f, \sigma, b, \tau \) Lipschitz in \((x, y)\) (unif. in \(u\)) with linear growth
- \(Z \). 1-dim. pure jump Lévy process, independent of \(W \).
 + conditions (later).
Two-scale control systems with random parameters

We consider control systems either of the form (Gaussian volatility)

\[dx_s = f(x_s, y_s, u_s) \, ds + \sigma(x_s, y_s, u_s) \, dW_s \quad x_s \in \mathbb{R}^n,\]
\[dy_s = \frac{1}{\varepsilon} b(x_s, y_s) \, ds + \frac{1}{\sqrt{\varepsilon}} \tau(x_s, y_s) \, dW_s \quad y_s \in \mathbb{R}^m,\]

or of the form (Jump volatility)

\[dx_s = f(x_s, y_{s-}, u_s) \, ds + \sigma(x_s, y_{s-}, u_s) \, dW_s \quad x_s \in \mathbb{R}^n,\]
\[dy_s = -\frac{1}{\varepsilon} y_{s-} \, ds + dZ_{s/\varepsilon} \quad y_s \in \mathbb{R}\]

Basic assumptions

- \(f, \sigma, b, \tau \) Lipschitz in \((x, y)\) (unif. in \(u\)) with linear growth
- \(Z \). 1-dim. pure jump Lévy process, independent of \(W \),
 + conditions (later).
Value function and HJB

\[
V^\varepsilon(t, x, y) := \sup_u E[e^{c(t-T)}g(x_T) \mid x_t = x, y_t = y]
\]

with \(g : \mathbb{R}^n \rightarrow \mathbb{R} \) continuous, \(g(x) \leq K(1 + |x|^2) \), \(c \geq 0 \).

1. Gaussian case.
The value \(V^\varepsilon \) solves the (backward) HJB equation in \((0, T) \times \mathbb{R}^n \times \mathbb{R}^m\)

\[
-\frac{\partial V^\varepsilon}{\partial t} + \mathcal{H} \left(x, y, D_x V^\varepsilon, D_{xx}^2 V^\varepsilon, \frac{1}{\sqrt{\varepsilon}} D_{xy}^2 V^\varepsilon \right) - \frac{1}{\varepsilon} \mathcal{L} V^\varepsilon + c V^\varepsilon = 0
\]

\[
\mathcal{H} (x, y, p, M, Y) := \min_{u \in U} \left\{ -\frac{1}{2} \text{tr}(\sigma \sigma^T M) - f \cdot p - \text{tr}(\sigma \tau Y^T) \right\}
\]

\[
\mathcal{L} := \text{tr}(\tau \tau^T D_{yy}^2) + b \cdot D_y = \text{generator of } dy_s = b \, ds + \tau \, dW_s,
\]

and the terminal condition \(V^\varepsilon(T, x, y) = g(x) \).
Value function and HJB

\[V^{\varepsilon}(t, x, y) := \sup_u E[e^{c(t-T)}g(x_T) \mid x_t = x, y_t = y] \]

with \(g : \mathbb{R}^n \to \mathbb{R} \) continuous, \(g(x) \leq K(1 + |x|^2), \quad c \geq 0 \).

1. Gaussian case.
The value \(V^{\varepsilon} \) solves the (backward) HJB equation in \((0, T) \times \mathbb{R}^n \times \mathbb{R}^m\)

\[-\frac{\partial V^{\varepsilon}}{\partial t} + \mathcal{H} \left(x, y, D_x V^{\varepsilon}, D_{xx}^2 V^{\varepsilon}, \frac{1}{\sqrt{\varepsilon}} D_{xy}^2 V^{\varepsilon} \right) - \frac{1}{\varepsilon} \mathcal{L} V^{\varepsilon} + c V^{\varepsilon} = 0\]

\[\mathcal{H} (x, y, p, M, Y) := \min_{u \in \mathcal{U}} \left\{ -\frac{1}{2} \text{tr}(\sigma \sigma^T M) - f \cdot p - \text{tr}(\sigma \tau Y^T) \right\} \]

\[\mathcal{L} := \text{tr}(\tau \tau^T D_{yy}^2) + b \cdot D_y = \text{generator of } dy_s = b \, ds + \tau \, dW_s, \]

and the terminal condition \(V^{\varepsilon}(T, x, y) = g(x) \).
2. Non-Gaussian case.

The value V^ε solves the **integro-differential** HJB equation in $(0, T) \times \mathbb{R}^n \times \mathbb{R}$

$$- \frac{\partial V^\varepsilon}{\partial t} + \mathcal{H} \left(x, y, D_x V^\varepsilon, D_{xx}^2 V^\varepsilon, 0 \right) - \frac{1}{\varepsilon} \mathcal{L}[y, V^\varepsilon] + c V^\varepsilon = 0,$$

$$\mathcal{L}[y, v] := -yv_y(y) + \int_0^{+\infty} (v(z + y) - v(y) - v_y(y)z1_{z \leq 1})d\nu(z)$$

is the **generator** of the unscaled volatility process $dy_s = -y_s ds + dZ_s$,

ν is the Lévy measure associated to the jump process Z.

$$\nu(B) = E(\#\{s \in [0, 1], Z_s - Z_{s^-} \neq 0, Z_s - Z_{s^-} \in B\})$$

$=$ **expected number of jumps of a certain height in a unit-time interval.**
2. Non-Gaussian case.

The value V^ε solves the integro-differential HJB equation in $(0, T) \times \mathbb{R}^n \times \mathbb{R}$

$$-\frac{\partial V^\varepsilon}{\partial t} + \mathcal{H} \left(x, y, D_x V^\varepsilon, D_{xx}^2 V^\varepsilon, 0 \right) - \frac{1}{\varepsilon} \mathcal{L}[y, V^\varepsilon] + cV^\varepsilon = 0,$$

$$\mathcal{L}[y, \nu] := -y\nu_y(y) + \int_0^{+\infty} \left(\nu(z + y) - \nu(y) - \nu(y)z1_{z \leq 1} \right) d\nu(z)$$

is the generator of the unscaled volatility process $dy_s = -y_s^- ds + dZ_s$, ν is the Lévy measure associated to the jump process Z. :

$$\nu(B) = E(\#\{s \in [0, 1], Z_s - Z_{s^-} \neq 0, Z_s - Z_{s^-} \in B\})$$

$$= \text{expected number of jumps of a certain height in a unit-time interval.}$$
Search an *effective Hamiltonian* \overline{H} such that

$$V^\varepsilon(t, x, y) \to V(t, x) \quad \text{as} \quad \varepsilon \to 0,$$

V solution of

$$\begin{cases}
- \frac{\partial V}{\partial t} + \overline{H}(x, D_x V, D_{xx}^2 V) + cV = 0 & \text{in} \ (0, T) \times \mathbb{R}^n, \\
V(T, x) = g(x) \end{cases}$$

(\text{CP})

Then, if possible, interpret the effective Hamiltonian \overline{H} as the Bellman Hamiltonian for a new *effective optimal control problem* in \mathbb{R}^n, which is therefore a variational limit of the initial $n + m$-dimensional problem.
Search an effective Hamiltonian \overline{H} such that

$$V^\varepsilon(t, x, y) \to V(t, x) \quad \text{as} \ \varepsilon \to 0,$$

V solution of

$$\begin{cases}
-\frac{\partial V}{\partial t} + \overline{H}(x, D_x V, D_{xx}^2 V) + cV = 0 & \text{in } (0, T) \times \mathbb{R}^n, \\
V(T, x) = g(x)
\end{cases}$$

Then, if possible, interpret the effective Hamiltonian \overline{H} as the Bellman Hamiltonian for a new effective optimal control problem in \mathbb{R}^n, which is therefore a variational limit of the initial $n + m$-dimensional problem.
1. Ergodicity of the unscaled volatility process, or fast subsystem, i.e., of

\[dy_s = b(x, y_s) \, ds + \tau(x, y_s) \, dW_s, \quad x \text{ frozen,} \]

in the \textbf{Gaussian} case,

\[dy_s = -y_s \, ds + dZ_s, \]

in the \textbf{non-Gaussian} case.

Assume conditions such that this process has a unique invariant probability measure \(\mu_x \) and it is \textbf{uniformly ergodic}.

By solving an auxiliary (linear) PDE called \textbf{cell problem} we find that the candidate effective Hamiltonian is

\[
\overline{H}(x, p, M) = \int_{\mathbb{R}^m} H(x, y, p, M) \, d\mu_x(y).
\]
1. Ergodicity of the unscaled volatility process, or fast subsystem, i.e., of

\[dy_s = b(x, y_s) \, ds + \tau(x, y_s) \, dW_s, \quad x \text{ frozen}, \quad \text{in the Gaussian case}, \]

\[dy_s = -y_s \, ds + dZ_s, \quad \text{in the non-Gaussian case}. \]

Assume conditions such that this process has a unique invariant probability measure \(\mu_x \) and it is uniformly ergodic.

By solving an auxiliary (linear) PDE called cell problem we find that the candidate effective Hamiltonian is

\[\overline{H}(x, p, M) = \int_{\mathbb{R}^m} H(x, y, p, M) \, d\mu_x(y). \]
2. The generator \mathcal{L} has the Liouville property (based on the Strong Maximum Principle), i.e.

any bounded sub- or supersolution of $-\mathcal{L}[y, v] = 0$ is constant.

Then the relaxed semilimits

$$\underline{V}(t, x, y) := \liminf_{\varepsilon \to 0, t' \to t, x' \to x, y' \to y} V^\varepsilon(t', x', y'),$$

$$\overline{V}(t, x, y) := \limsup \text{ of the same, do not depend on } y.$$

3. Perturbed test function method, evolving from Evans (periodic homogenisation) and Alvarez-M.B. (singular perturbations with bounded fast variables), allows to prove that

$\underline{V}(t, x)$ is supersol., $\overline{V}(t, x)$ is subsol. of limit PDE in (CP).
2. The generator \mathcal{L} has the Liouville property (based on the Strong Maximum Principle), i.e.

any bounded sub- or supersolution of $-\mathcal{L}[y, v] = 0$ is constant.

Then the relaxed semilimits

$$V(t, x, y) := \liminf_{\varepsilon \to 0, t' \to t, x' \to x, y' \to y} V^\varepsilon(t', x', y'),$$

$$\overline{V}(t, x, y) := \limsup \text{ of the same, do not depend on } y.$$

3. Perturbed test function method, evolving from Evans (periodic homogenisation) and Alvarez-M.B. (singular perturbations with bounded fast variables), allows to prove that

$V(t, x)$ is supersol., $\overline{V}(t, x)$ is subsol. of limit PDE in (CP).
2. The generator \mathcal{L} has the Liouville property (based on the Strong Maximum Principle), i.e.

any bounded sub- or supersolution of $-\mathcal{L}[y, v] = 0$ is constant.

Then the relaxed semilimits

$$\underline{V}(t, x, y) := \lim_{\varepsilon \to 0, t' \to t, x' \to x, y' \to y} \inf \ V^\varepsilon(t', x', y'),$$
$$\overline{V}(t, x, y) := \lim_{\varepsilon \to 0, t' \to t, x' \to x, y' \to y} \sup \ V^\varepsilon(t', x', y'),$$

$\overline{V}(t, x, y)$:= lim sup of the same, do not depend on y.

3. Perturbed test function method, evolving from Evans (periodic homogenisation) and Alvarez-M.B. (singular perturbations with bounded fast variables), allows to prove that

$\underline{V}(t, x)$ is supersol., $\overline{V}(t, x)$ is subsol. of limit PDE in (CP).
4. **Comparison principle**
between a subsolution and a supersolution of the Cauchy problem (CP) satisfying
\[|V(t, x)| \leq C(1 + |x|^2), \]
see Da Lio - Ley 2006. It gives

- uniqueness of solution \(V \) of (CP)
- \(V(t, x) \geq \overline{V}(t, x) \), then \(V = \overline{V} = V \) and, as \(\varepsilon \to 0 \),
 \[V^\varepsilon(t, x, y) \to V(t, x) \text{ locally uniformly}. \]
Assumptions: 1. Gaussian case

The generator $\mathcal{L} = \text{tr}(\tau \tau^T D^2_{yy}) + b \cdot D_y$ of the volatility process satisfies

Ellipticity: $\exists \Lambda(y) > 0$ s.t. $\forall x \quad \tau(x, y) \tau^T(x, y) \geq \Lambda(y)I$

Lyapunov condition: $\exists w \in C(\mathbb{R}^m), \quad k > 0, \quad R_0 > 0$ s.t.

$$-\mathcal{L}w \geq k \quad \text{for } |y| > R_0, \quad \forall x, \quad w(y) \to +\infty \quad \text{as } |y| \to +\infty.$$

Example: Ornstein-Uhlenbeck process
$$dy_s = -y_s ds + \nu(x) dW_s,$$
ν bounded, by choosing as Lyapunov function $w(y) = |y|^2$.

Then, $\forall x \in \mathbb{R}^n$ frozen, the unscaled volatility process is uniformly ergodic and \mathcal{L} has the Liouville property.
Assumptions: 1. Gaussian case

The generator $\mathcal{L} = \text{tr}(\tau \tau^T D_y^2) + b \cdot D_y$ of the volatility process satisfies

Ellipticity: \quad \exists \Lambda(y) > 0 \text{ s.t. } \forall x \quad \tau(x, y) \tau^T(x, y) \geq \Lambda(y)I

Lyapunov condition: \quad \exists w \in C(\mathbb{R}^m), \quad k > 0, \quad R_0 > 0 \text{ s.t.}

$$- \mathcal{L}w \geq k \quad \text{for } |y| > R_0, \quad \forall x, \quad w(y) \to +\infty \quad \text{as } |y| \to +\infty.$$

Example: Ornstein-Uhlenbeck process \quad \text{dy}_s = -y_s \, ds + \nu(x) \, dW_s, \quad \nu \text{ bounded, by choosing as Lyapunov function } w(y) = |y|^2.

Then, $\forall x \in \mathbb{R}^n$ frozen, the unscaled volatility process is uniformly ergodic and \mathcal{L} has the Liouville property.
Assumptions: 1. Gaussian case

The generator $\mathcal{L} = \text{tr}(\tau \tau^T D_y^2) + b \cdot D_y$ of the volatility process satisfies

Ellipticity: $\exists \Lambda(y) > 0 \text{ s.t. } \forall x \quad \tau(x, y) \tau^T(x, y) \geq \Lambda(y) I$

Lyapunov condition: $\exists w \in C(\mathbb{R}^m), \ k > 0, \ R_0 > 0 \text{ s.t.}$

$$-\mathcal{L}w \geq k \text{ for } |y| > R_0, \ \forall x, \quad w(y) \to +\infty \text{ as } |y| \to +\infty.$$

Example: Ornstein-Uhlenbeck process $dy_s = -y_s ds + \nu(x) dW_s$, ν bounded, by choosing as Lyapunov function $w(y) = |y|^2$.

Then, $\forall x \in \mathbb{R}^n$ frozen, the unscaled volatility process is uniformly ergodic and \mathcal{L} has the Liouville property.
Assumptions: 1. Gaussian case

The generator $\mathcal{L} = \text{tr}(\tau \tau^T D_{yy}^2) + b \cdot D_y$ of the volatility process satisfies

Ellipticity: $\exists \Lambda(y) > 0$ s.t. $\forall x \quad \tau(x, y)\tau^T(x, y) \geq \Lambda(y)I$

Lyapunov condition: $\exists w \in C(\mathbb{R}^m), \ k > 0, \ R_0 > 0$ s.t.

$$-\mathcal{L}w \geq k \ for \ |y| > R_0, \ \forall x, \quad w(y) \to +\infty \ as \ |y| \to +\infty.$$

Example: Ornstein-Uhlenbeck process $dy_s = -y_s ds + \nu(x)dW_s, \ \nu$ bounded, by choosing as Lyapunov function $w(y) = |y|^2$.

Then, $\forall x \in \mathbb{R}^n$ frozen, the unscaled volatility process is uniformly ergodic and \mathcal{L} has the Liouville property.
Assumptions: 2. Non-Gaussian case

The Lévy measure ν of the jump process Z satisfies

- $\exists C > 0$, $0 < p < 2$, $0 < \delta \leq 1$: $\int_{|z| \leq \delta} |z|^2 \nu(dz) \geq C \delta^{2-p}$
- $\exists q > 0$: $\int_{|z| > 1} |z|^q \nu(dz) < +\infty$.

Then the unscaled volatility $dy_s = -y_s ds + dZ_s$ is uniformly ergodic (Kulik 2009). If, moreover,

- either $p > 1$,
- or $0 \in \text{int supp}(\nu)$,

then the integro-differential generator \mathcal{L} of the process y_s has the Liouville property.

Examples: α-stable Lévy processes

- $\nu(dz) = |z|^{-1-\alpha}dz$, $0 < \alpha < 2$, $\mathcal{L} = (-\Delta)^{\alpha/2}$ fractional Lapl.
- $\nu(dz) = 1_{\{z \geq 0\}}(z)|z|^{-1-\alpha}dz$, $1 < \alpha < 2$, no negative jumps.
Assumptions: 2. Non-Gaussian case

The Lévy measure ν of the jump process Z_s satisfies
\[\exists C > 0, 0 < p < 2, 0 < \delta \leq 1 : \int_{|z| \leq \delta} |z|^2 \nu(dz) \geq C \delta^{2-p}\]
\[\exists q > 0 : \int_{|z| > 1} |z|^q \nu(dz) < +\infty.\]

Then the unscaled volatility $dy_s = -y_s - ds + dZ_s$ is uniformly ergodic (Kulik 2009). If, moreover,
- either $p > 1$,
- or $0 \in \text{int} \ \text{supp}(\nu),$

then the integro-differential generator \mathcal{L} of the process y_s has the Liouville property.

Examples: α-stable Lévy processes
\[\nu(dz) = |z|^{-1-\alpha} dz, \ 0 < \alpha < 2, \ \mathcal{L} = \left(-\Delta\right)^{\alpha/2} \text{ fractional Lapl.}\]
\[\nu(dz) = 1_{\{z \geq 0\}}(z)|z|^{-1-\alpha} dz, \ 1 < \alpha < 2, \ \text{no negative jumps}.\]
Assumptions: 2. Non-Gaussian case

The Lévy measure ν of the jump process Z satisfies

- $\exists C > 0, 0 < p < 2, 0 < \delta \leq 1 : \int_{|z|\leq\delta} |z|^2\nu(dz) \geq C \delta^{2-p}$
- $\exists q > 0 : \int_{|z|>1} |z|^q\nu(dz) < +\infty$.

Then the unscaled volatility $dy_s = -y_s ds + dZ_s$ is uniformly ergodic (Kulik 2009). If, moreover,

- either $p > 1$,
- or $0 \in \text{int } \text{supp}(\nu)$,

then the integro-differential generator \mathcal{L} of the process y has the Liouville property.

Examples: α-stable Lévy processes

- $\nu(dz) = |z|^{-1-\alpha}dz, \ 0 < \alpha < 2, \ \mathcal{L} = (-\Delta)^{\alpha/2}$ fractional Lapl.
- $\nu(dz) = 1_{\{z\geq0\}}(z)|z|^{-1-\alpha}dz, \ 1 < \alpha < 2$, no negative jumps.
Convergence Theorems

\[\lim_{\varepsilon \to 0} V^\varepsilon(t, x, y) = V(t, x) \] locally uniformly,

\[V \text{ solving} \]

\[-\frac{\partial V}{\partial t} + \int_{\mathbb{R}^m} \mathcal{H} \left(x, y, D_x u, D^2_{xx} u, 0 \right) d\mu_x(y) = 0 \] in \((0, T) \times \mathbb{R}^n\)

with \(V(T, x) = g(x),\) if

- Gaussian volatility case with \(b, \tau\) independent of \(x\) [M.B. - Cesaroni - Manca, SIAM J. Financial Math. 2010],
- Gaussian volatility case with \(b, \tau \in C^{1, \alpha}\) with bounded derivatives [M.B. - Cesaroni, Eur. J. Control 2011],
- Non-Gaussian volatility case [M.B. - Cesaroni - Scotti 2014].
Convergence Theorems

\[\lim_{{\varepsilon \to 0}} V^\varepsilon(t, x, y) = V(t, x) \quad \text{locally uniformly,} \]

\(V \) solving

\[-\frac{\partial V}{\partial t} + \int_{\mathbb{R}^m} \mathcal{H} \left(x, y, D_x u, D_{xx}^2 u, 0 \right) d\mu_x(y) = 0 \quad \text{in} \ (0, T) \times \mathbb{R}^n \]

with \(V(T, x) = g(x) \), if

- Gaussian volatility case with \(b, \tau \) independent of \(x \) [M.B. - Cesaroni - Manca, SIAM J. Financial Math. 2010],
- Gaussian volatility case with \(b, \tau \in C^{1,\alpha} \) with bounded derivatives [M.B. - Cesaroni, Eur. J. Control 2011],
- Non-Gaussian volatility case [M.B. - Cesaroni - Scotti 2014].
Merton’s problem with stochastic volatility

Now the wealth x_s evolves with

$$d x_s = \left(r + (\gamma - r) u_s \right) x_s \, ds + x_s u_s \sigma(y_s) \, dW_s, \quad x_t = x,$$

and y_s is either Gaussian

$$dy_s = \frac{1}{\varepsilon} b(y_s) \, ds + \frac{1}{\sqrt{\varepsilon}} \tau(y_s) \, d\tilde{W}_s \quad y_t = y,$$

with $\rho = \text{possible correlation of } W_s \text{ and } \tilde{W}_s,$

or with jumps

$$dy_s = -\frac{1}{\varepsilon} y_s - ds + dZ_{s/\varepsilon} \quad y_t = y.$$
Merton’s problem with stochastic volatility

Now the wealth x_s evolves with

$$d x_s = (r + (\gamma - r) u_s) x_s \, ds + x_s u_s \sigma(y_s) \, dW_s, \quad x_t = x,$$

and y_s is either Gaussian

$$dy_s = \frac{1}{\varepsilon} b(y_s) \, ds + \frac{1}{\sqrt{\varepsilon}} \tau(y_s) \, d\tilde{W}_s \quad y_t = y,$$

with $\rho = \rho$ possible correlation of W_s and \tilde{W}_s,

or with jumps

$$dy_s = -\frac{1}{\varepsilon} y_s^{-} \, ds + dZ_{s/\varepsilon} \quad y_t = y.$$
Then \(V^\varepsilon(t, x, y) := \sup_u E[g(x_T)] \) solves
\[
- \frac{\partial V^\varepsilon}{\partial t} - rxV_x^\varepsilon + \frac{[(\gamma - r)V_x^\varepsilon]^2}{\sigma^2(y)2V_{xx}^\varepsilon} = \frac{1}{\varepsilon} \mathcal{L}[y, V^\varepsilon]
\]

Rmk.: in the Gaussian case, if \(\rho \neq 0 \) there is also a term \(+\frac{\chi \rho \sigma \nu}{\sqrt{\varepsilon}} V_{xy}^\varepsilon \) in the \([\ldots]^2\).

By the Theorem, \(V^\varepsilon(t, x, y) \rightarrow V(t, x) \) as \(\varepsilon \rightarrow 0 \) and \(V \) solves
\[
- \frac{\partial V}{\partial t} - rxV_x + \frac{(\gamma - r)^2 V_x^2}{2V_{xx}} \int \frac{1}{\sigma^2(y)} d\mu(y) = 0 \quad \text{in } (0, T) \times \mathbb{R}.
\]

This is the HJB equation of a Merton problem with constant volatility \(\sigma \)
\[
\frac{1}{\sigma^2} = \int \frac{1}{\sigma^2(y)} d\mu(y) \quad \Rightarrow \quad \sigma = \left(\int \frac{1}{\sigma^2(y)} d\mu(y) \right)^{-1/2}.
\]

Then limit control problem has volatility \(\bar{\sigma} = \text{harmonic average of } \sigma(\cdot) \).
Then \(V^\varepsilon(t, x, y) := \sup_u. E[g(x_T)] \) solves

\[
- \frac{\partial V^\varepsilon}{\partial t} - r x V^\varepsilon_x + \frac{[(\gamma - r) V^\varepsilon_x]^2}{\sigma^2(y) 2 V^\varepsilon_{xx}} = \frac{1}{\varepsilon} \mathcal{L}[y, V^\varepsilon]
\]

Rmk.: in the Gaussian case, if \(\rho \neq 0 \) there is also a term \(+\frac{x \rho \sigma \nu}{\sqrt{\varepsilon}} V^\varepsilon_{xy} \) in the \([\ldots]^2\).

By the Theorem, \(V^\varepsilon(t, x, y) \rightarrow V(t, x) \) as \(\varepsilon \rightarrow 0 \) and \(V \) solves

\[
- \frac{\partial V}{\partial t} - r x V_x + \frac{(\gamma - r)^2 V_x^2}{2 V_{xx}} \int \frac{1}{\sigma^2(y)} d\mu(y) = 0 \quad \text{in } (0, T) \times \mathbb{R}.
\]

This is the HJB equation of a Merton problem with constant volatility \(\bar{\sigma} \)

\[
\frac{1}{\bar{\sigma}^2} = \int \frac{1}{\sigma^2(y)} d\mu(y) \quad \Rightarrow \quad \bar{\sigma} = \left(\int \frac{1}{\sigma^2(y)} d\mu(y) \right)^{-1/2}.
\]

Then limit control problem has volatility \(\bar{\sigma} = \text{harmonic average of } \sigma(\cdot) \).
Then \(V^\varepsilon(t, x, y) := \sup_u E[g(x_T)] \) solves

\[
- \frac{\partial V^\varepsilon}{\partial t} - rxV_x^\varepsilon + \frac{[(\gamma - r) V_x^\varepsilon]^2}{\sigma^2(y) 2 V_{xx}^\varepsilon} = \frac{1}{\varepsilon} \mathcal{L}[y, V^\varepsilon]
\]

Rmk.: in the Gaussian case, if \(\rho \neq 0 \) there is also a term \(+ \frac{x \rho \sigma \nu}{\sqrt{\varepsilon}} V_{xy}^\varepsilon \) in the \([\ldots]^2\).

By the Theorem, \(V^\varepsilon(t, x, y) \to V(t, x) \) as \(\varepsilon \to 0 \) and \(V \) solves

\[
- \frac{\partial V}{\partial t} - rxV_x + \frac{(\gamma - r)^2 V_x^2}{2 V_{xx}} \int \frac{1}{\sigma^2(y)} d\mu(y) = 0 \quad \text{in} \ (0, T) \times \mathbb{R}.
\]

This is the HJB equation of a Merton problem with constant volatility \(\overline{\sigma} \)

\[
\frac{1}{\overline{\sigma}^2} = \int \frac{1}{\sigma^2(y)} d\mu(y) \quad \Rightarrow \quad \overline{\sigma} = \left(\int \frac{1}{\sigma^2(y)} d\mu(y) \right)^{-1/2}.
\]

Then limit control problem has volatility \(\overline{\sigma} = \) harmonic average of \(\sigma(\cdot) \).
A practical consequence

In financial problems without controls, e.g., Black-Scholes formula for option pricing, H is linear (no max $_u$ involved), so the effective volatility arising in the limit of fast stochastic volatility is the linear average

$$\tilde{\sigma}^2 := \int \sigma^2(y) \mu(dy) \geq \bar{\sigma}^2 = \left(\int \frac{1}{\sigma^2(y)} d\mu(y) \right)^{-1}$$

Then if one uses a constant-parameter model as approximation, the nonlinear average σ is better, it increases the optimal expected utility.

Other problems with (fast) random parameters where an explicit form of the effective control problem can be computed [M.B. - Cesaroni 11]

- Ramsey model of optimal economic growth
- Vidale - Wolfe advertising model
- advertising game in a duopoly with Lanchester dynamics

Often they involve a nonlinear average of some parameter!
A practical consequence

In financial problems without controls, e.g., Black-Scholes formula for option pricing, \mathcal{H} is linear (no \max_u involved), so the effective volatility arising in the limit of fast stochastic volatility is the linear average

$$\tilde{\sigma}^2 := \int \sigma^2(y) \mu(dy) \geq \bar{\sigma}^2 = \left(\int \frac{1}{\sigma^2(y)} \, d\mu(y) \right)^{-1}$$

Then if one uses a constant-parameter model as approximation, the nonlinear average $\bar{\sigma}$ is better, it increases the optimal expected utility.

Other problems with (fast) random parameters where an explicit form of the effective control problem can be computed [M.B. - Cesaroni 11]

- Ramsey model of optimal economic growth
- Vidale - Wolfe advertising model
- Advertising game in a duopoly with Lanchester dynamics

Often they involve a nonlinear average of some parameter!
A practical consequence

In financial problems without controls, e.g., Black-Scholes formula for option pricing, \(\mathcal{H} \) is linear (no \(\max_u \) involved), so the effective volatility arising in the limit of fast stochastic volatility is the linear average

\[
\tilde{\sigma}^2 := \int \sigma^2(y) \mu(dy) \geq \bar{\sigma}^2 = \left(\int \frac{1}{\sigma^2(y)} d\mu(y) \right)^{-1}
\]

Then if one uses a constant-parameter model as approximation, the nonlinear average \(\bar{\sigma} \) is better, it increases the optimal expected utility.

Other problems with (fast) random parameters where an explicit form of the effective control problem can be computed [M.B. - Cesaroni 11]

- Ramsey model of optimal economic growth
- Vidale - Wolfe advertising model
- advertising game in a duopoly with Lanchester dynamics

Often they involve a nonlinear average of some parameter!
A practical consequence

In financial problems without controls, e.g., Black-Scholes formula for option pricing, H is linear (no \max_u involved), so the effective volatility arising in the limit of fast stochastic volatility is the linear average

$$\tilde{\sigma}^2 := \int \sigma^2(y) \mu(dy) \geq \sigma^2 = \left(\int \frac{1}{\sigma^2(y)} d\mu(y) \right)^{-1}$$

Then if one uses a constant-parameter model as approximation, the nonlinear average $\bar{\sigma}$ is better, it increases the optimal expected utility.

Other problems with (fast) random parameters where an explicit form of the effective control problem can be computed [M.B. - Cesaroni 11]

- Ramsey model of optimal economic growth
- Vidale - Wolfe advertising model
- advertising game in a duopoly with Lanchester dynamics

Often they involve a nonlinear average of some parameter!
Further results and perspectives

Can treat also

- limit of the optimal feedback,

- utility depending on y, i.e., $g = g(x, y)$, then the effective terminal condition is $V(T, x) = \int g(x, y) d\mu_x(y)$,

- problems with two conflicting controllers, i.e., two-person, 0-sum, stochastic differential games,

- systems with more than two scales.

Developments under investigation:

- more general jump processes for the volatility (without the Liouville property...), e.g., "inverse Gaussian",

- jump terms in the stocks dynamics,

- large deviations for short maturity asymptotics, done with Cesaroni and Ghilli for option pricing models (no control).
Further results and perspectives

Can treat also

- limit of the optimal feedback,
- utility depending on \(y \), i.e., \(g = g(x, y) \), then the effective terminal condition is
 \[
 V(T, x) = \int g(x, y) d\mu_x(y),
 \]
- problems with two conflicting controllers, i.e., two-person, 0-sum, stochastic differential games,
- systems with more than two scales.

Developments under investigation:

- more general jump processes for the volatility (without the Liouville property...), e.g., "inverse Gaussian",
- jump terms in the stocks dynamics,
- large deviations for short maturity asymptotics, done with Cesaroni and Ghilli for option pricing models (no control).
Thanks for your attention!

Best wishes Halina and Hector!