Volume geodesic distortion and Ricci curvature in sub-Riemannian geometry

Davide Barilari IMJ-PRG, Université Paris Diderot - Paris 7

Singular Phenomena and Singular Geometries Pisa, Italy.

June 21, 2016

References

This is a joint work with

- Andrei Agrachev (SISSA, Trieste)
- Elisa Paoli (PhD at SISSA, 2015)

 \rightarrow Main reference:

ABP-16 Andrei Agrachev, DB, Elisa Paoli Volume geodesic distortion and Ricci curvature for Hamiltonian flows, [Arxiv Preprint, 27 pp.]

 \rightarrow Other references:

ABR-13 Andrei Agrachev, DB, Luca Rizzi *Curvature: a variational approach* [Memoirs of the AMS, in press.]

Outline

Outline

2 Riemannian case

3 Main result and assumptions

Davide Barilari (IMJ-PRG, Paris Diderot)

Introduction

One of the possible ways of introducing Ricci curvature in Riemannian geometry is by computing the variation of the Riemannian volume under the geodesic flow.

- fix x on a Riemannian manifold (M,g) and a tangent unit vector $v \in T_xM$
- $\gamma(t) = \exp_x(tv)$ geodesic starting at x with initial tangent vector v.
- an orthonormal basis e_1, \ldots, e_n in $T_x M$
- $e_i(t) = (d_{tv} \exp_x)(e_i) (\rightarrow \text{ Jacobi fields})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let Q_t be the parallelotope with edges $e_i(t)$
- vol_g is the canonical Riemannian volume

The volume of the time-dependent parallelotope Q_t has the following expansion for $t \to 0$,

$$\operatorname{vol}_{g}(Q_{t}) = 1 - \frac{1}{6} \operatorname{Ric}^{g}(v, v) t^{2} + O(t^{3}),$$
(1)

Davide Barilari (IMJ-PRG, Paris Diderot)

- $\bullet \ (M,g)$ is a complete, connected Riemannian manifold
- μ smooth volume form on M.
- Fix $\Omega \subset M$ be a bounded, measurable set, with $0 < \mu(\Omega) < +\infty$
- let $\Omega_{x,t}$ the set of *t*-intermediate points between Ω and $x \ (t \in [0,1])$.
- Understand the behavior of $\mu(\Omega_{x_0,t})$
- Assume $\Omega = \exp_{x_0}(A)$, then $\Omega_{x_0,t} = \exp_{x_0,t}(A)$

$$\mu(\Omega_{x_0,t}) = \int_{\Omega_{x_0,t}} \mu = \int_A \exp_{x_0,t}^* \mu$$

ightarrow Idea: study for infinitesimal A, i.e. the asymptotic of $\exp_{x,t}^* \mu$

Figure: *t*-intermediate points between Ω and *x*.

- assume y regular value of \exp_x
- Ω small such that $\Omega = \exp_x(A)$.
- $\Omega_{x,t} = \{\gamma_{x,y}(t) \mid y \in \Omega\}$

• • • • • • • • • • • •

Two basic examples

(R) For a Riemannian structure (M^n, g) , it is well known that

$$\mu(\Omega_{x,t}) \sim t^n, \quad \text{for } t \to 0,$$

[here $f(t) \sim g(t)$ means f(t) = g(t)(C + o(1)) for $t \to 0$ and C > 0]

(SR) In the 3D Heisenberg group it follows from [Juillet '09] that

$$\mu(\Omega_{x,t}) \sim t^5, \qquad \text{for } t \to 0,$$

5 \neq top. dim. (= 3) \neq metric dim. (= 4).

\rightarrow different dimensional invariant

 \rightarrow associated with behavior of geodesics based at x_0

- \bullet (M,g) is a complete, connected Riemannian manifold
- μ smooth volume form on M.
- Fix $\Omega \subset M$ be a bounded, measurable set, with $0 < \mu(\Omega) < +\infty$
- let $\Omega_{x,t}$ the set of *t*-intermediate points between Ω and $x \ (t \in [0, 1])$.
- Understand the behavior of $\mu(\Omega_{x,t})$
- Assume $\Omega = \exp_x(A)$, then $\Omega_{x,t} = \exp_{x,t}(A)$

$$\mu(\Omega_{x,t}) = \int_{\Omega_{x,t}} \mu = \int_A \exp_{x,t}^* \mu$$

 \rightarrow Idea: study for infinitesimal A and $t \rightarrow 0$, i.e. the asymptotic of $\exp_{x,t}^* \mu$

Given μ smooth volume on M

- $\exp_{x,t}^* \mu$ is a (t-dependent) measure that lives on $T_x M$
- we compare it with a fixed volume form there

Davide Barilari (IMJ-PRG, Paris Diderot)

Sub-Riemannian geometry

Outline

Motivation and introduction

Main result and assumptions

Davide Barilari (IMJ-PRG, Paris Diderot)

Sub-Riemannian geometry

June 21, 2016 5 / 24

Riemannian manifolds

Let (M,g) be a Riemannian manifold. Fix $x\in M$

- g_{ij} the coefficients of the metric
- $\exp_x: T_x M \to M$ be the exponential map
- $\operatorname{vol}_g = \sqrt{\det g_{ij}} \, dx_1 \cdots dx_n =$ Riemannian volume
- ightarrow From the classical formula in normal coordinates

$$g_{ij} = \delta_{ij} + \frac{1}{3}R_{ijkl}x^kx^l + o(|x|^2)$$

one obtains the expansion

$$\sqrt{\det g_{ij}(\exp_x(tv))} = 1 - \frac{1}{6} \operatorname{Ric}^g(v, v) t^2 + o(t^2)$$

Using that

$$\phi^*(f\omega) = (f \circ \phi)\phi^*(\omega)$$

with $\phi = \exp_x : T_x M \to M$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Riemannian manifolds II

$$(\exp_x^* \operatorname{vol}_g)(tv) = \sqrt{\det g_{ij}(\exp_x(tv))} \underbrace{\exp_x^*(dx_1 \cdots dx_n)}_{\text{volume on } T_x M}$$

ightarrow with respect to the exponential map at time t

$$\exp_{x,t}(v) := \exp_x(tv), \qquad \exp_{x,t}^* = t^n \exp_x^*$$

$$\left(\exp_{x,t}^* \operatorname{vol}_g\right)(v) = t^n \left(1 - \frac{1}{6}\operatorname{Ric}^g(v, v)t^2 + o(t^2)\right)\widehat{\operatorname{vol}}_x$$

Riemannian manifolds II

$$(\exp_x^* \operatorname{vol}_g)(tv) = \left(1 - \frac{1}{6}\operatorname{Ric}^g(v, v)t^2 + o(t^2)\right)\widehat{\operatorname{vol}}_x$$

 \rightarrow with respect to the exponential map at time t

$$\exp_{x,t}(v) := \exp_x(tv), \qquad \exp_{x,t}^* = t^n \exp_x^*$$

$$(\exp_{x,t}^* \operatorname{vol}_g)(v) = t^n \left(1 - \frac{1}{6} \operatorname{Ric}^g(v, v) t^2 + o(t^2)\right) \widehat{\operatorname{vol}}_x$$

Riemannian manifolds II

$$(\exp_x^* \operatorname{vol}_g)(tv) = \left(1 - \frac{1}{6}\operatorname{Ric}^g(v, v)t^2 + o(t^2)\right)\widehat{\operatorname{vol}}_x$$

 \rightarrow with respect to the exponential map at time t

$$\exp_{x,t}(v) := \exp_x(tv), \qquad \exp_{x,t}^* = t^n \exp_x^*$$

$$(\exp_{x,t}^* \operatorname{vol}_g)(v) = t^n \left(1 - \frac{1}{6} \operatorname{Ric}^g(v, v) t^2 + o(t^2) \right) \widehat{\operatorname{vol}}_x$$

Weighted Riemannian manifolds

•
$$(M, g, \mu)$$
 with $\mu = e^{\psi} \operatorname{vol}_g$ and $\psi : M \to \mathbb{R}$ smooth
• $\gamma(t) = \exp_{x,t}(v)$

$$(\exp_{x,t}^* \mu)(v) = t^n e^{\psi(\gamma(t))} \left(1 - \frac{1}{6} \operatorname{Ric}^g(v, v) t^2 + o(t^2)\right) \widehat{\operatorname{vol}}_x$$

Writing

$$\psi(\gamma(t)) = \psi(x) + \int_0^t \underbrace{\langle \nabla \psi(\gamma(s)), \dot{\gamma}(s) \rangle}_{\rho(\dot{\gamma}(t))} ds, \qquad \widehat{\mu}_x = e^{\psi(x)} \widehat{\mathrm{vol}}_x$$

$$(\exp_{x,t}^* \mu)(v) = t^n e^{\int_0^t \rho(\dot{\gamma}(s))ds} \left(1 - \frac{1}{6} \operatorname{Ric}^g(v, v) t^2 + o(t^2)\right) \widehat{\mu}_x$$

Goal

We want to extend this result to Hamiltonian quadratic on fibers

$$H(p,x) = \frac{1}{2} \sum_{i=1}^{k} (p \cdot X_i(x))^2 + p \cdot X_0(x) + \frac{1}{2}Q(x)$$

 \rightarrow are associated with the following optimal control problem:

$$\dot{x} = X_0(x) + \sum_{i=1}^k u_i X_i(x)$$
(2)

$$J_T(u) = \frac{1}{2} \int_0^1 |u(s)|^2 - Q(x_u(s))ds \to \min$$
(3)

- X_0, X_1, \ldots, X_k smooth vector fields
- Q is a smooth potential

Goal

We want to extend this result to Hamiltonian quadratic on fibers

$$H(p,x) = \frac{1}{2} \sum_{i=1}^{k} (p \cdot X_i(x))^2 + \frac{p \cdot X_0(x)}{2} + \frac{1}{2}Q(x)$$

 \rightarrow are associated with the following optimal control problem:

$$\dot{x} = X_0(x) + \sum_{i=1}^k u_i X_i(x)$$
 (4)

$$J_T(u) = \frac{1}{2} \int_0^T |u(s)|^2 - Q(x_u(s)) ds \to \min$$
 (5)

- X_0, X_1, \ldots, X_k smooth vector fields
- Q is a smooth potential

Goal

We want to extend this result to Hamiltonian quadratic on fibers

$$H(p, x) = \frac{1}{2} \sum_{i=1}^{k} (p \cdot X_i(x))^2$$

 \rightarrow are associated with the following optimal control problem:

$$\dot{x} = \sum_{i=1}^{k} u_i X_i(x)$$

$$J_T(u) = \frac{1}{2} \int_0^T |u(s)|^2 ds \to \min$$
(6)
(7)

•
$$X_1, \ldots, X_k$$
 smooth vector fields

$$\rightarrow \dim \operatorname{Lie} \{X_1, \ldots, X_k\}(x) = n$$
, for all $x \in M$

Outline

Motivation and introduction

2 Riemannian case

3 Main result and assumptions

Davide Barilari (IMJ-PRG, Paris Diderot)

Sub-Riemannian geometry

June 21, 2016 11 / 24

The Hamiltonian viewpoint

In this case we introduce the exponential map on the cotangent space

$$\exp_{x,t}: T_x^* M \to M, \qquad \exp_{x,t} = \pi \circ e^{t\vec{H}} \big|_{T_x^* M}$$

• $\pi: T^*M \to M$ canonical projection

• \vec{H} the Hamiltonian vector field associated to H

$$\vec{H} = \frac{\partial H}{\partial p} \frac{\partial}{\partial x} - \frac{\partial H}{\partial x} \frac{\partial}{\partial p}$$

Comments:

- in the Riemannian case the two approach are equivalent
- ightarrow (Using the canonical isomorphism $\mathfrak{i}:TM
 ightarrow T^*M$ given by the metric g)
 - in the sub-Riemannian one only the cotangent viewpoint survives!

Case n = 3 and $\underline{k = 2}$

Given μ smooth volume on M

- $\hat{\mu}_x = \text{induced volume form on } T_x M$
- $\widehat{\mu}_x^* =$ induced volume form on T_x^*M dual to $\widehat{\mu}_x$, i.e. $\langle \widehat{\mu}_x^*, \widehat{\mu}_x \rangle = 1$

In the sub-Riemannian case we have the following theorem

Theorem (Agrachev, DB, Paoli, '16)

For any geodesic $\gamma(t) = \exp_{x,t}(\lambda)$ ample and equiregular we have for $t \to 0$

$$(\exp_{x,t}^* \mu)(\lambda) = C_{\lambda} t^{\mathcal{N}(\lambda)} e^{\int_0^t \rho(\dot{\gamma}(s)) ds} \left(1 - \frac{1}{6} \operatorname{tr}(\mathcal{R}_{\lambda}) t^2 + o(t^2)\right) \widehat{\mu}_x^*$$

where

- C_{λ} is a positive constant
- $\mathcal{N}(\lambda)$ is an integer
- $\mathcal{R}_{\lambda}: D_{x_0} \to D_{x_0}$ is a symmetric operator.
- Interaction volume-geodesic flow

$$\rho(\lambda)\widehat{\mu}_x^* = \frac{d}{dt} \bigg|_{t=0} \log(t^{-\mathcal{N}(\lambda)} \left(\exp_{x,t}^* \mu\right)(\lambda))$$

In the sub-Riemannian case we have the following theorem

Theorem (Agrachev, DB, Paoli, '16)

For any geodesic $\gamma(t) = \exp_{x,t}(\lambda)$ ample and equiregular we have for $t \to 0$

$$(\exp_{x,t}^* \mu)(\lambda) = C_{\lambda} t^{\mathcal{N}(\lambda)} e^{\int_0^t \rho(\dot{\gamma}(s))ds} \left(1 - \frac{1}{6} \operatorname{tr}(\mathcal{R}_{\lambda}) t^2 + o(t^2)\right) \hat{\mu}_x^*$$

where

- C_{λ} is a positive constant ($\rightarrow C_{\lambda} = 1$ in Riemannian case)
- $\mathcal{N}(\lambda)$ is an integer ($\rightarrow \mathcal{N}(\lambda) = n$ in Riemannian case)
- $\mathcal{R}_{\lambda}: D_{x_0} \to D_{x_0}$ is a symmetric operator. $(\to \mathcal{R}_{\lambda}(v) = R^g(v, \dot{\gamma})\dot{\gamma})$
- Interaction volume-geodesic flow

$$\rho(\lambda) = \left< \nabla \psi(x), v \right>, \qquad \lambda = \mathfrak{i}(v)$$

In the sub-Riemannian case we have the following theorem

Theorem (Agrachev, DB, Paoli, '16)

For any geodesic $\gamma(t) = \exp_{x,t}(\lambda)$ ample and equiregular we have

$$(\exp_{x,t}^{*}\mu)(\lambda) = C_{\lambda}t^{\mathcal{N}(\lambda)} \underbrace{e^{\int_{0}^{t}\rho(\dot{\gamma}(s))ds}}_{\text{volume-dynamics}} \underbrace{\left(1 - \frac{1}{6}\text{tr}(\mathcal{R}_{\lambda})t^{2} + o(t^{2})\right)}_{\text{dynamics}} \hat{\mu}_{x}^{*}$$

where

- C_{λ} is a positive constant ($\rightarrow C_{\lambda} = 1$ in Riemannian case)
- $\mathcal{N}(\lambda)$ is an integer ($\rightarrow \mathcal{N}(\lambda) = n$ in Riemannian case)
- $\mathcal{R}_{\lambda}: D_{x_0} \to D_{x_0}$ is a symmetric operator. $(\to \mathcal{R}_{\lambda}(v) = R^g(v, \dot{\gamma})\dot{\gamma})$
- Interaction volume-geodesic flow

$$\rho(\cdot)\widehat{\mu}_x^* = \frac{d}{dt} \bigg|_{t=0} \log(t^{-\mathcal{N}(\lambda)} \left(\exp_{x,t}^* \mu\right)(\cdot))$$

In the sub-Riemannian case we have the following theorem

Theorem (Agrachev, DB, Paoli, '16)

For any geodesic $\gamma(t) = \exp_{x,t}(\lambda)$ ample and equiregular we have

$$(\exp_{x,t}^{*}\mu)(\lambda) = C_{\lambda}t^{\mathcal{N}(\lambda)} \underbrace{e^{\int_{0}^{t}\rho(\dot{\gamma}(s))ds}}_{\text{volume-dynamics}} \underbrace{\left(1 - \frac{1}{6}\text{tr}(\mathcal{R}_{\lambda})t^{2} + o(t^{2})\right)}_{\mathbf{v}_{x}}\widehat{\mu}_{x}^{*}$$

dynamics

where

- C_{λ} is a positive constant
- $\mathcal{N}(\lambda)$ is an integer
- $\mathcal{R}_{\lambda}: D_{x_0} \to D_{x_0}$ is a symmetric operator.
- Interaction volume-geodesic flow

$$\rho(\cdot)\widehat{\mu}_x^* = \left. \frac{d}{dt} \right|_{t=0} \log(t^{-\mathcal{N}(\lambda)} \left(\exp_{x,t}^* \mu \right)(\cdot))$$

Geodesic growth vector

Let $\gamma(t)=\exp_{x,t}(\lambda).$ Let $\mathsf{T}\in\Gamma(D)$ an admissible extension of $\dot{\gamma}$

Geodesic flag

$$\mathcal{F}^1 = D, \qquad \mathcal{F}^{i+1} = \mathcal{F}^i + [\mathsf{T}, \mathcal{F}^i]$$

This defines a flag \rightarrow well-defined along $\gamma(t)$

$$\mathcal{F}^{1}_{\gamma(t)} \subset \mathcal{F}^{2}_{\gamma(t)} \subset \ldots \subset T_{\gamma(t)}M \tag{(*)}$$

 $\rightarrow\,$ does not depend on the choice of T

Geodesic growth vector

$$\mathcal{G}_{\gamma(t)} = \{k_1(t), k_2(t), \ldots\}, \qquad k_i(t) = \dim \mathcal{F}^i_{\gamma(t)}$$

 \rightarrow in general different from the growth vector of D.

Ample and equiregular geodesics

A normal geodesic is

- ample at t if $\exists\,m=m(t)>0$ s.t. $\mathcal{F}^m_{\gamma(t)}=T_{\gamma(t)}M$
- equiregular if $k_i(t) = \dim \mathcal{F}^i_{\gamma(t)}$ does not depend on t
- "Microlocal bracket generating condition". $\mathcal{G}_{\gamma} = \{k_1, \dots, k_m\}$
- γ is not abnormal and no conjugate points for t small enough

$\underbrace{\mathcal{A}^e}_{\text{ample}+\text{equireg}} \subset \underbrace{\mathcal{A}}_{\text{ample}} \subset T^*M$

Theorem

- The set \mathcal{A}^e is nonempty, open and dense in T^*M .
- The set $\mathcal{A} \cap T_x^*M$ is nonempty, open and dense in T_x^*M , for all x.

The main terms

- Assume $\mathcal{G}_{\gamma} = \{k_1, \ldots, k_m\}$
 - The constant C_{λ} is explicit
 - $0 < C_{\lambda} \leq 1$
 - depends only on $\{k_1,\ldots,k_m\}$
 - $\bullet~$ The integer $\mathcal{N}(\lambda)$
 - satisfies

$$\mathcal{N}(\lambda) = \sum_{i=1}^{m} (2i-1)(k_i - k_{i-1})$$

- is a sort of geodesic dimension
- in the contact case every non const. geodesic is ample equiregular

$$\mathcal{G}_{\gamma} = \{2n, 2n+1\}$$

$$C_{\lambda} = \frac{1}{12}, \qquad \mathcal{N}(\lambda) = 2n + 3 \cdot 1 = 2n + 3$$

The invariant ρ

It is defined by the identity

$$\rho(\lambda)\widehat{\mu}_x^* = \frac{d}{dt}\Big|_{t=0} \log(t^{-\mathcal{N}(\lambda)} \left(\exp_{x,t}^* \mu\right)(\lambda))$$

• We can define a canonical $n\text{-form }\omega$ defined only along $\gamma(t)$

Theorem

Let T be any admissible extension of $\dot{\gamma}.$ Then for every $\lambda \in T^*_xM$

$$\rho(\lambda) = (\operatorname{div}_{\mu}\mathsf{T} - \operatorname{div}_{\omega}\mathsf{T})|_{x}.$$

(8)

- depends only on the symbol of the structure along the geodesic
- $\rightarrow\,$ a sort of microlocal nilpotent approximation
 - $\rho: \mathcal{A}^e \to \mathbb{R}$ is a rational function

$$\bullet \ \rho(c\lambda)=c\rho(\lambda) \ \text{for all} \ c>0$$

The invariant ρ in contact manifolds

- Let (M^{2d+1}, ω) be a contact manifold:
- Fix a metric g on $D = \ker \omega$. Then (M, D, g) is a sub-Riemannian manifold.
 - $\diamond g$ be extended to TM by requiring that the *Reeb vector field* X_0 is orthogonal to D and of norm one.
- The contact endomorphism $J: TM \to TM$ is defined by:

$$g(X, JY) = d\omega(X, Y), \qquad \forall X, Y \in \Gamma(TM).$$

Theorem

Let $\gamma(t) = \exp_{x,t}(\lambda)$ be any non constant geodesic on a contact manifold. Then

$$\rho(\lambda) = \frac{d}{dt} \bigg|_{t=0} \log \|J\dot{\gamma}(t)\|.$$

In particular, if $J^2 = -1$, then $\rho \equiv 0$.

Distance from a minimizer

Fix $x_0 \in M$ and a length-minimizer trajectory $\gamma(t)$ and define the geodesic cost

Theorem (Agrachev, DB, Rizzi, '13)

Assume γ to be ample. Then

- the function $(t,x) \mapsto c_t(x)$ is smooth on an open set $U \subset (0,\varepsilon) \times O_{x_0}$.
- $d_{x_0}\dot{c}_t = \lambda_0$ for any $t \in (0, \varepsilon)$.

 $\rightarrow d_{x_0}^2 \dot{c}_t : T_{x_0} M \rightarrow \mathbb{R}$ is a well defined family of quadratic forms.

Consider the restriction $d_{x_0}^2 \dot{c}_t |_{D_{x_0}} : D_{x_0} \to \mathbb{R}$ to the distribution.

 \rightarrow the scalar product $\langle\cdot,\cdot\rangle$ on D_{x_0} let us to define a family of symmetric operators

$$\mathcal{Q}_{\lambda}(t): D_{x_0} \to D_{x_0}, \qquad d_{x_0}^2 \dot{c}_t(v) = \langle \mathcal{Q}_{\lambda}(t)v, v \rangle, \quad v \in D_{x_0}$$

Theorem (Agrachev, DB, Rizzi, '13)

Assume the geodesic is ample. Then $\mathcal{Q}_{\lambda}(t)$ has a second order pole at t=0 and

$$Q_{\lambda}(t) \simeq \frac{1}{t^2} \mathcal{I}_{\lambda} + \frac{1}{3} \mathcal{R}_{\lambda} + O(t), \qquad for \ t \to 0$$

where

- $\mathcal{I}_{\lambda} \geq \mathbb{I} > 0$
- ${\mathcal I}_\lambda$ and ${\mathcal R}_\lambda$ are symmetric operators defined on D_x

Consider the restriction $d_{x_0}^2 \dot{c}_t |_{D_{x_0}} : D_{x_0} \to \mathbb{R}$ to the distribution.

 \rightarrow the scalar product $\langle\cdot,\cdot\rangle$ on D_{x_0} let us to define a family of symmetric operators

$$\mathcal{Q}_{\lambda}(t): D_{x_0} \to D_{x_0}, \qquad d_{x_0}^2 \dot{c}_t(v) = \langle \mathcal{Q}_{\lambda}(t)v, v \rangle, \quad v \in D_{x_0}$$

Theorem (Agrachev, DB, Rizzi, '13)

Assume the geodesic is ample. Then $Q_{\lambda}(t)$ has a second order pole at t = 0 and

$$Q_{\lambda}(t) \simeq \frac{1}{t^2} \mathcal{I}_{\lambda} + \frac{1}{3} \mathcal{R}_{\lambda} + O(t), \quad for \ t \to 0$$

where

• $\mathcal{I}_{\lambda} \geq \mathbb{I} > 0$

• \mathcal{I}_{λ} and \mathcal{R}_{λ} are symmetric operators defined on D_{x_0}

Consider the restriction $d_{x_0}^2 \dot{c}_t |_{D_{x_0}} : D_{x_0} \to \mathbb{R}$ to the distribution.

 \rightarrow the scalar product $\langle\cdot,\cdot\rangle$ on D_{x_0} let us to define a family of symmetric operators

$$\mathcal{Q}_{\lambda}(t): D_{x_0} o D_{x_0}, \qquad d_{x_0}^2 \dot{c}_t(v) = \langle \mathcal{Q}_{\lambda}(t)v, v \rangle, \quad v \in D_{x_0}$$

Theorem (Agrachev, DB, Rizzi, '13)

Assume the geodesic is ample. Then $Q_{\lambda}(t)$ has a second order pole at t = 0 and

$$\mathcal{Q}_{\lambda}(t) \simeq \frac{1}{t^2} \mathcal{I}_{\lambda} + \frac{1}{3} \mathcal{R}_{\lambda} + O(t), \quad for \ t \to 0$$

where

- $\mathcal{I}_{\lambda} \geq \mathbb{I} > 0 \ [\rightarrow \operatorname{tr}(\mathcal{I}_{\lambda}) = \mathcal{N}(\lambda) \ if \ equiregular]$
- \mathcal{I}_{λ} and \mathcal{R}_{λ} are symmetric operators defined on D_{x_0}

The Heisenberg case

The Heisenberg group $\mathbb{R}^3=\{(x,y,z)\}$ with standard left-invariant structure

$$X = \partial_x - \frac{y}{2}\partial_z, \quad Y = \partial_y + \frac{x}{2}\partial_z$$

Every (non trivial) geodesic is

- ample and equiregular
- with geodesic growth vector $\mathcal{G} = (2,3)$.

If one fix two geodesics $\gamma_{\lambda}(t), \gamma_{\eta}(s)$ corresponding to two covectors λ, η • $C(t,s) := \frac{1}{2}d^2(\gamma_{\lambda}(t), \gamma_{\eta}(s))$ is not C^2 at zero!

Still we can determine the main expansion

$$\mathcal{Q}_{\lambda}(t) \simeq \frac{1}{t^2} \mathcal{I}_{\lambda} + \mathcal{Q}_{\lambda}^{(0)} + O(t), \qquad \text{for } t \to 0$$

The Heisenberg case

We compute it on the orthonormal basis $v := \dot{\gamma}(0)$ and $v^{\perp} := \dot{\gamma}(0)^{\perp}$ for D_{x_0} .

The matrices representing \mathcal{I}_{λ} and \mathcal{R}_{λ} in the basis $\{v, v^{\perp}\}$ of D_{x_0} are

$$\mathcal{I}_{\lambda} = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}, \qquad \mathcal{R}_{\lambda} = \frac{2}{5} \begin{pmatrix} 0 & 0 \\ 0 & h_z^2 \end{pmatrix}, \tag{9}$$

where λ has coordinates (h_x,h_y,h_z) dual to o.n. basis X,Y + Reeb Z

- anisotropy of the different directions on D_{x_0}
- $\bullet\,$ curvature is always zero in the direction of $\dot{\gamma}$
- curvature of lines $\{h_z = 0\}$ is zero.
- curvature of lift of circles $\{h_z \neq 0\}$ is not bounded (nor constant)
- \rightarrow trace(\mathcal{I}_{λ}) = 5 \leftrightarrow is related to MCP(0,5).

The invariant \mathcal{R}_{λ} for contact manifolds

- \bullet there is a canonical linear connection, ∇ the Tanno connection
 - ◊ it is metric but not torsion free, extends Tanaka-Webster in CR geometry.
- The Tanno tensors

$$Q(X,Y) := (\nabla_Y J)X, \qquad \tau(X) = T^{\nabla}(X_0,X),$$

- $\tau = 0$ iff the Reeb is a Killing field
- Q = 0 iff the structure is CR

[Agrachev, DB, Rizzi, '15]

$$tr(\mathcal{R}_{\lambda}) = \operatorname{Ric}^{\nabla}(\mathsf{T}) - \frac{3}{5}R^{\nabla}(\mathsf{T}, J\mathsf{T}, J\mathsf{T}, \mathsf{T}) + \frac{1}{5}\|Q(\mathsf{T}, \mathsf{T})\|^2 - \frac{6}{5}g(\tau(\mathsf{T}), J\mathsf{T}) + \frac{8d-2}{20}h_0^2$$

SR Bonnet Myers for contact manifolds

Theorem (Agrachev, DB, Rizzi, '15)

Consider M a complete, SR contact structure of dimension 2d + 1, with d > 1. Assume that for every horizontal unit vector X

$$\operatorname{Ric}^{\nabla}(X) - R^{\nabla}(X, JX, JX, X) \ge (2d - 2)\kappa_1$$
$$\|Q(X, X)\|^2 \le (2d - 2)\kappa_2.$$

with $\kappa_1 > \kappa_2 \ge 0$. Then M is compact and

$$\operatorname{diam}_{SR}(M) \le \frac{\pi}{\sqrt{\kappa_1 - \kappa_2}}$$

- first condition is the "partial trace" of the curvature on $\{X, JX\}^{\perp} \cap D$.
- for $\dim>3,$ the result was known only for $\tau=0$ and Q=0

THANKS FOR YOUR ATTENTION!

イロト 不聞 とくほとくほど