On the Brunn-Minkovski inequality in sub-Riemannian geometry

Davide Barilari
IMJ-PRG, Université Paris Diderot - Paris 7

Riemannian geometry and Generalized Functions Université Paris Diderot

October 4-5, 2018

Joint work with

This is based on joint works with

- Luca Rizzi (Institut Fourier, Univ. Grenoble-Alpes)
\rightarrow Main references:
BR-17 DB, L. Rizzi,
Sub-Riemannian interpolation inequalities, \rightarrow Preprint Arxiv, 2017
BR-18 DB, L. Rizzi, Sub-Riemannian Bakry-Emery curvature: comparison and model spaces,
\rightarrow Soon on Arxiv!

Outline

(1) Introduction
(2) The sub-Riemannian case
(3) Few ideas from the proof
(4) What are model spaces?

Outline

(1) Introduction

(2) The sub-Riemannian case

(3) Few ideas from the proof

4 What are model spaces?

Euclidean Brunn-Minkowski

$A, B \subset \mathbb{R}^{n}$ non-empty measurable bounded sets

Minkowski sum: $A+B=\{z \mid z=a+b, a \in A, b \in B\}$

Brunn-Minkowski Inequality:

$$
\operatorname{vol}(A+B)^{1 / n} \geq \operatorname{vol}(A)^{1 / n}+\operatorname{vol}(B)^{1 / n}
$$

Here vol is the Lebesgue measure in \mathbb{R}^{n}

Euclidean Brunn-Minkowski

$A, B \subset \mathbb{R}^{n}$ non-empty measurable bounded sets
Minkowski interpolation: $(1-t) A+t B=\{z \mid z=(1-t) a+t b, a \in A, b \in B\}$

Brunn-Minkowski Inequality:

$$
\operatorname{vol}((1-t) A+t B)^{1 / n} \geq(1-t) \operatorname{vol}(A)^{1 / n}+t \operatorname{vol}(B)^{1 / n} \quad \forall t \in[0,1]
$$

Here vol is the Lebesgue measure in \mathbb{R}^{n}

Functional inequalities

Geometric inequalities have often a functional counterpart

Theorem ($+\infty$-mean Borell-Brascamp-Lieb inequality)

Fix $t \in[0,1]$. Let $f, g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be non-negative and integrable. Assume that for every $x, y \in \mathbb{R}^{n}$

$$
\begin{equation*}
h((1-t) x+t y) \geq \max \{f(x), g(y)\} . \tag{1}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\|h\|_{L^{1}}^{1 / n} \geq(1-t)\|f\|_{L^{1}}^{1 / n}+t\|g\|_{L^{1}}^{1 / n} \tag{2}
\end{equation*}
$$

- one could restrict to $(x, y) \in A \times B$
- $A, B \subset \mathbb{R}^{n}$ Borel subsets such that $\int_{A} f d \mathrm{~m}=\|f\|_{L^{1}}$ and $\int_{B} g d \mathrm{~m}=\|g\|_{L^{1}}$.
\rightarrow generalized to other p-mean inequalities
(from Prékopa-Leindler to Borell-Brascamp-Lieb)

Generalization to Riemannian: a necessary condition

Denote $Z_{t}(A, B):=(1-t) A+t B$ the t-interpolating set

Brunn-Minkowski Inequality:

$$
\operatorname{vol}\left(Z_{t}(A, B)\right)^{1 / n} \geq(1-t) \operatorname{vol}(A)^{1 / n}+t \operatorname{vol}(B)^{1 / n} \quad \forall t \in[0,1]
$$

- notice for $A=\{x\}$ and $B=\mathcal{B}_{r}(y)$ a ball.

$$
\operatorname{vol}\left(Z_{t}\left(x, \mathcal{B}_{r}(y)\right)\right) \geq t^{n} \operatorname{vol}\left(\mathcal{B}_{r}(y)\right) \quad \forall t \in[0,1]
$$

- in general this implies a control on the ratio

$$
\frac{\operatorname{vol}\left(Z_{t}\left(x, \mathcal{B}_{r}(y)\right)\right)}{\operatorname{vol}\left(\mathcal{B}_{r}(y)\right)} \geq t^{n}
$$

\rightarrow measure contraction along geodesics, curvature

Distortion coefficient

(M, g) Riemannian manifold, vol Riemannian volume measure

Distortion coefficient

$$
\beta_{t}(x, y):=\limsup _{r \rightarrow 0} \frac{\operatorname{vol}\left(Z_{t}\left(x, \mathcal{B}_{r}(y)\right)\right)}{\operatorname{vol}\left(\mathcal{B}_{r}(y)\right)}, \quad \forall x, y \in M, t \in[0,1]
$$

- $\beta_{1}(x, y)=1$ and $\beta_{0}(x, y)=0$. Important: $\beta_{t}(x, y) \sim t^{n}$ for $t \rightarrow 0$.
- $\beta_{t}(x, y)$ depends on the geodesics joining x with y
- Computable in terms of Jacobi fields.

Riemannian Brunn-Minkowski

(M, g) complete Riem. manifold, A, B non-empty Borel sets

$$
Z_{t}(A, B):=\{\gamma(t) \mid \gamma:[0,1] \rightarrow M \text { geodesic s.t. } \gamma(0) \in A, \gamma(1) \in B\}
$$

Theorem (Cordero-Erausquin, McCann, Schmuckenschläger - 2001)

Assume (M, g) complete Riem. manifold with Ric ≥ 0. Then

$$
\operatorname{vol}\left(Z_{t}(A, B)\right)^{1 / n} \geq(1-t) \operatorname{vol}(A)^{1 / n}+t \operatorname{vol}(B)^{1 / n}
$$

- If Ric $\geq K$ the inequality holds with modified coefficients
- It can be used to define Ricci bounds for m.m.s. (Sturm, Lott-Villani,)

A limiting procedure: the Heisenberg group

Define on \mathbb{R}^{3}

$$
X_{1}=\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z}, \quad X_{2}=\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z}, \quad X_{3}^{\varepsilon}=\varepsilon \frac{\partial}{\partial z}
$$

- $\left(\mathbb{R}^{3}, g^{\varepsilon}\right)$ Riemannian structure for $\varepsilon>0$ with $\left\{X_{1}, X_{2}, X_{3}^{\varepsilon}\right\}$ o.n. frame.

The sequence of curvatures is unbounded from below:

- $D^{\varepsilon}=\operatorname{span}\left\{X_{1}, X_{2}, X_{3}^{\varepsilon}\right\} \rightarrow D=\operatorname{span}\left\{X_{1}, X_{2}\right\}$
- $\operatorname{Sec}^{\varepsilon}\left(v_{1}, v_{2}\right) \rightarrow-\infty$ for all $v_{1}, v_{2} \in D$
- $\operatorname{Ric}^{\varepsilon}(v) \rightarrow-\infty$ for all $v \in D$

As metric spaces $\left(\mathbb{R}^{3}, d^{\varepsilon}\right) \rightarrow\left(\mathbb{R}^{3}, d_{S R}\right)$ (in the Gromov-Hausdorff sense)

- Cannot prove directly BM by taking limits of Ricci bounded structures

Outline

Sub-Riemannian geometry

Sub-Riemannian structure

- M smooth, connected manifold
- $D \subseteq T M$ distribution of constant* rank $k \leq n$
- Hörmander condition: $\left.\operatorname{Lie}(D)\right|_{x}=T_{x} M$ for all $x \in M$
- g smooth scalar product on D

Admissible curve: $\gamma:[0,1] \rightarrow M$ such that $\dot{\gamma}(t) \in D_{\gamma_{t}}$

$$
\ell(\gamma)=\int_{0}^{1}\|\dot{\gamma}(t)\| d t
$$

Sub-Riemannian distance: (or Carnot-Carathédory)

$$
d_{S R}(x, y)=\inf \{\ell(\gamma) \mid \gamma \text { admissible joining } x \text { with } y\}
$$

Chow-Rashevskii: $d_{S R}<+\infty$ and $\left(M, d_{S R}\right)$ has the same topology of M

Brunn-Minkowski on the Heisenberg group

The standard Brunn-Minkowski inequality $\operatorname{BM}(0, N)$:

$$
\operatorname{vol}\left(Z_{t}(A, B)\right)^{\frac{1}{N}} \geq(1-t) \operatorname{vol}(A)^{\frac{1}{N}}+t \operatorname{vol}(B)^{\frac{1}{N}}
$$

Theorem (Juillet - 2009)

The Heisenberg group \mathbb{H}_{3}, equipped with Lebesgue measure:

- satisfy the $\operatorname{MCP}(0, N)$ for $N \geq 5$
- does not satisfy any $\operatorname{BM}(0, N)$
\Rightarrow Geodesic dimension (Agrachev, DB, Rizzi - 2013)

Brunn-Minkowski on the Heisenberg group

The standard Brunn-Minkowski inequality $\operatorname{BM}(0, N)$:

$$
\operatorname{vol}\left(Z_{t}(A, B)\right)^{\frac{1}{N}} \geq(1-t) \operatorname{vol}(A)^{\frac{1}{N}}+t \operatorname{vol}(B)^{\frac{1}{N}}
$$

Theorem (Juillet - 2009)

The Heisenberg group \mathbb{H}_{3}, equipped with Lebesgue measure:

- satisfy the $\operatorname{MCP}(0, N)$ for $N \geq 5$: roughly $\operatorname{vol}\left(Z_{t}(x, B)\right) \geq t^{5} \operatorname{vol}(B)$
- does not satisfy any $\operatorname{BM}(0, N)$
\Rightarrow Geodesic dimension (Agrachev, DB, Rizzi - 2013)

Brunn-Minkowski on the Heisenberg group

The standard Brunn-Minkowski inequality $\operatorname{BM}(0, N)$:

$$
\operatorname{vol}\left(Z_{t}(A, B)\right)^{\frac{1}{N}} \geq(1-t) \operatorname{vol}(A)^{\frac{1}{N}}+t \operatorname{vol}(B)^{\frac{1}{N}}
$$

Theorem (Juillet - 2009)

The Heisenberg group \mathbb{H}_{3}, equipped with Lebesgue measure:

- satisfy the $\operatorname{MCP}(0, N)$ for $N \geq 5$: roughly $\operatorname{vol}\left(Z_{t}(x, B)\right) \geq t^{5} \operatorname{vol}(B)$
- does not satisfy any $\operatorname{BM}(0, N)$
\Rightarrow Geodesic dimension (Agrachev, DB, Rizzi - 2013)

Theorem (Balogh, Kristály, Sipos - 2016)

The Heisenberg group \mathbb{H}_{3}, equipped with Lebesgue measure, satisfy

$$
\operatorname{vol}\left(Z_{t}(A, B)\right)^{\frac{1}{3}} \geq(1-t)^{\frac{5}{3}} \operatorname{vol}(A)^{\frac{1}{3}}+t^{\frac{5}{3}} \operatorname{vol}(B)^{\frac{1}{3}}, \quad \forall t \in[0,1]
$$

Towards SR interpolation inequalities

For the Heisenberg group (\rightarrow and higher dimensional versions):

- Juillet \Rightarrow standard BM is not the right one
- Balogh-Kristály-Sipos \Rightarrow some modified BM holds

Do general sub-Riemannian structures support interpolation inequalities? (with weights that may depend on geometry)

Main results

- interpolation inequalities for ideal sub-Riemannian structures
- new examples of sharp BM (Grushin plane, some Carnot groups)
- regularity results for the sub-Riemannian distance

Main assumption: ideal structures

Definition (Ideal structure)

A sub-Riemannian structure is ideal if $\left(M, d_{S R}\right)$ is complete and it admits no singular minimizing geodesics

- singular minimizer: cf talk by Ludovic Rifford
- True for the generic sub-Riemannian structure with rank $D \geq 3$
\rightarrow [Chitour, Jean, Trélat - 2006]
- True for all contact structures

In this case, geodesics are described by a Hamiltonian flow on $T^{*} M$

- H is quadratic on fibers but degenerate

$$
H(p, x)=\frac{1}{2} \sum_{i, j=1}^{n} g^{i j}(x) p_{i} p_{j}, \quad g^{i j}(x) \quad \text { is degenerate }
$$

- not immediate replace Levi-Civita connection / tensor curvature (in general)

The Heisenberg sphere

Even without singular minimizers things are not trivial

Sub-Riemannian spheres are not smooth, even for small radii

Asymptotics of distortion coefficients

Sub-Riemannian distortion coefficient

$$
\beta_{t}(x, y):=\limsup _{r \rightarrow 0} \frac{\mathrm{~m}\left(Z_{t}\left(x, \mathcal{B}_{r}(y)\right)\right)}{\mathrm{m}\left(\mathcal{B}_{r}(y)\right)}, \quad \forall x, y \in M, t \in[0,1]
$$

- Riemannian case: $\beta_{t}(x, y) \sim t^{n}$

Theorem (Agrachev, DB, Rizzi - 2013)

Fix $x \in M$. Then for a.e. $y \in M$ one has

$$
\beta_{t}(x, y) \sim t^{\mathcal{N}(x)},
$$

for some $\mathcal{N}(x) \in \mathbb{N}$ such that $\mathcal{N}(x)>n$.

- $\mathcal{N}(x)$ is the geodesic dimension at x
- definable in terms of directional Lie brackets
- it is bigger also than the Hausorff dimension

Sub-Riemannian BM with weights

Given $A, B \subset M$ Borel and $t \in[0,1]$

$$
\beta_{t}(A, B):=\inf \left\{\beta_{t}(x, y) \mid(x, y) \in A \times B\right\}
$$

Theorem (Barilari, R. - 2017)

Let (M, D, g) be an ideal n-dim sub-Riemannian manifold, m smooth measure. For all $A, B \subset M$ Borel and $t \in[0,1]$

$$
\mathrm{m}\left(Z_{t}(A, B)\right)^{1 / n} \geq \beta_{1-t}(B, A)^{1 / n} \mathrm{~m}(A)^{1 / n}+\beta_{t}(A, B)^{1 / n} \mathrm{~m}(B)^{1 / n}
$$

- Particular case of more general sub-Riemannian interpolation inequalities
- functional inequalities à la Borell-Brascamp-Liebb
- $\beta_{t}(x, y)$ explicitly computable in terms of Hamiltonian flow

Sub-Riemannian BM with weights

Given $A, B \subset M$ Borel and $t \in[0,1]$

$$
\beta_{t}(A, B):=\inf \left\{\beta_{t}(x, y) \mid(x, y) \in A \times B\right\}
$$

Theorem (Barilari, R. - 2017)

Let (M, D, g) be an ideal n-dim sub-Riemannian manifold, m smooth measure. For all $A, B \subset M$ Borel and $t \in[0,1]$

$$
\mathrm{m}\left(Z_{t}(A, B)\right)^{1 / n} \geq \beta_{1-t}(B, A)^{1 / n} \mathrm{~m}(A)^{1 / n}+\beta_{t}(A, B)^{1 / n} \mathrm{~m}(B)^{1 / n}
$$

- Particular case of more general sub-Riemannian interpolation inequalities
- difficulties: absence of standard Jacobi fields, degenerate Hamiltonian
- $\beta_{t}(x, y)$ explicitly computable in terms of Hamiltonian flow
\rightarrow notice that IF $\beta_{t}(x, y) \geq t^{n}$ then linear weights in t, but \ldots

Equivalence of inequalities

$$
\mathrm{m}\left(Z_{t}(A, B)\right)^{1 / n} \geq \beta_{1-t}(B, A)^{1 / n} \mathrm{~m}(A)^{1 / n}+\beta_{t}(A, B)^{1 / n} \mathrm{~m}(B)^{1 / n}
$$

- Interesting case: $\beta_{t}(x, y) \geq t^{N}$ for some $N(\rightarrow$ hence $N \geq \mathcal{N}(x))$

Corollary

Let (M, D, g) be an ideal n-dim sub-Riemannian manifold, m smooth measure.
Let $N>0$. The following are equivalent:
(i) bound on the distortion coefficient:

$$
\beta_{t}(x, y) \geq t^{N}
$$

(ii) the modified Brunn-Minkowski inequality:

$$
\mathrm{m}\left(Z_{t}(A, B)\right)^{1 / n} \geq(1-t)^{N / n} \mathrm{~m}(A)^{1 / n}+t^{N / n} \mathrm{~m}(B)^{1 / n}
$$

(iii) the measure contraction property $\operatorname{MCP}(0, N)$:

$$
\mathrm{m}\left(Z_{t}(x, B)\right) \geq t^{N} \mathrm{~m}(B)
$$

Application to some Carnot groups

Theorem (Rifford - 2014, Rifford, Badreddine - 2018)

There exists $N>0$ such that

$$
\beta_{t}(x, y) \geq t^{N} \quad \forall t \in[0,1]
$$

a) for every compact 2-step sub-Riemannian manifold

[^0]
Application to some Carnot groups

Theorem (Rifford - 2014, Rifford, Badreddine - 2018)

There exists $N>0$ such that

$$
\beta_{t}(x, y) \geq t^{N} \quad \forall t \in[0,1]
$$

a) for every compact 2-step sub-Riemannian manifold

$$
(\rightarrow D+[D, D]=T M)
$$

Application to some Carnot groups

Theorem (Rifford - 2014, Rifford, Badreddine - 2018)

There exists $N>0$ such that

$$
\beta_{t}(x, y) \geq t^{N} \quad \forall t \in[0,1]
$$

a) for every compact 2-step sub-Riemannian manifold

$$
(\rightarrow D+[D, D]=T M)
$$

b) a class of 3-step Carnot group

Conjecture: for Carnot groups best exponent = geodesic dimension?

Application to some Carnot groups

Theorem (Rifford - 2014, Rifford, Badreddine - 2018)

There exists $N>0$ such that

$$
\beta_{t}(x, y) \geq t^{N} \quad \forall t \in[0,1]
$$

a) for every compact 2-step sub-Riemannian manifold $\quad(\rightarrow D+[D, D]=T M)$ b) a class of 3-step Carnot group $\quad(\rightarrow D+[D, D]+[X,[D, D]]=T M)$

Conjecture: for Carnot groups best exponent $=$ geodesic dimension?

For any generalized H-type Carnot group of dimension n and rank k, equipped with the I ehesome measure for all Rorel subsets A ine have the sharn ineaualit

Application to some Carnot groups

Theorem (Rifford - 2014, Rifford, Badreddine - 2018)

There exists $N>0$ such that

$$
\beta_{t}(x, y) \geq t^{N} \quad \forall t \in[0,1]
$$

a) for every compact 2-step sub-Riemannian manifold $\quad(\rightarrow D+[D, D]=T M)$
b) a class of 3-step Carnot group $\quad(\rightarrow D+[D, D]+[X,[D, D]]=T M)$

Conjecture: for Carnot groups best exponent $=$ geodesic dimension?

For any generalized H-type Carnot group of dimension n and rank k, equipped

Application to some Carnot groups

Theorem (Rifford - 2014, Rifford, Badreddine - 2018)

There exists $N>0$ such that

$$
\beta_{t}(x, y) \geq t^{N} \quad \forall t \in[0,1]
$$

a) for every compact 2-step sub-Riemannian manifold $\quad(\rightarrow D+[D, D]=T M)$
b) a class of 3-step Carnot group $\quad(\rightarrow D+[D, D]+[X,[D, D]]=T M)$

Conjecture: for Carnot groups best exponent = geodesic dimension?

Theorem (Barilari, R. - 2017)

For any generalized H-type Carnot group of dimension n and rank k, equipped with the Lebesgue measure, for all Borel subsets A, B we have the sharp inequality

$$
\operatorname{vol}\left(Z_{t}(A, B)\right)^{\frac{1}{n}} \geq(1-t)^{\frac{k+3(n-k)}{n}} \operatorname{vol}(A)^{\frac{1}{n}}+t^{\frac{k+3(n-k)}{n}} \operatorname{vol}(B)^{\frac{1}{n}},
$$

\rightarrow not necessarily ideal (tensorization: Ritoré-Nicolàs - 2017)

Application to the Grushin plane

Rank-varying structure on $M=\mathbb{R}^{2}$, equipped with Lebesgue measure

$$
X_{1}=\partial_{x}, \quad X_{2}=x \partial_{y}
$$

Well defined geodesic m.m.s. (almost Riemannian, with Curv $\rightarrow-\infty$).

Theorem (Barilari, R. - 2017)

The distortion coefficient of Grushin satisfies the following sharp inequality

$$
\beta_{t}(x, y) \geq t^{5}, \quad \forall t \in[0,1]
$$

which is equivalent to the Brunn-Minkowski inequality:

$$
\operatorname{vol}\left(Z_{t}(A, B)\right)^{1 / 2} \geq(1-t)^{5 / 2} \operatorname{vol}(A)^{1 / 2}+t^{5 / 2} \operatorname{vol}(B)^{1 / 2}
$$

- Gap between the geodesic dimension and the best N

$$
\mathcal{N}(x)= \begin{cases}2 & \text { in the Riemannian region } \\ 4 & \text { otherwise }\end{cases}
$$

Regularity of distance

(M, D, g) complete (sub-)Riemannian structure. Fix $x \in M$.

Theorem (Agrachev - 2009, Rifford-Trélat - 2006)

The set of points where $d_{S R}^{2}(x, \cdot)$ is smooth is open and dense in M.
The cut locus cut (x) is the complement of the set of smooth points

From Wikipedia: By Cffk (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]

Regularity of distance

The proof of the main inequality implies the following characterization

Theorem (Barilari, R. - 2017)

Let (M, D, g) be an ideal sub-Riemannian manifold. Let $y \neq x$. Then $y \in \operatorname{cut}(x)$ if and only if $f=d_{S R}^{2}(x, \cdot)$ fails to be semiconvex at y :

$$
\inf _{0<|v|<1} \frac{f(y+v)+f(y-v)-2 f(y)}{|v|^{2}}=-\infty
$$

\rightarrow "one cannot put a parabola below the graph of the distance"

- Extends an analogue result in the Riemannian case [CEMS,2001]
- Differentiability of transport map [FR,2008]
- Sharp \rightarrow there are non-ideal structures where $d_{S R}^{2}(x, \cdot)$ is locally semiconvex at the cut locus (it fails to be semiconcave)

Regularity of distance

The proof of the main inequality implies the following characterization

Theorem (Barilari, R. - 2017)

Let (M, D, g) be an ideal sub-Riemannian manifold. Let $y \neq x$. Then $y \in \operatorname{cut}(x)$ if and only if $f=d_{S R}^{2}(x, \cdot)$ fails to be semiconvex at y :

$$
\inf _{0<|v|<1} \frac{f(y+v)+f(y-v)-2 f(y)}{|v|^{2}}=-\infty
$$

\rightarrow "one cannot put a parabola below the graph of the distance"

- Extends an analogue result in the Riemannian case [CEMS,2001]
- Differentiability of transport map [FR,2008]
- Sharp \rightarrow there are non-ideal structures where $d_{S R}^{2}(x, \cdot)$ is locally semiconvex at the cut locus (it fails to be semiconcave) \rightarrow role of abnormal minimizers

Outline

(1) Introduction

(2) The sub-Riemannian case
(3) Few ideas from the proof

4 What are model spaces?

Idea of the proof

Step 0. Optimal transport problem: $\mu_{0}, \mu_{1} \in \mathcal{P}_{c}(M)$

$$
\inf _{T_{\sharp} \mu_{0}=\mu_{1}} \frac{1}{2} \int_{M} d_{S R}^{2}(x, T(x)) d \mathrm{~m}(x)
$$

- Maps $T: M \rightarrow M$ that realizes the inf are optimal transport maps
- Points are transported along geodesics $x \mapsto T(x)$
- To prove $\mathrm{BM} \Rightarrow$ choose $\left(\mu_{0}, \mu_{1}\right)=\left(\chi_{A}, \chi_{B}\right)$. The interpolating measure measure μ_{t} gives a lower bound for the measure of $Z_{t}(A, B)$

Idea of the proof

Step 1. The optimal transport problem is well defined on ideal structures (Ambrosio-Rigot 2004, Agrachev-Lee 2008, Figalli-Juillet 2008, Figalli-Rifford 2010)

Theorem (Figalli, Rifford - 2010)

Let $\mu_{0} \in \mathcal{P}_{c}^{a c}(M), \mu_{1} \in \mathcal{P}_{c}(M)$. Assume $\operatorname{supp}\left(\mu_{0}\right) \cap \operatorname{supp}\left(\mu_{1}\right)=\emptyset$.

- There exists a unique optimal transport map $T: M \rightarrow M$ such that $T_{\sharp} \mu_{0}=\mu_{1}$, given by

$$
T(x)=\exp _{x}\left(d_{x} \psi\right),
$$

where $\psi: M \rightarrow \mathbb{R}$ is locally semiconvex.

- For μ_{0}-a.e. $x \in M$ there exists a unique geodesic joining x with $T(x)$:

$$
T_{t}(x)=\exp _{x}\left(t d_{x} \psi\right), \quad \forall t \in[0,1] .
$$

- ideal \Rightarrow semiconvexity of ψ

Idea of the proof

Step 2. Geodesics interpolation between μ_{0} and μ_{1} at time $t \in[0,1]$:

$$
\mu_{t}:=\left(T_{t}\right)_{\sharp} \mu_{0}, \quad \text { with } \quad T_{t}(x)=\exp _{x}\left(t d_{x} \psi\right)
$$

- ψ Alexandrov second differentiability theorem $\Rightarrow T_{t}(x)$ is m -a.e. differentiable

$$
\text { if }\left|\operatorname{det}\left(d_{x} T_{t}\right)\right|>0 \text { m-a.e. } \quad \mu_{t}=\rho_{t} \mathrm{~m}, \quad \rho_{t}\left(T_{t}(x)\right)=\frac{\rho_{0}(x)}{\left|\operatorname{det}\left(d_{x} T_{t}\right)\right|}
$$

Idea of the proof

Step 2. Geodesics interpolation between μ_{0} and μ_{1} at time $t \in[0,1]$:

$$
\mu_{t}:=\left(T_{t}\right)_{\sharp} \mu_{0}, \quad \text { with } \quad T_{t}(x)=\exp _{x}\left(t d_{x} \psi\right)
$$

- ψ Alexandrov second differentiability theorem $\Rightarrow T_{t}(x)$ is m -a.e. differentiable

$$
\text { if }\left|\operatorname{det}\left(d_{x} T_{t}\right)\right|>0 \text { m-a.e. } \quad \mu_{t}=\rho_{t} \mathrm{~m}, \quad \rho_{t}\left(T_{t}(x)\right)=\frac{\rho_{0}(x)}{\left|\operatorname{det}\left(d_{x} T_{t}\right)\right|}
$$

Step 3. The differential $d_{x} T_{t}: T_{x} M \rightarrow T_{T_{t}(x)} M$

$$
d_{x} T_{t}=\pi_{*} \circ e_{*}^{t \vec{H}} \circ d_{x}^{2} \psi
$$

- use the natural symplectic structure on $T^{*} M$ and Darboux moving frames
- avoid the classical machinery of connection and parallel transport

Idea of the proof

Step 2. Geodesics interpolation between μ_{0} and μ_{1} at time $t \in[0,1]$:

$$
\mu_{t}:=\left(T_{t}\right)_{\sharp} \mu_{0}, \quad \text { with } \quad T_{t}(x)=\exp _{x}\left(t d_{x} \psi\right)
$$

- ψ Alexandrov second differentiability theorem $\Rightarrow T_{t}(x)$ is m -a.e. differentiable

$$
\text { if }\left|\operatorname{det}\left(d_{x} T_{t}\right)\right|>0 \text { m-a.e. } \quad \mu_{t}=\rho_{t} \mathrm{~m}, \quad \rho_{t}\left(T_{t}(x)\right)=\frac{\rho_{0}(x)}{\left|\operatorname{det}\left(d_{x} T_{t}\right)\right|}
$$

Step 3. The differential $d_{x} T_{t}: T_{x} M \rightarrow T_{T_{t}(x)} M$

$$
d_{x} T_{t}=\pi_{*} \circ e_{*}^{t \vec{H}} \circ d_{x}^{2} \psi
$$

- use the natural symplectic structure on $T^{*} M$ and Darboux moving frames
- avoid the classical machinery of connection and parallel transport

Step 4. Jacobian inequality: i.e., interpolation inequality for $\operatorname{det} d_{x} T_{t}$

Concentration inequality

The proof implies:

- $T(x) \notin \operatorname{cut}(x)$ for μ_{0}-a.e. $x \in M$
- $\operatorname{det}\left(d_{x} T_{t}\right)>0$ for all $t \in[0,1)$ and $\mu_{t}=\rho_{t} \mathrm{~m}$
- The Jacobian inequality holds on the whole $[0,1]$

Theorem (Barilari, R. - 2017)

Let (D, g) be an ideal sub-Riemannian structure on M, and $\mu_{0}, \mu_{1} \in \mathcal{P}_{c}^{a c}(M)$. Let $\rho_{t}=d \mu_{t} / d \mathrm{~m}$. For all $t \in[0,1]$, it holds

$$
\frac{1}{\rho_{t}\left(T_{t}(x)\right)^{1 / n}} \geq \frac{\beta_{1-t}(T(x), x)^{1 / n}}{\rho_{0}(x)^{1 / n}}+\frac{\beta_{t}(x, T(x))^{1 / n}}{\rho_{1}(T(x))^{1 / n}}, \quad \mu_{0}-\text { a.e. } x \in M
$$

If μ_{1} is not absolutely continuous, an analogous result holds, provided that $t \in[0,1)$, and that the second term on the right hand side is omitted.

- Borell-Brascamp-Lieb, p-mean inequality, Brunn-Minkowski follow

Outline

Comparison: the Riemannian case

$$
\mathrm{m}\left(Z_{t}(A, B)\right)^{1 / n} \geq \beta_{1-t}(B, A)^{1 / n} \mathbf{m}(A)^{1 / n}+\beta_{t}(A, B)^{1 / n} \mathbf{m}(B)^{1 / n}
$$

- Distortion coefficients are in general difficult to compute,
- a bound on the geometry gives a bound in terms of model spaces.

Theorem

Let (M, g) be a n-dimensional Riemannian, with $\mathrm{m}=\operatorname{vol}_{g}$ Riemannian volume. Assume that $\operatorname{Ric}_{g} \geq K$. Then for $(x, y) \notin \operatorname{cut}(M)$ we have

$$
\begin{equation*}
\beta_{t}(x, y) \geq \beta_{t}^{(K, n)}(x, y) \tag{3}
\end{equation*}
$$

- $\beta_{t}^{(K, n)}(x, y)$ distortion coefficient of model: constant sectional curvature K and dimension n.

Comparison: the Riemannian case

$$
\mathrm{m}\left(Z_{t}(A, B)\right)^{1 / n} \geq \beta_{1-t}(B, A)^{1 / n} \mathbf{m}(A)^{1 / n}+\beta_{t}(A, B)^{1 / n} \mathbf{m}(B)^{1 / n}
$$

- Distortion coefficients are in general difficult to compute,
- a bound on the geometry gives a bound in terms of model spaces.

Theorem

Let (M, g) be a n-dimensional Riemannian, with $\mathrm{m}=\operatorname{vol}_{g}$ Riemannian volume. Assume that $\operatorname{Ric}_{g} \geq K$. Then for $(x, y) \notin \operatorname{cut}(M)$ we have

$$
\begin{equation*}
\beta_{t}(x, y)^{\frac{1}{n}} \geq \beta_{t}^{(K, n)}(x, y)^{\frac{1}{n}} \tag{3}
\end{equation*}
$$

- $\beta_{t}^{(K, n)}(x, y)$ distortion coefficient of model: constant sectional curvature K and dimension n.
- Assume the Riemannian manifold (M, g) endowed with arbitrary smooth measure $\mathrm{m}=e^{-V}$ vol $_{g}$
- Bakry-Emery Ricci tensor

$$
\begin{equation*}
\operatorname{Ric}_{g}^{\mathrm{m}, N}:=\operatorname{Ric}_{g}+\nabla^{2} V-\frac{\nabla V \otimes \nabla V}{N-n} \tag{4}
\end{equation*}
$$

Theorem

Let (M, g) be a n-dimensional Riemannian manifold, with smooth volume m . Assume that $\operatorname{Ric}_{g}^{\mathrm{m}, N} \geq K$. Then for $(x, y) \notin \operatorname{cut}(M)$ we have

$$
\begin{equation*}
\beta_{t}(x, y)^{\frac{1}{N}} \geq \beta_{t}^{(K, n)}(x, y)^{\frac{1}{n}} . \tag{5}
\end{equation*}
$$

- This inequality is weaker than the one is possible to obtain $(\rightarrow$ the one defining $\mathrm{CD}(K, N)$ spaces)
- i.e., the latter cannot be obtained plugging this inequality into the main one.
- this can be generalized to sub-Riemannian (could not expect $\mathrm{CD}(K, N)$)
- Assume the Riemannian manifold (M, g) endowed with arbitrary smooth measure $\mathrm{m}=e^{-V}$ vol $_{g}$
- Bakry-Emery Ricci tensor

$$
\begin{equation*}
\operatorname{Ric}_{g}^{\mathrm{m}, N}:=\operatorname{Ric}_{g}+\nabla^{2} V-\frac{\nabla V \otimes \nabla V}{N-n} \tag{4}
\end{equation*}
$$

Theorem

Let (M, g) be a n-dimensional Riemannian manifold, with smooth volume m . Assume that $\operatorname{Ric}_{g}^{\mathrm{m}, N} \geq K$. Then for $(x, y) \notin \operatorname{cut}(M)$ we have

$$
\begin{equation*}
\beta_{t}(x, y)^{\frac{1}{N}} \geq \beta_{t}^{(K, n)}(x, y)^{\frac{1}{n}} . \tag{5}
\end{equation*}
$$

- This inequality is weaker than the one is possible to obtain $(\rightarrow$ the one defining $\mathrm{CD}(K, N)$ spaces)
- i.e., the latter cannot be obtained plugging this inequality into the main one.
- this can be generalized to sub-Riemannian (could not expect $\mathrm{CD}(K, N)$)

Explicit formula for the coefficient appearing in the right-hand side of (3)

$$
\beta_{t}^{(K, n)}(x, y)=\left\{\begin{array}{ll}
t\left(\frac{\sin (t \alpha)}{\sin (\alpha)}\right)^{n-1} & \text { if } K>0, \tag{6}\\
t^{n} & \text { if } K=0, \\
t\left(\frac{\sinh (t \alpha)}{\sinh (\alpha)}\right)^{n-1} & \text { if } K<0,
\end{array} \quad \alpha=\sqrt{\frac{|K|}{n-1}} d(x, y) .\right.
$$

- only depends on $d(x, y)$
- the $(n-1) \rightarrow$ no curvature in direction of the geodesic
- Jacobi equation in parallel transported frame

$$
\ddot{J}_{i}+R_{i j}(t) J_{j}=0
$$

where $R_{i j}(t)=R\left(X_{i}, \dot{\gamma}, \dot{\gamma}, X_{j}\right)$.

- constant curvature $R=\operatorname{diag}(K, K, \ldots, K, 0)$

The problem of models

When do we have $\beta_{t}(x, y) \geq \beta_{t}^{\text {model }}$?

- In the above example models are given by Riemannian space forms
- No reason to be good models also for the sub-Riemannian case
- do not depend only on $d(x, y)$ but on the whole trajectory

Problems in the SR case: What are models? What is curvature?
We propose an approach from the viewpoint of control theory:

- Curvature: invariant extracted from derivatives of the sub-Riemannian distance
- Models: simple optimal control problems

Linear Quadratic problems as models

Variational problems in \mathbb{R}^{n}

$$
\dot{x}=A x+B u
$$

with minimization of a quadratic cost

$$
\frac{1}{2} \int_{0}^{1}\left(u^{*} u-x^{*} Q x\right) d t \longrightarrow \min
$$

Bracket generating: $\exists m \geq 0$ such that $\operatorname{rank}\left(B, A B, \ldots, A^{m} B\right)=n$

Optimal trajectories solve a Hamiltonian system:

$$
H(p, x)=\frac{1}{2}\left(p^{*} B B^{*} p+2 p^{*} A x+x^{*} Q x\right)
$$

For all LQ problems that we use, minimizers exist and are unique.

LQ distortion

Definition (LQ distortion coefficients)

$$
\beta_{t}^{A, B, Q}(x, y):=\limsup _{r \rightarrow 0} \frac{\left|Z_{t}\left(x, \mathcal{B}_{r}(y)\right)\right|}{\left|\mathcal{B}_{r}(y)\right|}, \quad x, y \in \mathbb{R}^{n}
$$

- It does not depend on x, y (the Hamiltonian flow is linear)
- Very simple to compute

Example: Harmonic oscillator

No drift $(A=0)$, no constraint on velocity $(B=\mathbb{1})$, isotropic potential $(Q=\kappa \mathbb{1})$:

$$
H(p, x)=\frac{1}{2}\left(|p|^{2}+\kappa|x|^{2}\right)
$$

$\Rightarrow \beta_{t}^{A, B, Q}=$ Riemannian distortion coefficients!

What is curvature? (sketchy)

Fact/definition:

To any SR geodesic γ (+ technical assumptions) we associate

- two constant matrices A and $B \rightarrow$ structure of Lie derivatives along geodesics
- a curvature operator, quadratic form $\mathfrak{R}_{\gamma(t)}: T_{\gamma(t)} M \rightarrow \mathbb{R}$ for $t \in[0, T]$.
- In the Riemannian case: $A=0, B=I, \Re_{\gamma(t)}(X)=R^{\nabla}\left(\dot{\gamma}_{t}, X, X, \dot{\gamma}_{t}\right)$ Given the operator $\mathscr{F}_{\gamma(t)}$ and a smooth measure m one can define a Bakry-Emery suh Diamannian tensor Recall that $n=\operatorname{dim} M$ and $k=\operatorname{dim} D$.
\square

What is curvature? (sketchy)

Fact/definition:

To any SR geodesic γ (+ technical assumptions) we associate

- two constant matrices A and $B \rightarrow$ structure of Lie derivatives along geodesics
- a curvature operator, quadratic form $\mathfrak{R}_{\gamma(t)}: T_{\gamma(t)} M \rightarrow \mathbb{R}$ for $t \in[0, T]$.
- In the Riemannian case: $A=0, B=I, \Re_{\gamma(t)}(X)=R^{\nabla}\left(\dot{\gamma}_{t}, X, X, \dot{\gamma}_{t}\right)$

Given the operator $\mathfrak{R}_{\gamma(t)}$ and a smooth measure m one can define a Bakry-Emery sub-Riemannian tensor

$$
\begin{equation*}
\mathfrak{R}_{\gamma(t)}^{\mathrm{m}, N}=\mathfrak{R}_{\gamma(t)}-\frac{\dot{\rho}(t)}{k} \Pi_{\gamma(t)}-\frac{n}{N-n} \frac{\rho^{2}(t)}{k^{2}} \Pi_{\gamma(t)} . \tag{7}
\end{equation*}
$$

Recall that $n=\operatorname{dim} M$ and $k=\operatorname{dim} D$.

- in Riemannian $\rho(t)=-g(\nabla V, \dot{\gamma}(t))$ for $\mathrm{m}=e^{-V}$ vol $_{g}$.

Final comparison

In terms of the Bakry-Emery SR curvature $\mathfrak{R}_{\gamma(t)}^{m, N}$ we have the following comparison

Theorem

Let $(x, y) \notin \operatorname{cut}(M)$ and assume that the unique length-minimizer joining x and y is associated with matrices A, B.
(a) If there exists $N>n$ and Q such that $\frac{1}{N} \mathfrak{R}_{\gamma(t)}^{m, N} \geq \frac{1}{n} Q$ for every $t \in[0, T]$, then

$$
\begin{equation*}
\beta_{t}(x, y)^{\frac{1}{N}} \geq\left(\beta_{t}^{A, B, Q}\right)^{\frac{1}{n}} \tag{8}
\end{equation*}
$$

Assume now that $\rho=0$.
(b) If there exists Q such that $\Re_{\gamma(t)} \geq Q$ for every $t \in[0, T]$, then

$$
\begin{equation*}
\beta_{t}(x, y) \geq \beta_{t}^{A, B, Q} \tag{9}
\end{equation*}
$$

THANKS FOR YOUR ATTENTION!

[^0]: Conjecture: for Carnot groups best exponent = geodesic dimension?

