# Volume geodesic distortion and Ricci curvature in sub-Riemannian geometry 

Davide Barilari<br>IMJ-PRG, Université Paris Diderot - Paris 7

Singular Phenomena and Singular Geometries
Pisa, Italy.

$$
\text { June 21, } 2016
$$

## References

This is a joint work with

- Andrei Agrachev (SISSA, Trieste)
- Elisa Paoli (PhD at SISSA, 2015)
$\rightarrow$ Main reference:
ABP-16 Andrei Agrachev, DB, Elisa Paoli
Volume geodesic distortion and Ricci curvature for Hamiltonian flows, [Arxiv Preprint, 27 pp.]
$\rightarrow$ Other references:
ABR-13 Andrei Agrachev, DB, Luca Rizzi Curvature: a variational approach [Memoirs of the AMS, in press.]


## Outline

(1) Motivation and introduction
(2) Riemannian case
(3) Main result and assumptions

## Outline

(1) Motivation and introduction

## Introduction

One of the possible ways of introducing Ricci curvature in Riemannian geometry is by computing the variation of the Riemannian volume under the geodesic flow.

- fix $x$ on a Riemannian manifold $(M, g)$ and a tangent unit vector $v \in T_{x} M$
- $\gamma(t)=\exp _{x}(t v)$ geodesic starting at $x$ with initial tangent vector $v$.
- an orthonormal basis $e_{1}, \ldots, e_{n}$ in $T_{x} M$
- $e_{i}(t)=\left(d_{t v} \exp _{x}\right)\left(e_{i}\right)(\rightarrow$ Jacobi fields $)$

- Let $Q_{t}$ be the parallelotope with edges $e_{i}(t)$
- vol $_{g}$ is the canonical Riemannian volume


The volume of the time-dependent parallelotope $Q_{t}$ has the following expansion for $t \rightarrow 0$,

$$
\begin{equation*}
\operatorname{vol}_{g}\left(Q_{t}\right)=1-\frac{1}{6} \operatorname{Ric}^{g}(v, v) t^{2}+O\left(t^{3}\right), \tag{1}
\end{equation*}
$$

## Measure contraction along geodesics

- $(M, g)$ is a complete, connected Riemannian manifold
- $\mu$ smooth volume form on $M$.
- Fix $\Omega \subset M$ be a bounded, measurable set, with $0<\mu(\Omega)<+\infty$
- let $\Omega_{x, t}$ the set of $t$-intermediate points between $\Omega$ and $x \quad(t \in[0,1])$.
- Understand the behavior of $\mu(\Omega$
- Assume $\Omega=$ exp

Idea: study for infinitesimal $A$, i.e. the asymptotic of $\exp _{x, t}^{*} \mu$

## Measure contraction along geodesics



Figure: $t$-intermediate points between $\Omega$ and $x$.

- assume $y$ regular value of $\exp _{x}$
- $\Omega$ small such that $\Omega=\exp _{x}(A)$.
- $\Omega_{x, t}=\left\{\gamma_{x, y}(t) \mid y \in \Omega\right\}$


## Measure contraction along geodesics

Two basic examples
(R) For a Riemannian structure $\left(M^{n}, g\right)$, it is well known that

$$
\mu\left(\Omega_{x, t}\right) \sim t^{n}, \quad \text { for } t \rightarrow 0
$$

[here $f(t) \sim g(t)$ means $f(t)=g(t)(C+o(1))$ for $t \rightarrow 0$ and $C>0$ ]
(SR) In the 3D Heisenberg group it follows from [Juillet '09] that

$$
\mu\left(\Omega_{x, t}\right) \sim t^{5}, \quad \text { for } t \rightarrow 0
$$

$$
5 \quad \neq \quad \text { top. } \operatorname{dim} .(=3) \quad \neq \quad \text { metric dim. }(=4) .
$$

$\rightarrow$ different dimensional invariant
$\rightarrow$ associated with behavior of geodesics based at $x_{0}$

## Measure contraction along geodesics

- $(M, g)$ is a complete, connected Riemannian manifold
- $\mu$ smooth volume form on $M$.
- Fix $\Omega \subset M$ be a bounded, measurable set, with $0<\mu(\Omega)<+\infty$
- let $\Omega_{x, t}$ the set of $t$-intermediate points between $\Omega$ and $x(t \in[0,1])$.
- Understand the behavior of $\mu\left(\Omega_{x, t}\right)$
- Assume $\Omega=\exp _{x}(A)$, then $\Omega_{x, t}=\exp _{x, t}(A)$

$$
\mu\left(\Omega_{x, t}\right)=\int_{\Omega_{x, t}} \mu=\int_{A} \exp _{x, t}^{*} \mu
$$

$\rightarrow$ Idea: study for infinitesimal $A$ and $t \rightarrow 0$, i.e. the asymptotic of $\exp _{x, t}^{*} \mu$


Given $\mu$ smooth volume on $M$

- $\exp _{x, t}^{*} \mu$ is a ( $t$-dependent) measure that lives on $T_{x} M$
- we compare it with a fixed volume form there


## Outline

## (1) Motivation and introduction

(2) Riemannian case
(3) Main result and assumptions

## Riemannian manifolds

Let $(M, g)$ be a Riemannian manifold. Fix $x \in M$

- $g_{i j}$ the coefficients of the metric
- $\exp _{x}: T_{x} M \rightarrow M$ be the exponential map
- $\operatorname{vol}_{g}=\sqrt{\operatorname{det} g_{i j}} d x_{1} \cdots d x_{n}=$ Riemannian volume
$\rightarrow$ From the classical formula in normal coordinates

$$
g_{i j}=\delta_{i j}+\frac{1}{3} R_{i j k l} x^{k} x^{l}+o\left(|x|^{2}\right)
$$

- one obtains the expansion

$$
\sqrt{\operatorname{det} g_{i j}\left(\exp _{x}(t v)\right)}=1-\frac{1}{6} \operatorname{Ric}^{g}(v, v) t^{2}+o\left(t^{2}\right)
$$

Using that

$$
\phi^{*}(f \omega)=(f \circ \phi) \phi^{*}(\omega)
$$

with $\phi=\exp _{x}: T_{x} M \rightarrow M$

## Riemannian manifolds II

$$
\left(\exp _{x}^{*} \operatorname{vol}_{g}\right)(t v)=\sqrt{\operatorname{det} g_{i j}\left(\exp _{x}(t v)\right)} \underbrace{\exp _{x}^{*}\left(d x_{1} \cdots d x_{n}\right)}_{\text {volume on } T_{x} M}
$$

## Riemannian manifolds II

$$
\left(\exp _{x}^{*} \operatorname{vol}_{g}\right)(t v)=\left(1-\frac{1}{6} \operatorname{Ric}^{g}(v, v) t^{2}+o\left(t^{2}\right)\right) \widehat{\operatorname{vol}}_{x}
$$

$\rightarrow$ with respect to the exponential map at time $t$

$$
\exp _{x, t}(v):=\exp _{x}(t v), \quad \exp _{x, t}^{*}=t^{n} \exp _{x}^{*}
$$

## Riemannian manifolds II

$$
\left(\exp _{x}^{*} \operatorname{vol}_{g}\right)(t v)=\left(1-\frac{1}{6} \operatorname{Ric}^{g}(v, v) t^{2}+o\left(t^{2}\right)\right) \widehat{\operatorname{vol}}_{x}
$$

$\rightarrow$ with respect to the exponential map at time $t$

$$
\exp _{x, t}(v):=\exp _{x}(t v), \quad \exp _{x, t}^{*}=t^{n} \exp _{x}^{*}
$$

$$
\left(\exp _{x, t}^{*} \operatorname{vol}_{g}\right)(v)=t^{n}\left(1-\frac{1}{6} \operatorname{Ric}^{g}(v, v) t^{2}+o\left(t^{2}\right)\right) \widehat{\operatorname{vol}}_{x}
$$

## Weighted Riemannian manifolds

- ( $M, g, \mu$ ) with $\mu=e^{\psi} \operatorname{vol}_{g}$ and $\psi: M \rightarrow \mathbb{R}$ smooth.
- $\gamma(t)=\exp _{x, t}(v)$

$$
\left(\exp _{x, t}^{*} \mu\right)(v)=t^{n} e^{\psi(\gamma(t))}\left(1-\frac{1}{6} \operatorname{Ric}^{g}(v, v) t^{2}+o\left(t^{2}\right)\right) \widehat{\operatorname{vol}}_{x}
$$

## Writing

$$
\begin{aligned}
& \psi(\gamma(t))=\psi(x)+\int_{0}^{t} \underbrace{\langle\nabla \psi(\gamma(s)), \dot{\gamma}(s)\rangle}_{\rho(\dot{\gamma}(t))} d s, \quad \widehat{\mu}_{x}=e^{\psi(x)} \widehat{\operatorname{vol}}_{x} \\
& \left(\exp _{x, t}^{*} \mu\right)(v)=t^{n} e^{\int_{0}^{t} \rho(\dot{\gamma}(s)) d s}\left(1-\frac{1}{6} \operatorname{Ric}^{g}(v, v) t^{2}+o\left(t^{2}\right)\right) \widehat{\mu}_{x}
\end{aligned}
$$

## Goal

We want to extend this result to Hamiltonian quadratic on fibers

$$
H(p, x)=\frac{1}{2} \sum_{i=1}^{k}\left(p \cdot X_{i}(x)\right)^{2}+p \cdot X_{0}(x)+\frac{1}{2} Q(x)
$$

$\rightarrow$ are associated with the following optimal control problem:

$$
\begin{gather*}
\dot{x}=X_{0}(x)+\sum_{i=1}^{k} u_{i} X_{i}(x)  \tag{2}\\
J_{T}(u)=\frac{1}{2} \int_{0}^{T}|u(s)|^{2}-Q\left(x_{u}(s)\right) d s \rightarrow \min \tag{3}
\end{gather*}
$$

- $X_{0}, X_{1}, \ldots, X_{k}$ smooth vector fields
- $Q$ is a smooth potential


## Goal

We want to extend this result to Hamiltonian quadratic on fibers

$$
H(p, x)=\frac{1}{2} \sum_{i=1}^{k}\left(p \cdot X_{i}(x)\right)^{2}+p \cdot X_{0}(x)+\frac{1}{2} Q(x)
$$

$\rightarrow$ are associated with the following optimal control problem:

$$
\begin{gather*}
\dot{x}=X_{0}(x)+\sum_{i=1}^{k} u_{i} X_{i}(x)  \tag{4}\\
J_{T}(u)=\frac{1}{2} \int_{0}^{T}|u(s)|^{2}-Q(x u(s)) d s \rightarrow \min \tag{5}
\end{gather*}
$$

- $X_{0}, X_{1}, \ldots, X_{k}$ smooth vector fields
- $Q$ is a smooth potential


## Goal

We want to extend this result to Hamiltonian quadratic on fibers

$$
H(p, x)=\frac{1}{2} \sum_{i=1}^{k}\left(p \cdot X_{i}(x)\right)^{2}
$$

$\rightarrow$ are associated with the following optimal control problem:

$$
\begin{gather*}
\dot{x}=\sum_{i=1}^{k} u_{i} X_{i}(x)  \tag{6}\\
J_{T}(u)=\frac{1}{2} \int_{0}^{T}|u(s)|^{2} d s \rightarrow \min \tag{7}
\end{gather*}
$$

- $X_{1}, \ldots, X_{k}$ smooth vector fields
$\rightarrow \operatorname{dim} \operatorname{Lie}\left\{X_{1}, \ldots, X_{k}\right\}(x)=n$, for all $x \in M$


## Outline

## (1) Motivation and introduction

(2) Riemannian case
(3) Main result and assumptions

## The Hamiltonian viewpoint

In this case we introduce the exponential map on the cotangent space

$$
\exp _{x, t}: T_{x}^{*} M \rightarrow M, \quad \exp _{x, t}=\left.\pi \circ e^{t \vec{H}}\right|_{T_{x}^{*} M}
$$

- $\pi: T^{*} M \rightarrow M$ canonical projection
- $\vec{H}$ the Hamiltonian vector field associated to $H$

$$
\vec{H}=\frac{\partial H}{\partial p} \frac{\partial}{\partial x}-\frac{\partial H}{\partial x} \frac{\partial}{\partial p}
$$

Comments:

- in the Riemannian case the two approach are equivalent
$\rightarrow$ (Using the canonical isomorphism $\mathfrak{i}: T M \rightarrow T^{*} M$ given by the metric $g$ )
- in the sub-Riemannian one only the cotangent viewpoint survives!


## Case $n=3$ and $k=2$




Given $\mu$ smooth volume on $M$

- $\widehat{\mu}_{x}=$ induced volume form on $T_{x} M$
- $\widehat{\mu}_{x}^{*}=$ induced volume form on $T_{x}^{*} M$ dual to $\widehat{\mu}_{x}$, i.e. $\left\langle\widehat{\mu}_{x}^{*}, \widehat{\mu}_{x}\right\rangle=1$


## Main result

In the sub-Riemannian case we have the following theorem

## Theorem (Agrachev, DB, Paoli, '16)

For any geodesic $\gamma(t)=\exp _{x, t}(\lambda)$ ample and equiregular we have for $t \rightarrow 0$

$$
\left(\exp _{x, t}^{*} \mu\right)(\lambda)=C_{\lambda} t^{\mathcal{N}(\lambda)} e^{\int_{0}^{t} \rho(\dot{\gamma}(s)) d s}\left(1-\frac{1}{6} \operatorname{tr}\left(\mathcal{R}_{\lambda}\right) t^{2}+o\left(t^{2}\right)\right) \widehat{\mu}_{x}^{*}
$$

where

- $C_{\lambda}$ is a positive constant
- $\mathcal{N}(\lambda)$ is an integer
- $\mathcal{R}_{\lambda}: D_{x_{0}} \rightarrow D_{x_{0}}$ is a symmetric operator.
- Interaction volume-geodesic flow

$$
\rho(\lambda) \widehat{\mu}_{x}^{*}=\left.\frac{d}{d t}\right|_{t=0} \log \left(t^{-\mathcal{N}(\lambda)}\left(\exp _{x, t}^{*} \mu\right)(\lambda)\right)
$$

## Main result

In the sub-Riemannian case we have the following theorem

## Theorem (Agrachev, DB, Paoli, '16)

For any geodesic $\gamma(t)=\exp _{x, t}(\lambda)$ ample and equiregular we have for $t \rightarrow 0$

$$
\left(\exp _{x, t}^{*} \mu\right)(\lambda)=C_{\lambda} t^{\mathcal{N}(\lambda)} e^{\int_{0}^{t} \rho(\dot{\gamma}(s)) d s}\left(1-\frac{1}{6} \operatorname{tr}\left(\mathcal{R}_{\lambda}\right) t^{2}+o\left(t^{2}\right)\right) \widehat{\mu}_{x}^{*}
$$

where

- $C_{\lambda}$ is a positive constant ( $\rightarrow C_{\lambda}=1$ in Riemannian case)
- $\mathcal{N}(\lambda)$ is an integer $(\rightarrow \mathcal{N}(\lambda)=n$ in Riemannian case)
- $\mathcal{R}_{\lambda}: D_{x_{0}} \rightarrow D_{x_{0}}$ is a symmetric operator. $\left(\rightarrow \mathcal{R}_{\lambda}(v)=R^{g}(v, \dot{\gamma}) \dot{\gamma}\right)$
- Interaction volume-geodesic flow

$$
\rho(\lambda)=\langle\nabla \psi(x), v\rangle, \quad \lambda=\mathfrak{i}(v)
$$

## Main result

In the sub-Riemannian case we have the following theorem

## Theorem (Agrachev, DB, Paoli, '16)

For any geodesic $\gamma(t)=\exp _{x, t}(\lambda)$ ample and equiregular we have

$$
\left(\exp _{x, t}^{*} \mu\right)(\lambda)=C_{\lambda} t^{\mathcal{N}(\lambda)} \underbrace{e^{\int_{0}^{t} \rho(\dot{\gamma}(s)) d s} \underbrace{\left(1-\frac{1}{6} \operatorname{tr}\left(\mathcal{R}_{\lambda}\right) t^{2}+o\left(t^{2}\right)\right)}_{\text {dynamics }} \widehat{\mu}_{x}^{*}}_{\text {volume-dynamics }}
$$

where

- $C_{\lambda}$ is a positive constant ( $\rightarrow C_{\lambda}=1$ in Riemannian case)
- $\mathcal{N}(\lambda)$ is an integer $(\rightarrow \mathcal{N}(\lambda)=n$ in Riemannian case)
- $\mathcal{R}_{\lambda}: D_{x_{0}} \rightarrow D_{x_{0}}$ is a symmetric operator. $\left(\rightarrow \mathcal{R}_{\lambda}(v)=R^{g}(v, \dot{\gamma}) \dot{\gamma}\right)$
- Interaction volume-geodesic flow

$$
\rho(\cdot) \widehat{\mu}_{x}^{*}=\left.\frac{d}{d t}\right|_{t=0} \log \left(t^{-\mathcal{N}(\lambda)}\left(\exp _{x, t}^{*} \mu\right)(\cdot)\right)
$$

## Main result

In the sub-Riemannian case we have the following theorem

## Theorem (Agrachev, DB, Paoli, '16)

For any geodesic $\gamma(t)=\exp _{x, t}(\lambda)$ ample and equiregular we have

$$
\left(\exp _{x, t}^{*} \mu\right)(\lambda)=C_{\lambda} t^{\mathcal{N}(\lambda)} \underbrace{e^{\int_{0}^{t} \rho(\dot{\gamma}(s)) d s} \underbrace{\left(1-\frac{1}{6} \operatorname{tr}\left(\mathcal{R}_{\lambda}\right) t^{2}+o\left(t^{2}\right)\right)}_{\text {dynamics }} \widehat{\mu}_{x}^{*}}_{\text {volume-dynamics }}
$$

where

- $C_{\lambda}$ is a positive constant
- $\mathcal{N}(\lambda)$ is an integer
- $\mathcal{R}_{\lambda}: D_{x_{0}} \rightarrow D_{x_{0}}$ is a symmetric operator.
- Interaction volume-geodesic flow

$$
\rho(\cdot) \widehat{\mu}_{x}^{*}=\left.\frac{d}{d t}\right|_{t=0} \log \left(t^{-\mathcal{N}(\lambda)}\left(\exp _{x, t}^{*} \mu\right)(\cdot)\right)
$$

## Geodesic growth vector

Let $\gamma(t)=\exp _{x, t}(\lambda)$. Let $\mathbf{T} \in \Gamma(D)$ an admissible extension of $\dot{\gamma}$

## Geodesic flag

$$
\mathcal{F}^{1}=D, \quad \mathcal{F}^{i+1}=\mathcal{F}^{i}+\left[\mathrm{T}, \mathcal{F}^{i}\right]
$$

This defines a flag $\rightarrow$ well-defined along $\gamma(t)$

$$
\mathcal{F}_{\gamma(t)}^{1} \subset \mathcal{F}_{\gamma(t)}^{2} \subset \ldots \subset T_{\gamma(t)} M
$$

$\rightarrow$ does not depend on the choice of T

## Geodesic growth vector

$$
\mathcal{G}_{\gamma(t)}=\left\{k_{1}(t), k_{2}(t), \ldots\right\}, \quad k_{i}(t)=\operatorname{dim} \mathcal{F}_{\gamma(t)}^{i}
$$

$\rightarrow$ in general different from the growth vector of $D$.

## Ample and equiregular geodesics

A normal geodesic is

- ample at $t$ if $\exists m=m(t)>0$ s.t. $\mathcal{F}_{\gamma(t)}^{m}=T_{\gamma(t)} M$
- equiregular if $k_{i}(t)=\operatorname{dim} \mathcal{F}_{\gamma(t)}^{i}$ does not depend on $t$
- "Microlocal bracket generating condition". $\mathcal{G}_{\gamma}=\left\{k_{1}, \ldots, k_{m}\right\}$
- $\gamma$ is not abnormal and no conjugate points for $t$ small enough



## Theorem

- The set $\mathcal{A}^{e}$ is nonempty, open and dense in $T^{*} M$.
- The set $\mathcal{A} \cap T_{x}^{*} M$ is nonempty, open and dense in $T_{x}^{*} M$, for all $x$.


## The main terms

Assume $\mathcal{G}_{\gamma}=\left\{k_{1}, \ldots, k_{m}\right\}$

- The constant $C_{\lambda}$ is explicit
- $0<C_{\lambda} \leq 1$
- depends only on $\left\{k_{1}, \ldots, k_{m}\right\}$
- The integer $\mathcal{N}(\lambda)$
- satisfies

$$
\mathcal{N}(\lambda)=\sum_{i=1}^{m}(2 i-1)\left(k_{i}-k_{i-1}\right)
$$

- is a sort of geodesic dimension
- in the contact case every non const. geodesic is ample equiregular

$$
\begin{gathered}
\mathcal{G}_{\gamma}=\{2 n, 2 n+1\} \\
C_{\lambda}=\frac{1}{12}, \quad \mathcal{N}(\lambda)=2 n+3 \cdot 1=2 n+3
\end{gathered}
$$

## The invariant $\rho$

It is defined by the identity

$$
\rho(\lambda) \widehat{\mu}_{x}^{*}=\left.\frac{d}{d t}\right|_{t=0} \log \left(t^{-\mathcal{N}(\lambda)}\left(\exp _{x, t}^{*} \mu\right)(\lambda)\right)
$$

- We can define a canonical $n$-form $\omega$ defined only along $\gamma(t)$


## Theorem

Let T be any admissible extension of $\dot{\gamma}$. Then for every $\lambda \in T_{x}^{*} M$

$$
\begin{equation*}
\rho(\lambda)=\left.\left(\operatorname{div}_{\mu} \mathrm{T}-\operatorname{div}_{\omega} \mathrm{T}\right)\right|_{x} . \tag{8}
\end{equation*}
$$

- depends only on the symbol of the structure along the geodesic
$\rightarrow$ a sort of microlocal nilpotent approximation
- $\rho: \mathcal{A}^{e} \rightarrow \mathbb{R}$ is a rational function
- $\rho(c \lambda)=c \rho(\lambda)$ for all $c>0$


## The invariant $\rho$ in contact manifolds

- Let $\left(M^{2 d+1}, \omega\right)$ be a contact manifold:
- Fix a metric $g$ on $D=\operatorname{ker} \omega$. Then $(M, D, g)$ is a sub-Riemannian manifold.
$\diamond g$ be extended to $T M$ by requiring that the Reeb vector field $X_{0}$ is orthogonal to $D$ and of norm one.
- The contact endomorphism $J: T M \rightarrow T M$ is defined by:

$$
g(X, J Y)=d \omega(X, Y), \quad \forall X, Y \in \Gamma(T M)
$$

## Theorem

Let $\gamma(t)=\exp _{x, t}(\lambda)$ be any non constant geodesic on a contact manifold. Then

$$
\rho(\lambda)=\left.\frac{d}{d t}\right|_{t=0} \log \|J \dot{\gamma}(t)\|
$$

In particular, if $J^{2}=-1$, then $\rho \equiv 0$.

## Distance from a minimizer

Fix $x_{0} \in M$ and a length-minimizer trajectory $\gamma(t)$ and define the geodesic cost

$$
\begin{gathered}
c_{t}: M \rightarrow \mathbb{R}, \quad t>0 \\
c_{t}(x)=-\frac{1}{2 t} \mathrm{~d}^{2}(x, \gamma(t))
\end{gathered}
$$



## Theorem (Agrachev, DB, Rizzi, '13)

Assume $\gamma$ to be ample. Then

- the function $(t, x) \mapsto c_{t}(x)$ is smooth on an open set $U \subset(0, \varepsilon) \times O_{x_{0}}$.
- $d_{x_{0}} \dot{c}_{t}=\lambda_{0}$ for any $t \in(0, \varepsilon)$.
$\rightarrow d_{x_{0}}^{2} \dot{c}_{t}: T_{x_{0}} M \rightarrow \mathbb{R}$ is a well defined family of quadratic forms.


## Main result

Consider the restriction $\left.d_{x_{0}}^{2} \dot{c}_{t}\right|_{D_{x_{0}}}: D_{x_{0}} \rightarrow \mathbb{R}$ to the distribution.
$\rightarrow$ the scalar product $\langle\cdot, \cdot\rangle$ on $D_{x_{0}}$ let us to define a family of symmetric operators

$$
\mathcal{Q}_{\lambda}(t): D_{x_{0}} \rightarrow D_{x_{0}}, \quad d_{x_{0}}^{2} \dot{c}_{t}(v)=\left\langle\mathcal{Q}_{\lambda}(t) v, v\right\rangle, \quad v \in D_{x_{0}}
$$

## where

$\mathcal{I}_{\lambda}$ and $\mathcal{R}_{\lambda}$ are symmetric operators defined on $D$

## Main result

Consider the restriction $\left.d_{x_{0}}^{2} \dot{c}_{t}\right|_{D_{x_{0}}}: D_{x_{0}} \rightarrow \mathbb{R}$ to the distribution.
$\rightarrow$ the scalar product $\langle\cdot, \cdot\rangle$ on $D_{x_{0}}$ let us to define a family of symmetric operators

$$
\mathcal{Q}_{\lambda}(t): D_{x_{0}} \rightarrow D_{x_{0}}, \quad d_{x_{0}}^{2} \dot{c}_{t}(v)=\left\langle\mathcal{Q}_{\lambda}(t) v, v\right\rangle, \quad v \in D_{x_{0}}
$$

## Theorem (Agrachev, DB, Rizzi, '13)

Assume the geodesic is ample. Then $\mathcal{Q}_{\lambda}(t)$ has a second order pole at $t=0$ and

$$
\mathcal{Q}_{\lambda}(t) \simeq \frac{1}{t^{2}} \mathcal{I}_{\lambda}+\frac{1}{3} \mathcal{R}_{\lambda}+O(t), \quad \text { for } t \rightarrow 0
$$

where

- $\mathcal{I}_{\lambda} \geq \mathbb{I}>0$
- $\mathcal{I}_{\lambda}$ and $\mathcal{R}_{\lambda}$ are symmetric operators defined on $D_{x_{0}}$


## Main result

Consider the restriction $\left.d_{x_{0}}^{2} \dot{c}_{t}\right|_{D_{x_{0}}}: D_{x_{0}} \rightarrow \mathbb{R}$ to the distribution.
$\rightarrow$ the scalar product $\langle\cdot, \cdot\rangle$ on $D_{x_{0}}$ let us to define a family of symmetric operators

$$
\mathcal{Q}_{\lambda}(t): D_{x_{0}} \rightarrow D_{x_{0}}, \quad d_{x_{0}}^{2} \dot{c}_{t}(v)=\left\langle\mathcal{Q}_{\lambda}(t) v, v\right\rangle, \quad v \in D_{x_{0}}
$$

## Theorem (Agrachev, DB, Rizzi, '13)

Assume the geodesic is ample. Then $\mathcal{Q}_{\lambda}(t)$ has a second order pole at $t=0$ and

$$
\mathcal{Q}_{\lambda}(t) \simeq \frac{1}{t^{2}} \mathcal{I}_{\lambda}+\frac{1}{3} \mathcal{R}_{\lambda}+O(t), \quad \text { for } t \rightarrow 0
$$

where

- $\mathcal{I}_{\lambda} \geq \mathbb{I}>0\left[\rightarrow \operatorname{tr}\left(\mathcal{I}_{\lambda}\right)=\mathcal{N}(\lambda)\right.$ if equiregular $]$
- $\mathcal{I}_{\lambda}$ and $\mathcal{R}_{\lambda}$ are symmetric operators defined on $D_{x_{0}}$


## The Heisenberg case

The Heisenberg group $\mathbb{R}^{3}=\{(x, y, z)\}$ with standard left-invariant structure

$$
X=\partial_{x}-\frac{y}{2} \partial_{z}, \quad Y=\partial_{y}+\frac{x}{2} \partial_{z}
$$

Every (non trivial) geodesic is

- ample and equiregular
- with geodesic growth vector $\mathcal{G}=(2,3)$.

If one fix two geodesics $\gamma_{\lambda}(t), \gamma_{\eta}(s)$ corresponding to two covectors $\lambda, \eta$

- $C(t, s):=\frac{1}{2} d^{2}\left(\gamma_{\lambda}(t), \gamma_{\eta}(s)\right)$ is not $C^{2}$ at zero!

Still we can determine the main expansion

$$
\mathcal{Q}_{\lambda}(t) \simeq \frac{1}{t^{2}} \mathcal{I}_{\lambda}+\mathcal{Q}_{\lambda}^{(0)}+O(t), \quad \text { for } t \rightarrow 0
$$

## The Heisenberg case

We compute it on the orthonormal basis $v:=\dot{\gamma}(0)$ and $v^{\perp}:=\dot{\gamma}(0)^{\perp}$ for $D_{x_{0}}$.
The matrices representing $\mathcal{I}_{\lambda}$ and $\mathcal{R}_{\lambda}$ in the basis $\left\{v, v^{\perp}\right\}$ of $D_{x_{0}}$ are

$$
\mathcal{I}_{\lambda}=\left(\begin{array}{ll}
1 & 0  \tag{9}\\
0 & 4
\end{array}\right), \quad \mathcal{R}_{\lambda}=\frac{2}{5}\left(\begin{array}{cc}
0 & 0 \\
0 & h_{z}^{2}
\end{array}\right),
$$

where $\lambda$ has coordinates ( $h_{x}, h_{y}, h_{z}$ ) dual to o.n. basis $X, Y+\operatorname{Reeb} Z$

- anisotropy of the different directions on $D_{x_{0}}$
- curvature is always zero in the direction of $\dot{\gamma}$
- curvature of lines $\left\{h_{z}=0\right\}$ is zero.
- curvature of lift of circles $\left\{h_{z} \neq 0\right\}$ is not bounded (nor constant) $\rightarrow \operatorname{trace}\left(\mathcal{I}_{\lambda}\right)=5 \leftrightarrow$ is related to $\operatorname{MCP}(0,5)$.


## The invariant $\mathcal{R}_{\lambda}$ for contact manifolds

- there is a canonical linear connection, $\nabla$ the Tanno connection
$\diamond$ it is metric but not torsion free, extends Tanaka-Webster in CR geometry.
- The Tanno tensors

$$
Q(X, Y):=\left(\nabla_{Y} J\right) X, \quad \tau(X)=T^{\nabla}\left(X_{0}, X\right)
$$

- $\tau=0$ iff the Reeb is a Killing field
- $Q=0$ iff the structure is CR


## [Agrachev, DB, Rizzi, '15]

$$
\begin{aligned}
\operatorname{tr}\left(\mathcal{R}_{\lambda}\right)=\operatorname{Ric}^{\nabla}(\mathrm{T}) & -\frac{3}{5} R^{\nabla}(\mathrm{T}, J \mathrm{\top}, J \mathrm{\top}, \mathrm{~T}) \\
& +\frac{1}{5}\|Q(\mathrm{~T}, \mathrm{~T})\|^{2}-\frac{6}{5} g(\tau(\mathrm{~T}), J \mathrm{\top})+\frac{8 d-2}{20} h_{0}^{2}
\end{aligned}
$$

## SR Bonnet Myers for contact manifolds

## Theorem (Agrachev, DB, Rizzi, '15)

Consider $M$ a complete, SR contact structure of dimension $2 d+1$, with $d>1$. Assume that for every horizontal unit vector $X$

$$
\begin{gathered}
\operatorname{Ric}^{\nabla}(X)-R^{\nabla}(X, J X, J X, X) \geq(2 d-2) \kappa_{1} \\
\|Q(X, X)\|^{2} \leq(2 d-2) \kappa_{2}
\end{gathered}
$$

with $\kappa_{1}>\kappa_{2} \geq 0$. Then $M$ is compact and

$$
\operatorname{diam}_{S R}(M) \leq \frac{\pi}{\sqrt{\kappa_{1}-\kappa_{2}}}
$$

- first condition is the "partial trace" of the curvature on $\{X, J X\}^{\perp} \cap D$.
- for $\operatorname{dim}>3$, the result was known only for $\tau=0$ and $Q=0$


## THANKS FOR YOUR ATTENTION!

