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Financial models and Merton’s optimisation problem

The evolution of the price of a stock S is described by

d log Ss = γ ds + σ dWs, s = time, Ws = Wiener proc.,

whereas a riskless bond B evolves with d log Bs = r ds.

Invest us in the stock Ss, 1− us in the bond Bs.
Then the wealth xs evolves as

d xs = (1− us)rxs ds + usxs(γ ds + σ dWs)

= (r + (γ − r)us)xs ds + xsus σ dWs

and want to maximize the expected utility at time T > 0 starting at
t < T , so the value function is

V (t , x) = sup
u.

E [g(xT ) | xt = x ]

for some utility g increasing and concave.
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The HJB equation is

−∂V
∂t
− rxVx −max

u

{
(γ − r)uxVx +

u2x2σ2

2
Vxx

}
= 0

Assume the utility g has g′ > 0 and g′′ < 0 . Then expect a value
function strictly increasing and concave in x , i.e., V ε

x > 0, V ε
xx < 0.

If maxu in HJB equation is attained in the interior of the constraint for u
the equation becomes

−∂V
∂t
− rxVx +

(γ − r)2V 2
x

2σ2Vxx
= 0 in (0,T )× R.

If g(x) = axδ/δ with a > 0, 0 < δ < 1, a HARA function, the problem
has the explicit solution

V (t , x) = a
xδ

δ
ec(T−t), c = δ(r +

(γ − r)2

4(1− δ)σ
), u∗ =

(γ − r)2

2(1− δ)σ
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Stochastic volatility

In reality the parameters of such models are not constants.
In particular, the volatility σ is not a constant, it rather looks like an
ergodic mean-reverting stochastic process, see next slide.

Therefore it has been modeled as σ = σ(ys)

with ys either an Ornstein-Uhlenbeck diffusion process,

dys = −ys ds + τ dW̃s

with W̃s a Wiener process possibly correlated with Ws,
Refs.: Hull-White 87, Heston 93, Fouque-Papanicolaou-Sircar 2000,...
or by a non-Gaussian process

dys = −ys ds + τ dZs

where Zs is a pure jump Lévy process with positive increments,
Refs.: Barndorff-Nielsen and Shephard 2001.
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The diffusion model (Gaussian) was used for many papers in finance,
see the refs. in the book by Fleming - Soner, 2nd ed., 2006,

for Merton’s problem it was studied by Fleming - Hernandez 03.

The non-Gaussian model was used for option pricing
(Nicolato - Venerdos 03, Hubalek - Sgarra 09, 11)

and for portfolio optimisation by Benth - Karlsen - Reikvam 03.

Martino Bardi (Università di Padova) Optimisation with stochastic volatility Rome, June 2014 7 / 23



Fast stochastic volatility

It is argued in the book
Fouque, Papanicolaou, Sircar: Derivatives in financial markets with
stochastic volatility, 2000,
that the process ys also evolves on a faster time scale than the stock
prices: this models better the typical bursty behavior of volatility, see
previous picture.
The equations for the evolution of a stock S with fast stochastic
volatility σ proposed in [FPS] are Gaussian, with ε > 0,

d log Ss = γ ds + σ(ys) dWs

dys = −1
εys + τ√

ε
dW̃s

and they study the asymptotics ε→ 0 for many option pricing
problems. We’ll study also the non-Gaussian volatility

dys = −1
ε

ys−ds + dZ s/ε
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Two-scale control systems with random parameters

We consider control systems either of the form (Gaussian volatility)

dxs = f (xs, ys,us) ds + σ(xs, ys,us)dWs xs ∈ Rn,

dys = 1
εb(xs, ys) ds + 1√

ε
τ(xs, ys) dW s ys ∈ Rm,

or of the form (Jump volatility)

dxs = f (xs, ys− ,us) ds + σ(xs, ys− ,us)dWs xs ∈ Rn,

dys = −1
εys−ds + dZ s/ε ys ∈ R

Basic assumptions

f , σ,b, τ Lipschitz in (x , y) (unif. in u) with linear growth
Z . 1-dim. pure jump Lévy process, independent of W .,
+ conditions (later).
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Value function and HJB

V ε(t , x , y) := sup
u.

E [ec(t−T )g(xT ) | xt = x , yt = y ]

with g : Rn → R continuous, g(x) ≤ K (1 + |x |2), c ≥ 0.

1. Gaussian case.
The value V ε solves the (backward) HJB equation in (0,T )× Rn × Rm

−∂V ε

∂t
+H

(
x , y ,DxV ε,D2

xxV ε,
1√
ε

D2
xyV ε

)
− 1
ε
LV ε + cV ε = 0

H (x , y ,p,M,Y ) := min
u∈U

{
−1

2
tr(σσT M)− f · p − tr(στY T )

}

L := tr(ττT D2
yy ) + b · Dy = generator of dys = b ds + τ dWs,

and the terminal condition V ε(T , x , y) = g(x).
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2. Non-Gaussian case.

The value V ε solves the integro-differential HJB equation in
(0,T )× Rn × R

−∂V ε

∂t
+H

(
x , y ,DxV ε,D2

xxV ε,0
)
− 1
ε
L[y ,V ε] + cV ε = 0,

L[y , v ] := −yvy (y) +

∫ +∞

0
(v(z + y)− v(y)− vy (y)z1z≤1)dν(z)

is the generator of the unscaled volatility process dys = −ys−ds + dZs,

ν is the Lévy measure associated to the jump process Z . :

ν(B) = E(#{s ∈ [0,1], Zs − Zs− 6= 0, Zs − Zs− ∈ B})

= expected number of jumps of a certain height
in a unit-time interval.
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PDE approach to the singular limit ε→ 0

Search an effective Hamiltonian H such that

V ε(t , x , y)→ V (t , x) as ε→ 0,

V solution of

(CP)


−∂V

∂t + H
(
x ,DxV ,D2

xxV
)

+ cV = 0 in (0,T )× Rn,

V (T , x) = g(x)

Then, if possible, intepret the effective Hamiltonian H as the Bellman
Hamiltonian for a new effective optimal control problem in Rn ,
which is therefore a variational limit of the initial n + m-dimensional
problem.
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Tools

1. Ergodicity of the unscaled volatility process, or fast subsystem,
i.e., of

dys = b(x , ys) ds + τ(x , ys) dWs, x frozen, in the Gaussian case,

dys = −ys−ds + dZs , in the non-Gaussian case.

Assume conditions such that this process has a unique
invariant probability measure µx and it is uniformly ergodic.

By solving an auxiliary (linear) PDE called cell problem we find that
the candidate effective Hamiltonian is

H(x ,p,M) =

∫
Rm
H(x , y ,p,M) dµx (y).
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2. The generator L has the Liouville property
(based on the Strong Maximum Principle), i.e.

any bounded sub- or supersolution of −L[y , v ] = 0 is constant.

Then the relaxed semilimits

V (t , x , y) := lim inf
ε→0,t ′→t ,x ′→x ,y ′→y

V ε(t ′, x ′, y ′),

V (t , x , y) := lim sup of the same, do not depend on y .

3. Perturbed test function method,
evolving from Evans (periodic homogenisation) and
Alvarez-M.B. (singular perturbations with bounded fast variables),
allows to prove that

V (t , x) is supersol., V (t , x) is subsol. of limit PDE in (CP).
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4. Comparison principle
between a subsolution and a supersolution of the Cauchy problem
(CP) satisfying

|V (t , x)| ≤ C(1 + |x |2),

see Da Lio - Ley 2006. It gives

uniqueness of solution V of (CP)

V (t , x) ≥ V (t , x) , then V = V = V and, as ε→ 0 ,

V ε(t , x , y)→ V (t , x) locally uniformly.
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Assumptions: 1. Gaussian case

The generator L = tr(ττT D2
yy ) + b · Dy of the volatility process satisfies

Ellipticity: ∃Λ(y) > 0 s.t. ∀ x τ(x , y)τT (x , y) ≥ Λ(y)I

Lyapunov condition: ∃w ∈ C(Rm), k > 0, R0 > 0 s.t.

−Lw ≥ k for |y | > R0, ∀x , w(y)→ +∞ as |y | → +∞.

Example: Ornstein-Uhlenbeck process dys = −ysds + ν(x)dWs,

ν bounded, by choosing as Lyapunov function w(y) = |y |2 .

Then, ∀x ∈ Rn frozen, the unscaled volatility process is
uniformly ergodic and L has the Liouville property.
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Assumptions: 2. Non-Gaussian case

The Lévy measure ν of the jump process Z . satisfies

∃C > 0, 0 < p < 2, 0 < δ ≤ 1 :
∫
|z|≤δ |z|

2ν(dz) ≥ C δ 2−p

∃q > 0 :
∫
|z|>1 |z|

qν(dz) < +∞.

Then the unscaled volatility dys = −ys−ds + dZs is uniformly ergodic
(Kulik 2009). If, moreover,

either p > 1,
or 0 ∈ int supp(ν),

then the integro-differential generator L of the process y . has the
Liouville property.

Examples: α-stable Lévy processes
ν(dz) = |z|−1−αdz, 0 < α < 2, L = (−∆)α/2 fractional Lapl.

ν(dz) = 1{z≥0}(z)|z|−1−αdz, 1 < α < 2 , no negative jumps.
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Convergence Theorems

lim
ε→0

V ε(t , x , y) = V (t , x) locally uniformly,

V solving

−∂V
∂t

+

∫
Rm
H
(

x , y ,Dxu,D2
xxu,0

)
dµx (y) = 0 in (0,T )× Rn

with V (T , x) = g(x), if

Gaussian volatility case with b, τ independent of x
[M.B. - Cesaroni - Manca, SIAM J. Financial Math. 2010],

Gaussian volatility case with b, τ ∈ C1,α with bounded derivatives
[M.B. - Cesaroni, Eur. J. Control 2011],

Non-Gaussian volatility case [M.B. - Cesaroni - Scotti 2014].
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Merton’s problem with stochastic volatility

Now the wealth xs evolves with

d xs = (r + (γ − r)us)xs ds + xsus σ(ys) dWs, xt = x ,

and ys is either Gaussian

dys =
1
ε

b(ys) ds +
1√
ε
τ(ys) dW̃ s yt = y ,

with ρ = possible correlation of Ws and W̃s,

or with jumps

dys = −1
ε

ys−ds + dZ s/ε yt = y .
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Then V ε(t , x , y) := supu. E [g(xT )] solves

−∂V ε

∂t
− rxV ε

x +
[(γ − r)V ε

x ]2

σ2(y)2V ε
xx

=
1
ε
L[y ,V ε]

Rmk.: in the Gaussian case, if ρ 6= 0 there is also a term + xρσν√
ε

V ε
xy in

the [. . . ]2 .
By the Theorem, V ε(t , x , y)→ V (t , x) as ε→ 0 and V solves

−∂V
∂t
− rxVx +

(γ − r)2V 2
x

2Vxx

∫
1

σ2(y)
dµ(y) = 0 in (0,T )× R.

This is the HJB equation of a Merton problem with constant volatility σ

1
σ2 =

∫
1

σ2(y)
dµ(y) ⇒ σ =

(∫
1

σ2(y)
dµ(y)

)−1/2

.

Then limit control problem has volatility σ = harmonic average of σ(·).
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A practical consequence

In financial problems without controls, e.g., Black-Scholes formula for
option pricing, H is linear (no maxu involved), so the effective volatility
arising in the limit of fast stochastic volatility is the linear average

σ̃2 :=

∫
σ2(y)µ(dy) ≥ σ2 =

(∫
1

σ2(y)
dµ(y)

)−1

Then if one uses a constant-parameter model as approximation, the
nonlinear average σ is better, it increases the optimal expected utility.

Other problems with (fast) random parameters where an explicit form
of the effective control problem can be computed [M.B. - Cesaroni 11]

Ramsey model of optimal economic growth
Vidale - Wolfe advertising model
advertising game in a duopoly with Lanchester dynamics

Often they involve a nonlinear average of some parameter!
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Further results and perspectives

Can treat also

limit of the optimal feedback,
utility depending on y , i.e., g = g(x , y), then the effective terminal
condition is V (T , x) =

∫
g(x , y)dµx (y) ,

problems with two conflicting controllers, i.e., two-person, 0-sum,
stochastic differential games,
systems with more than two scales.

Developments under investigation:

more general jump processes for the volatility (without the
Liouville property...), e.g., "inverse Gaussian",
jump terms in the stocks dynamics,
large deviations for short maturity asymptotics, done with
Cesaroni and Ghilli for option pricing models (no control).
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Thanks for your attention!

Best wishes Halina and Hector!
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