LEcture 6 (by A. Agracher)
Notes by
thinee-dir. case
M is a $3 D$ man. $M \simeq \mathbb{R}^{3}, \operatorname{dim} \Delta_{q}=2$ Given $q_{0} \in \mathbb{R}^{3}$ generically Δ is contact distrbb.
no abnozmals \rightarrow get out of generic distrib.
"generic distributions \& generic germs"
Thunk to functions

$$
\varphi: \mathbb{R} \rightarrow \mathbb{R}
$$

Q generic gean of φ at q_{0}

$$
\Rightarrow \varphi\left(q_{0}\right) \neq 0
$$

center of pouts of the gems.
In other words $\varphi\left(q_{0}\right) \neq 0$ is a generic property
generic globally defined functions will have zeno we cannot destroy that by small perturbations but we can perturb in such on way if $\varphi(q)=0 \Rightarrow \varphi^{\prime}(q) \neq 0$. (at a point)

Difference between generic for germ of funchons for functions.

In 3D if we restrict to generic germs of distributions we have only contact

Now we study germs of generic distributions at a point

$$
\Delta=\operatorname{span}\left\{x_{1}, x_{2}\right\} \quad \Delta=\operatorname{ker} \omega
$$

1-form.
unique up to mut of $f \neq 0$.
def Δ contact $\Leftrightarrow \operatorname{span}\left\{x_{1}, x_{2},\left[x_{1}, x_{2}\right]\right\}=\mathbb{R}^{3}$

$$
\left.\Leftrightarrow \omega \wedge d \omega\right|_{q}=b(q) \text { vol }, \quad b \neq 0
$$

Martinet set $N:=b^{-1}(0) \subset M$
For genenc b we have $d b \neq 0$ on N so that N is actually a surface c^{∞}.

By def the germ of Δ at pouts of N are not contact.
At those points $\left[x_{1}, x_{2}\right]_{q} \in \Delta_{q} \quad q \in N$
At most points of N we can expect that brackets of higher oder are hin and.

We consider different type of forts on the Martinet set/ surface N.

Martinet point $q \in N$ (m the Martinet set) if one of the following equivalent cond.
(a) $\operatorname{span}\left\{x_{1}, x_{2},\left[x_{1}, x_{2}\right],\left[x_{1}\left[x_{1}, x_{2}\right]\right),\left[x_{2},\left[x_{1}, x_{2}\right]\right)\right\}=\pi^{3}$
(b) $\quad \operatorname{dim} \Delta_{q} \cap T_{q} N=1$.

Most founts generically are Martinet points.

abnounal curves ore contained in N integral lines of a lune field (red me) the line field has singular points which are exactly mon martinet pts.
berms of generic distrib at martinet pts are all equivalent, we have a coronal form. locally we can describe

$$
\begin{aligned}
& \Delta=\operatorname{ker}\left(x_{1}^{2} d x_{2}-d x_{3}\right) \quad \underset{r}{\operatorname{recall}} \operatorname{contact} \\
& {\left(x_{1} d x_{2}-d x_{3}\right)} }
\end{aligned}
$$

$N=\left\{x_{1}=0\right\}$ is the Martinet surface in these condimates.
at $x_{1}=0 \quad \Delta=k e n d x_{3}$ so we have rectified the line field. M
def Points of N that are not Martinet pouts are called tangency foots.

at those points
\& span $\left\{x_{1}, x_{2},\left[x_{1} x_{2}\right]\left[x_{1}, x_{3}\right]\left[x_{2}, x_{3}\right]\right\}=2$
this means three equations

$$
\begin{aligned}
& \operatorname{det}\left(x_{1}, x_{2},\left[x_{1} x_{2}\right]\right)=0 \\
& \operatorname{det}\left(x_{1}, x_{2},\left[x_{1}\left[x_{1}, x_{2}\right]\right]\right)=0 \\
& \operatorname{det}\left(x_{1}, x_{2},\left[x_{2}\left(\left[x_{1}, x_{2}\right]\right)\right)=0\right.
\end{aligned}
$$

$$
\operatorname{det}\left(x_{1}, x_{2},\left[x_{1}\left[x_{1}, x_{2}\right]\right]\right)=0 \text { for for equation }
$$

Three eq. In dir 3 give generically isolated focus as solutions.
we can have different situations

tangency founts generically are either elliptic or hyperbolic.

$$
\begin{aligned}
& \dot{\lambda}=u_{1} \vec{h}_{1}+u_{2} \vec{h}_{2}^{-1} \\
& h_{1}=h_{2}=0
\end{aligned} \quad \begin{aligned}
& \left\langle p_{1} x_{1}(q)\right\rangle=0 \\
& \left\langle p_{1} x_{2}(q)\right\rangle=0 \quad \text { unique } \\
& \text { find an }
\end{aligned}
$$

find an oDE on M.
$m=3 \quad \Delta^{\perp} \simeq M \quad($ for every o 9 unique such $p)$
so $\quad \dot{\lambda}=u_{1} \overrightarrow{h_{1}}+u_{2} \overrightarrow{h_{2}}$
is an equation on Δ^{\perp}
can be described as equation in M
We can recover u_{1}, u_{2} by higher order
differentiation $\frac{1}{d t} h_{12}\left(\lambda_{t}=0\right.$

$$
\Rightarrow \quad u_{1} h_{112}+u_{2} h_{212}=0 \quad \Rightarrow\left(u_{1}, u_{2}\right)=\left(h_{221}, h_{112}\right)
$$

So we have out of tangency pouts

$$
\dot{\lambda}=h_{221} \vec{h}_{1}+h_{112} \vec{h}_{2}
$$

which indeed projects on M.

| equation
 of
 aboral of tangency
 out of |
| :--- |$\dot{q}=\left\langle p, X_{221}(q)\right\rangle X_{1}(q)+\left\langle p, X_{112}(q)\right\rangle X_{2}(q)$

and p is unique (up to multiplications)

$$
\text { by } \begin{aligned}
& <p, x_{1}(q)>=0 \\
& \left\langle p, x_{2}(q)\right\rangle=0
\end{aligned}
$$

-) tangency me exactly cutical pouts of the ODE. (where the coeft of the rif vanish).

So abmounals on N are solution of m ODE of the form

$$
\dot{q}=V(q) \quad \text { tangency pts }
$$

at equilibrium $V\left(q_{0}\right)=0$ the linearizations

$$
\dot{\xi}=\frac{d V}{d q}\left(q_{0}\right) \xi \quad \text { is intrinsic }
$$

as well as $\operatorname{div} V\left(q_{0}\right)$ are well-def. and indeed $\operatorname{dev} V\left(q_{0}\right)=0 . l=$ trace $\left.\frac{d y}{d q}\left(q_{0}\right)\right)$ Generically $\frac{d V}{d q}\left(q_{0}\right) \neq 0$. as a matrix.

So that spec $\frac{d V}{d q}\left(q_{0}\right)=\{ \pm \alpha\}$ or $\{ \pm i \alpha\}$ spectrum. with $\alpha \neq 0$.
we get the above picture (cf also discussion sec 12.6.I. on the book)

Remark Here we also see affearance of non smooth abmoumals when we have saddles. When we pas through sing. point.

this is mon smooth asnomual curve.
Minimizer a not if we have a metric?
Indeed in this setting this might not naffer in the focus since infinite lenght. no abnormal aninug to elliptic points.

QUESTION: SARD CONJECTURE
recall that γ singular if γ cutical pout of $E_{q_{0}}^{1}$ where $E_{q_{0}}^{t}: \Omega_{q_{0}} \rightarrow M$ and-point map.
means $D_{\gamma} E_{q_{0}}^{1}$ not surjechve

Sand conjecture: the image of singular unves under E_{90}^{1} has measure zero this is related to the classical Sand the. which states the following If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of clan C^{∞}
then $f(C)$ has measure zero in \mathbb{R}^{m} where $C=\left\{x \in \mathbb{R}^{n} \mid D f(x)\right.$ not surjective $\} \begin{gathered}\text { critical } \\ \text { points }\end{gathered}$ We can say "measure of cortical values is zero"

This is false in infinite dimeusim and The Sand conjecture asks whether this is true for the specific class of end-point map.

RK this is related to a bari consideration

Green $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ we want to solve the equation $f(x)=y$
the set $\{x \mid f(x)=y\}$ for y in a full measure set in \mathbb{R}^{m} not critical then the set of solution is C^{∞} manifold.

A recent result in this direction for distribuhous in \mathbb{R}^{3} has been obtained for analytic distributions

Abmormals are concatenations of C^{1} curves.
[Blotto, Figall, Parusiuski, Mitford]

