LECTURE 4 (by A. Agracher)
We start by recalling some facts from the prewous lecture.

$$
K=\operatorname{dim} \Delta
$$

$\Delta=\operatorname{stan}\left\{x_{1}, \ldots, x_{k}\right\}$ distribution in TM. bracket-geuerating.

$$
h_{i}(\lambda)=h_{i}(p, q)=\left\langle p, X_{i}(q)\right\rangle \quad \lambda \in T^{*} M
$$

$$
\begin{aligned}
& m=\operatorname{dim} M \\
& \lambda \in T^{*} M \\
& \left(q \in M_{1} p \in T_{q}^{*} M\right)
\end{aligned}
$$

Then we can consider

$$
H(\lambda)=H(p, q)=\left(\left\{h_{i}, h_{j}\right\}(\lambda)\right)_{i . j=1 \ldots k} k x k \text { matrix }
$$

Recall that $\left\{h_{i}, h_{j}\right\}(\lambda)=\left\langle p,\left[x_{i}, x_{j}\right](q)\right\rangle$.
So that H is linear wot p.
we introduce the charact. variety in $T^{*} M$

$$
\operatorname{char}_{\Delta}=\left\{(p, q) \mid p \in \Delta_{q}^{\perp},\{0\}, \quad \operatorname{ker} \operatorname{H}_{a}(p, q) \neq 0\right\}
$$

FIRST CASE
$p \neq 0$ we always have to put this but maybe in previous lect. is omitted.
If k odd then $\operatorname{char}_{\Delta}=\Delta^{\perp}$ suse it is always true that $\operatorname{det} H(\lambda)=0$.

Denote by

$$
\hat{\operatorname{char}}_{\Delta}=\left\{(p, q) \in \operatorname{char}_{\Delta} \mid \operatorname{dim} \operatorname{ker} H(q, p)=1\right\}
$$

here we can compute all abnoimals.
On char, we have $\operatorname{dim} \operatorname{ker} H(p, q)=1$ and the kernel is a vector, but let us realise it as a tangent vector to char ${ }_{\Delta}$.

$$
H(p, q) u=0
$$

T a monique up to multiplier.
Then the vector $\sum_{i=1}^{K} u_{i} \vec{h}_{i}$ is tangent to $\Delta^{\perp}=$ char Δ.
As a function of p we have that minos ore polynomial in p (for fixed q)
But given q thes set of p where the rank is maximal is zariski open in the fiber.

$$
\left\{p \in T_{\bar{q}}^{*} M\left\{\operatorname{rank} H(p, \bar{q})=\max _{p} \operatorname{rank} H(p, \bar{q})\right\}\right.
$$

If rank $H(p, \bar{q})=k-1$ for at least me p then the set of much p is open dense in the fiber.

The set of (p, q) where the rank is maximal is also open in $T^{*} M$.
$\operatorname{dim} \hat{\text { Char }}_{\Delta}=2 m-k=n+(n-k)$

- as submanifold of $T^{*} M$.

Then in this case we have 1d intersection and a kine field which generates flow

$$
t \longmapsto \quad \lambda_{t}=(p(t), q(t))
$$

$\xrightarrow{\longrightarrow}$ horic proj are singular curves.
lemark let $s \in \mathbb{R} \backslash\{0\}$. Notice that
$C p(t), q(t))$ abnormal $\Leftrightarrow(s p(t), q(t))$ abmonmal this is a homogeneity property in the fiber. (we can reduce the dimension by 1).
So the "mice" $\hat{C h a r}_{\Delta} \cap T_{q}^{*} M \approx n-k$ dimensional. We can "projectivize" the set $n-k-1$ if we keep ito account homoger. sue our curves pan to the quotient.
in the prop of chars
For each 9 we have a $-m-k-1$ family of much mice abmounal

SECOND CASE k is even
In this case (cf. last lecture)

$$
\rightarrow \text { Char }_{\Delta}=\Delta^{\perp} n \operatorname{Pfaff}^{-1}(0)
$$

We want to fund the "mice" fart of this set.
$\hat{C h a r}_{\Delta}=\left\{\lambda \in\right.$ Char $_{\Delta}: d_{\lambda} P_{f a f f} \neq 0 \quad$ of en but in general is a condition.

projection
notice: Char, might be riugulan char Δ is C^{∞}.

For every $q \in M$ we have $n-k-2$ dim family of singular curves that are "nice" staying in the smooth set.

It is shill an open question to determine if the measure of set reached by abmonmals is zero (stanting from an arbitrary forint).

FAT DISTRIBUTIONS
def We say that a distribution Δ is fat if it holds $\operatorname{char}_{\Lambda}=0$.

Fist observation: Δ fat $\Rightarrow K$ even.
(by previtus obsewations.)
Moreover, either $n=k+1$ or $\frac{k}{2}$ even $(k \equiv 0 \bmod 4)$
When $n=k+1$ we have contact distribution.
\longrightarrow indeed $k=2 m \quad n=2 m+1$

$$
\operatorname{Pfaft}(p, q) \neq 0 \quad \forall p \neq 0 .
$$

In this case no singular curves (beyond constants)
looking back Δ^{\perp} is a hue and up to multiplication it is a single pout. So the Pfaltion is inndeed a scalar,

Pfaft $H(p, q)=\alpha(q) p^{\frac{k}{2}}$.
contact distribution if $\alpha(q) \neq 0 \quad \forall q \in M$.

Notice that if $x-k>1$ then. $\quad \downarrow \Rightarrow \frac{k}{2}$ even.
$p \longmapsto P f a f f(p, q)$ homog polyn. of degree $\frac{k}{2}$.

If Δ is fat $\Rightarrow \Delta$ contact

$$
k=2 m \quad n=2 m+1 .
$$

or
Δ is a dustrib st.

$$
k=4 m \quad n \leqslant 2 k-1
$$

SORE GENERIGTY ARGUMENTS
We work locally so we consider M moth manifold $q_{0} \in M, \Delta_{q}$ for q close to q_{0} (say in $\theta_{q_{0}}$)

We are studying the germ of Δ at q_{0} is an equivalence class of distribution which coincide in a meighborhood of q_{0}

$$
\Delta \sim \bar{\Delta} \quad \text { iff } \exists \theta_{q 0} \subset M ; \Delta_{q}=\bar{\Delta}_{q} \forall q \in \theta_{q 0}
$$

"equal in some neighbahoed"
Fo local classification t is convenient to do it as genus. For instance bracket-geuerating bet 90 a property of the gere, not only of a distr.

Similarly, to be fat or not is a property which is well- def for the gence.
def We say that a property (P) of a germ of a distribution at q_{0} is open
If $\forall \Delta \exists \theta_{q_{0}}, \varepsilon>0$: property (p) is true for $\uparrow \quad{ }_{i}{ }^{1}$ neigh. $v \in \mathbb{N}$ every distribution ε-close to Δ at q_{0} with v-den.
(P) is true for distr, that are ε-close. lake this

this means $\quad \Delta=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$			
$\tilde{\Delta}=\operatorname{span}\left\{\bar{x}_{1}, \ldots, \bar{x}_{k}\right\}$			
$\Rightarrow \quad\left\\|x_{i}-\bar{x}_{1}\right\\|_{\infty} \leqslant \varepsilon \quad$ on $\theta_{q_{0}}$.			
	$\left\\|\partial_{j} x_{i}-\partial_{j} \bar{x}_{l}\right\\|_{\infty} \leqslant \varepsilon \quad \forall j:\|j\| \leqslant \nu$.		

(sometimes everywhere deme)
Similarly we soy that (P) is dense if $\forall \Delta, \forall \varepsilon>0, \nu \in \mathbb{N} \quad \exists \theta_{q_{0}}$ and $\tilde{\Delta}$ such that Δ and Σ are ε-close for ν denvatives and the property (P) holds for \triangle.
(P) is called generic if (P) is open and dense
个 if some Δ satisfies then small pert. still satisfy
If some Δ do not satisfy the by small perturbation we find one that satisfy.
Q: What are fropertes that haffers generically?

These are to be thought as typical properties
theorem (Jacubczyk) ${ }^{\circ}$ Montgomery also?
Courider the property (P) defined as.
$\Delta_{q_{0}}=\operatorname{span}\left\{\dot{\gamma}\left(q_{0}\right) \mid \gamma\right.$ is a nice singular curve $\}$
If $n-k \geqslant 3 \Rightarrow(P)$ is open (non empty)
If (k, n) not fat $\Rightarrow(P)$ is generic.
Proof: go back to compentations and have a look:)

In many cases, even if few/no abnormals then they determine your distributions. In the follow. sense.
def Two germs of distributions are equivalent if there exists a deffer $\Phi: \theta_{q_{0}} \longrightarrow V_{q_{0}}$ such that $\left.\Phi_{*} \Delta\right|_{\theta_{q_{0}}}=\left.\tilde{\Delta}\right|_{v_{q_{0}}}$ with $\Phi\left(q_{0}\right)=q_{0}$.
If two distributions have the same abmounals then the distribution are equivalent

- we go back tomorrow

Consider corank 1 distribution $\quad m=k+1$ (may be contact or quasi contact) L_{k} even \lrcorner G odd. In this case $\Delta \frac{1}{q_{0}}$ has dim 1 (a fount of to multiplication)
$H\left(p, q_{0}\right)$ has maximal rank ('generic) as a matrix.
quasi contact \rightarrow one abnormal through a pt contact \rightarrow no abnormal " "

They do not satisfy the (P) Jacubsyk. but these distribution are orally equivalent (At is the Dabboux theorem). No rigid structure when looking locally-

1. Be careful: fat have no abnonmals but then are not all equivalent
