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Introduction

One of the possible ways of introducing Ricci curvature in Riemannian geometry is
by computing the variation of the Riemannian volume under the geodesic flow.

fix x on a Riemannian manifold (M, g) and a tangent unit vector v ∈ TxM

γ(t) = expx(tv) geodesic starting at x with initial tangent vector v.

an orthonormal basis e1, . . . , en in TxM

ei(t) = (dtv expx)(ei) (→ Jacobi fields)

b
x e1 = v

e2

e3

e1(t) = (dtv expx(·))(e1)

e3(t)

e2(t)

γ(t)
b
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Let Qt be the parallelotope with edges ei(t)

volg is the canonical Riemannian volume

b
x e1 = v

e2

e3

Qt

e1(t) = dtv expx(e1)

e3(t)

e2(t)

γ(t)
b

The volume of the time-dependent parallelotope Qt has the following expansion
for t → 0,

volg (Qt) = 1 − 1

6
Ricg(v, v)t2 +O(t3), (1)
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Measure contraction along geodesics

(M, g) is a complete, connected Riemannian manifold

µ smooth volume form on M .

Fix Ω ⊂ M be a bounded, measurable set, with 0 < µ(Ω) < +∞
let Ωx,t the set of t-intermediate points between Ω and x (t ∈ [0, 1]).

Understand the behavior of µ(Ωx0,t)

Assume Ω = expx0
(A), then Ωx0,t = expx0,t

(A)

µ(Ωx0,t) =

∫

Ωx0,t

µ =

∫

A

exp∗
x0,t

µ

→ Idea: study for infinitesimal A, i.e. the asymptotic of exp∗
x,t µ
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Measure contraction along geodesics

x

y

Ω = expx(A)
γx,y(t)

b

b

b

Ωx,t = expx,t(A)

Figure: t-intermediate points between Ω and x.

assume y regular value of expx
Ω small such that Ω = expx(A).

Ωx,t = {γx,y(t) | y ∈ Ω}
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Measure contraction along geodesics

Two basic examples

(R) For a Riemannian structure (Mn, g), it is well known that

µ(Ωx,t) ∼ tn, for t → 0,

[here f(t) ∼ g(t) means f(t) = g(t)(C + o(1)) for t → 0 and C > 0]

(SR) In the 3D Heisenberg group it follows from [Juillet ’09] that

µ(Ωx,t) ∼ t5, for t → 0,

5 6= top. dim. (= 3) 6= metric dim. (= 4).

→ different dimensional invariant
→ associated with behavior of geodesics based at x0
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Measure contraction along geodesics

(M, g) is a complete, connected Riemannian manifold

µ smooth volume form on M .

Fix Ω ⊂ M be a bounded, measurable set, with 0 < µ(Ω) < +∞
let Ωx,t the set of t-intermediate points between Ω and x (t ∈ [0, 1]).

Understand the behavior of µ(Ωx,t)

Assume Ω = expx(A), then Ωx,t = expx,t(A)

µ(Ωx,t) =

∫

Ωx,t

µ =

∫

A

exp∗
x,t µ

→ Idea: study for infinitesimal A and t → 0, i.e. the asymptotic of exp∗
x,t µ
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b

v

x

γ(t)

M

TxM

bb
b

expx,t

γ

b

A

Ωx,t

Given µ smooth volume on M

exp∗
x,t µ is a (t-dependent) measure that lives on TxM

we compare it with a fixed volume form there
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Riemannian manifolds

Let (M, g) be a Riemannian manifold. Fix x ∈ M

gij the coefficients of the metric

expx : TxM → M be the exponential map

volg =
√

det gij dx1 · · · dxn= Riemannian volume

→ From the classical formula in normal coordinates

gij = δij +
1

3
Rijklx

kxl + o(|x|2)

one obtains the expansion

√
det gij(expx(tv)) = 1 − 1

6
Ricg(v, v)t2 + o(t2)

Using that
φ∗(fω) = (f ◦ φ)φ∗(ω)

with φ = expx : TxM → M
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Riemannian manifolds II

(exp∗
x volg)(tv) =

√
det gij(expx(tv)) exp∗

x(dx1 · · ·dxn)︸ ︷︷ ︸
volume on TxM

→ with respect to the exponential map at time t

expx,t(v) := expx(tv), exp∗
x,t = tn exp∗

x

(exp∗
x,t volg)(v) = tn

(
1 − 1

6
Ricg(v, v)t2 + o(t2)

)
v̂olx
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Weighted Riemannian manifolds

(M, g, µ) with µ = eψ volg and ψ : M → R smooth.

γ(t) = expx,t(v)

(exp∗
x,t µ)(v) = tneψ(γ(t))

(
1 − 1

6
Ricg(v, v)t2 + o(t2)

)
v̂olx

Writing

ψ(γ(t)) = ψ(x) +

∫ t

0

〈∇ψ(γ(s)), γ̇(s)〉︸ ︷︷ ︸
ρ(γ̇(t))

ds, µ̂x = eψ(x)v̂olx

(exp∗
x,t µ)(v) = tne

∫
t

0
ρ(γ̇(s))ds

(
1 − 1

6
Ricg(v, v)t2 + o(t2)

)
µ̂x
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Goal

We want to extend this result to Hamiltonian quadratic on fibers

H(p, x) =
1

2

k∑

i=1

(p ·Xi(x))
2

+ p ·X0(x) +
1

2
Q(x)

→ are associated with the following optimal control problem:

ẋ = X0(x) +

k∑

i=1

uiXi(x) (2)

JT (u) =
1

2

∫ T

0

|u(s)|2 −Q(xu(s))ds → min (3)

X0, X1, . . . , Xk smooth vector fields

Q is a smooth potential
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Goal

We want to extend this result to Hamiltonian quadratic on fibers

H(p, x) =
1

2

k∑

i=1

(p ·Xi(x))2

→ are associated with the following optimal control problem:

ẋ =

k∑

i=1

uiXi(x) (6)

JT (u) =
1

2

∫ T

0

|u(s)|2ds → min (7)

X1, . . . , Xk smooth vector fields

→ dim Lie{X1, . . . , Xk}(x) = n, for all x ∈ M
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The Hamiltonian viewpoint

In this case we introduce the exponential map on the cotangent space

expx,t : T ∗
xM → M, expx,t = π ◦ et ~H

∣∣
T∗

xM

π : T ∗M → M canonical projection
~H the Hamiltonian vector field associated to H

~H =
∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p

Comments:

in the Riemannian case the two approach are equivalent

→ (Using the canonical isomorphism i : TM → T ∗M given by the metric g)

in the sub-Riemannian one only the cotangent viewpoint survives!
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Case n = 3 and k = 2

{H = 1/2} ⊂ T ∗
x M

exp
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b

λ

x

γ(t)

M

T ∗

x M

bb
b

expx,t

γ

b

A

Ωx,t

Given µ smooth volume on M

µ̂x = induced volume form on TxM

µ̂∗
x = induced volume form on T ∗

xM dual to µ̂x, i.e. 〈µ̂∗
x, µ̂x〉 = 1
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Main result

In the sub-Riemannian case we have the following theorem

Theorem (Agrachev, DB, Paoli, ’16)

For any geodesic γ(t) = expx,t(λ) ample and equiregular we have for t → 0

(exp∗
x,t µ)(λ) = Cλt

N (λ)e

∫
t

0

ρ(γ̇(s))ds
(

1 − 1

6
tr(Rλ)t2 + o(t2)

)
µ̂∗
x

where

Cλ is a positive constant

N (λ) is an integer

Rλ : Dx0
→ Dx0

is a symmetric operator.

Interaction volume-geodesic flow

ρ(λ)µ̂∗
x =

d

dt

∣∣∣∣
t=0

log(t−N (λ) (exp∗
x,t µ)(λ))
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(exp∗
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N (λ)e

∫
t

0

ρ(γ̇(s))ds
(

1 − 1

6
tr(Rλ)t2 + o(t2)

)
µ̂∗
x

where

Cλ is a positive constant (→ Cλ = 1 in Riemannian case)

N (λ) is an integer (→ N (λ) = n in Riemannian case)

Rλ : Dx0
→ Dx0

is a symmetric operator. (→ Rλ(v) = Rg(v, γ̇)γ̇)

Interaction volume-geodesic flow

ρ(λ) = 〈∇ψ(x), v〉 , λ = i(v)
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Geodesic growth vector

Let γ(t) = expx,t(λ). Let T ∈ Γ(D) an admissible extension of γ̇

Geodesic flag

F1 = D, F i+1 = F i + [T,F i]

This defines a flag → well-defined along γ(t)

F1
γ(t) ⊂ F2

γ(t) ⊂ . . . ⊂ Tγ(t)M (∗)

→ does not depend on the choice of T

Geodesic growth vector

Gγ(t) = {k1(t), k2(t), . . .}, ki(t) = dim F i
γ(t)

→ in general different from the growth vector of D.
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Ample and equiregular geodesics

A normal geodesic is

ample at t if ∃m = m(t) > 0 s.t. Fm
γ(t) = Tγ(t)M

equiregular if ki(t) = dim F i
γ(t) does not depend on t

“Microlocal bracket generating condition”. Gγ = {k1, . . . , km}
γ is not abnormal and no conjugate points for t small enough

Ae

︸︷︷︸
ample+equireg

⊂ A︸︷︷︸
ample

⊂ T ∗M

Theorem
The set Ae is nonempty, open and dense in T ∗M .

The set A ∩ T ∗
xM is nonempty, open and dense in T ∗

xM , for all x.
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The main terms

Assume Gγ = {k1, . . . , km}
The constant Cλ is explicit

0 < Cλ ≤ 1
depends only on {k1, . . . , km}

The integer N (λ)

satisfies

N (λ) =

m∑

i=1

(2i − 1)(ki − ki−1)

is a sort of geodesic dimension

in the contact case every non const. geodesic is ample equiregular

Gγ = {2n, 2n+ 1}

Cλ =
1

12
, N (λ) = 2n+ 3 · 1 = 2n+ 3
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The invariant ρ

It is defined by the identity

ρ(λ)µ̂∗
x =

d

dt

∣∣∣∣
t=0

log(t−N (λ) (exp∗
x,t µ)(λ))

We can define a canonical n-form ω defined only along γ(t)

Theorem
Let T be any admissible extension of γ̇. Then for every λ ∈ T ∗

xM

ρ(λ) = (divµT − divωT)|x. (8)

depends only on the symbol of the structure along the geodesic

→ a sort of microlocal nilpotent approximation

ρ : Ae → R is a rational function

ρ(cλ) = cρ(λ) for all c > 0
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The invariant ρ in contact manifolds

Let (M2d+1, ω) be a contact manifold:

Fix a metric g on D = kerω. Then (M,D, g) is a sub-Riemannian manifold.

⋄ g be extended to T M by requiring that the Reeb vector field

X0 is orthogonal to D and of norm one.

The contact endomorphism J : TM → TM is defined by:

g(X, JY ) = dω(X,Y ), ∀X,Y ∈ Γ(TM).

Theorem

Let γ(t) = expx,t(λ) be any non constant geodesic on a contact manifold. Then

ρ(λ) =
d

dt

∣∣∣∣
t=0

log ‖Jγ̇(t)‖.

In particular, if J2 = −1, then ρ ≡ 0.
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Distance from a minimizer

Fix x0 ∈ M and a length-minimizer trajectory γ(t) and define
the geodesic cost

ct : M → R, t > 0

ct(x) = − 1

2t
d2(x, γ(t))

x0

γ(t)
b

x

Ox0

Theorem (Agrachev, DB, Rizzi, ’13)

Assume γ to be ample. Then

the function (t, x) 7→ ct(x) is smooth on an open set U ⊂ (0, ε) ×Ox0
.

dx0
ċt = λ0 for any t ∈ (0, ε).

→ d2
x0
ċt : Tx0

M → R is a well defined family of quadratic forms.
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Main result

Consider the restriction d2
x0
ċt

∣∣
Dx0

: Dx0
→ R to the distribution.

→ the scalar product 〈·, ·〉 on Dx0
let us to define a family of symmetric

operators

Qλ(t) : Dx0
→ Dx0

, d2
x0
ċt(v) = 〈Qλ(t)v, v〉 , v ∈ Dx0

Theorem (Agrachev, DB, Rizzi, ’13)

Assume the geodesic is ample. Then Qλ(t) has a second order pole at t = 0 and

Qλ(t) ≃ 1

t2
Iλ +

1

3
Rλ +O(t), for t → 0

where

Iλ ≥ I > 0

Iλ and Rλ are symmetric operators defined on Dx0
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Assume the geodesic is ample. Then Qλ(t) has a second order pole at t = 0 and

Qλ(t) ≃ 1

t2
Iλ +

1

3
Rλ +O(t), for t → 0

where

Iλ ≥ I > 0 [→ tr(Iλ) = N (λ) if equiregular]

Iλ and Rλ are symmetric operators defined on Dx0
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The Heisenberg case

The Heisenberg group R
3 = {(x, y, z)} with standard left-invariant structure

X = ∂x − y

2
∂z, Y = ∂y +

x

2
∂z

Every (non trivial) geodesic is

ample and equiregular

with geodesic growth vector G = (2, 3).

If one fix two geodesics γλ(t), γη(s) corresponding to two covectors λ, η

C(t, s) := 1
2d

2(γλ(t), γη(s)) is not C2 at zero!

Still we can determine the main expansion

Qλ(t) ≃ 1

t2
Iλ + Q(0)

λ +O(t), for t → 0
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The Heisenberg case

We compute it on the orthonormal basis v := γ̇(0) and v⊥ := γ̇(0)⊥ for Dx0
.

The matrices representing Iλ and Rλ in the basis {v, v⊥} of Dx0
are

Iλ =

(
1 0
0 4

)
, Rλ =

2

5

(
0 0
0 h2

z

)
, (9)

where λ has coordinates (hx, hy, hz) dual to o.n. basis X,Y + Reeb Z

anisotropy of the different directions on Dx0

curvature is always zero in the direction of γ̇

curvature of lines {hz = 0} is zero.

curvature of lift of circles {hz 6= 0} is not bounded (nor constant)

→ trace(Iλ) = 5 ↔ is related to MCP(0,5).
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The invariant Rλ for contact manifolds

there is a canonical linear connection, ∇ the Tanno connection

⋄ it is metric but not torsion free, extends Tanaka-Webster in CR geometry.

The Tanno tensors

Q(X,Y ) := (∇Y J)X, τ(X) = T∇(X0, X),

τ = 0 iff the Reeb is a Killing field

Q = 0 iff the structure is CR

[Agrachev, DB, Rizzi, ’15]

tr(Rλ) = Ric∇(T) − 3

5
R∇(T, JT, JT,T)

+
1

5
‖Q(T,T)‖2 − 6

5
g(τ(T), JT) +

8d− 2

20
h2

0
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SR Bonnet Myers for contact manifolds

Theorem (Agrachev, DB, Rizzi, ’15)

Consider M a complete, SR contact structure of dimension 2d+ 1, with d > 1.
Assume that for every horizontal unit vector X

Ric∇(X) −R∇(X, JX, JX,X) ≥ (2d− 2)κ1

‖Q(X,X)‖2 ≤ (2d− 2)κ2.

with κ1 > κ2 ≥ 0. Then M is compact and

diamSR(M) ≤ π√
κ1 − κ2

first condition is the “partial trace” of the curvature on {X, JX}⊥ ∩D.

for dim > 3, the result was known only for τ = 0 and Q = 0
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THANKS FOR YOUR ATTENTION!
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