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What do we mean by comparison theorem?

Let M be a Riemannian manifold:

Comparison between a property on M w.r.t. some model space:

local property = sectional curvature, Ricci curvature

model spaces = space forms (Rn, Sn, Hn)

Many examples of these results:

Bonnet-Myers theorem → diameter

Bishop-Gromov inequality → volumes

Spectral Gap inequality → first eigenvalue of Laplacian

and also many geometric inequalities (Poincaré, Li-Yau, Sobolev, etc.)

In this talk we will focus on comparison on conjugate points.
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Examples of comparison theorems

M a Riemannian manifold.

Sec(v , w) = sectional curvature of the plane v ∧ w = R(v , w , v , w).

Ric(v) = trace Sec(v , ·).

Theorem (Riemannian comparison for conjugate points)

Let γ be a unit speed geodesic:

(L) If for all t and unit v ⊥ γ̇(t)

Sec(γ̇(t), v) ≥ κ > 0

then γ(t) has a conjugate point at time tc(γ) ≤ π/
√

κ.

(U) If for all t and unit v ⊥ γ̇(t)

Sec(γ̇(t), v) ≤ 0

then γ(t) has no conjugate points, i.e. tc(γ) = +∞.
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Examples of comparison theorems

M a Riemannian manifold.
Sec(v , w) = sectional curvature of the plane v ∧ w = R(v , w , v , w).
Ric(v) = trace Sec(v , ·).

Theorem (Riemannian comparison for conjugate points)

Let γ be a unit speed geodesic:

(AL) If for all t
Ric(γ̇(t)) ≥ κ > 0

then γ(t) has a finite first conjugate time tc(γ) ≤ π/
√

κ.

(U) If for all t and unit v ⊥ γ̇(t)

Sec(γ̇(t), v) ≤ 0

then γ(t) has no conjugate points, i.e. tc(γ) = +∞.

→ Proof: uses theory of Jacobi fields.
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Some ideas

The first conjugate time tc(γ) is the infimum of T > 0 such that there exists a
Jacobi field

J(t) =
∂

∂s

∣
∣
∣
∣
s=0

γs(t)

such that J(0) = J(T ) = 0.

Jacobi equation for Jacobi fields

J̈i (t) + Rik(t)Jk (t) = 0

where J1(t), . . . , Jn(t) are n independent Jacobi fields along the geodesics and

Rij(t) = Riem(γ̇(t), fi (t), γ̇(t), fj (t))

where f1(t), . . . , fn(t) is parallely transported frame along γ.
When M has constant curvature R(t) = κI and one gets the solutions x(t)
of the equation

ẍ + κx = 0
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Some ideas

The first conjugate time tc(γ) is the infimum of T > 0 such that there exists a
Jacobi field

J(t) =
∂

∂s

∣
∣
∣
∣
s=0

γs(t)

such that J(0) = J(T ) = 0.

Jacobi equation for Jacobi fields

J̈(t) + R(t)J(t) = 0

where J(t) = (J1(t), . . . , Jn(t)) are n independent Jacobi fields along the
geodesics and

R(t) = Riem(γ̇(t), ·, γ̇(t), ·)
is the directional curvature written in a parallely transported frame.
When M has constant curvature R(t) = κI and one gets the solutions x(t)
of the equation

ẍ + κx = 0
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Figure: Conjugate points: where we lose local optimality
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Motivation

We want to expand these ideas to sub-Riemannian geometry.

→ Difficulties

No canonical connection and/or parallel transport

Definition of sub-Riemannian curvature (sectional, Ricci)

What are model spaces?

→ Main ideas:

Sub-Riemannian problem is an affine optimal control problem

Models: Linear-Quadratic problem with potential

→ Potential plays the role of the curvature

Write the analogue of Jacobi equation

Try to simplify them as much as possible → curvature
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Why LQ optimal control problems?

Optimal control problem in M = R
n with k controls:

ẋ = Ax + Bu, ← Kalman condition

JT (xu(·)) =
1
2

∫ T

0

(
|u|2 − x∗Qx

)
dt → min

The Hamiltonian function H : T ∗
R

n → R is

H(p, x) =
1
2

p∗BB∗p + p∗Ax +
1
2

x∗Qx

Hamilton equations

(∗)
{

ṗ = −A∗p − Qx

ẋ = BB∗p + Ax

The conjugate time tc is the smallest T > 0 such that ∃ solution of (∗) such that
x(0) = x(T ) = 0
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Why LQ optimal control problems?

Facts
tc depends only on A, B, Q.

for t < tc there exists a unique optimal solution joining x0 and x1 in time t.

for t > tc there are no optimal solution joining x0 and x1 in time t.

Example. Consider the case of a free particle in R
n with potential

ẋ = u, JT (xu(·)) =
1
2

∫ T

0

|u|2 − x∗Qx dt.

In this case the Hamilton equations are equivalent to (A = 0 and B = I)
{

ṗ = −Qx

ẋ = p
⇔ ẍ + Qx = 0

These are precisely the equation of a Riemannian Jacobi field
If Q = κI we get the conjugate time tc = π/

√
κ.

→ The potential Q represents the directional curvature .
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What to do: main ideas

Consider a SR geodesic γ(t) (+ some assumptions on the geodesic)

We associate with it

A “directional curvature” Rγ(t) : Tγ(t)M × Tγ(t)M → R

→ suitable adaptation of the Jacobi fields/equations

a LQ control problem with k = dimD control.

→ Related to the linearization of the control system along the geodesic

+ A quadratic cost with potential Q that represents the bound for Rγ(t).

Such that in the Riemannian case:

Rγ(t)(v) = Sec(v , γ̇(t))

ẋ = u and JT = 1
2

∫
u2 − x∗Qx dt
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Affine optimal control problems

(Dynamic) Let us consider a smooth affine control system on a manifold M

ẋ = f (x , u) = X0(x) +
k∑

i=1

uiXi (x), x ∈ M, u ∈ R
k .

we call Dx = spanx{X1, . . . , Xk} the distribution.

we assume Liex{(ad jX0)Xi , i = 1, . . . , k , j ∈ N} = TxM for all x ∈ M.

(Cost) Given a Tonelli Lagrangian L : M × R
k → R we define the cost at time T

as the functional

JT (u) :=
∫ T

0

L(γu(t), u(t))dt,

For two given points x0, x1 ∈ M and T > 0, we define the value function

ST (x0, x1) = inf{JT (u) | u admissible, γu(0) = x0, γu(T ) = x1},
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Sub-Riemannian geometry

The (sub-)Riemannian case corresponds to the case when
the system is driftless (X0 = 0)
k < n (k = n corresponds to Riemannian)
the cost is quadratic
Hörmander condition: Liex{X1, . . . , Xk} = TxM for all x ∈ M

ẋ =
k∑

i=1

uiXi (x), x ∈ M, u ∈ R
k .

JT (u) :=
1
2

∫ T

0

‖γ̇(t)‖2dt, ST (x0, x1) =
1

2T
d2(x0, x1)

→ The cost is induced by a scalar product such that X1, . . . , Xk are orthonormal.
→ d(·, ·) Carnot-Caratheodory distance, d is finite and continuous.
→ maximized Hamiltonian

H(p, x) =
1
2

k∑

i=1

〈p, Xi(x)〉2
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Exponential map

Two kind of extremals

Abnormals: critical point of the end point map.

Normals: projection of the flow of ~H.

Theorem (PMP)

Let M be a SR manifold and let γ : [0, T ]→ M be a normal minimizer. ∃
Lipschitz curve λ : [0, T ]→ T ∗M, with λ(t) ∈ T ∗

γ(t)M, such that

λ̇(t) =
−→
H (λ(t)).

λ(t) = et~H(λ0) → parametrized by initial covectors λ0 ∈ T ∗
x0

M

γ(t) = π(λ(t))

The exponential map starting from x0 as

Expx0
: R+ × T ∗

x0
M → M, Expx0

(t, λ0) = π(et~H(λ0)) = γ(t).
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Geodesic growth vector

Let γ be a normal geodesic. Let T ∈ X0 +D an admissible extension of γ̇

Geodesic flag

F i
γ(t) = span{[T , . . . , [T

︸ ︷︷ ︸

j≤i−1 times

, X ]]|γ(t) | ∀X ∈ Γ(D), j = 0, . . . , i − 1}

For all t this defines a flag

F1
γ(t) ⊂ F2

γ(t) ⊂ . . . ⊂ Tx0M

Does not depend on the choice of T

F1
γ(t) = Dγ(t).

Geodesic growth vector

Gγ(t) = {k1(t), k2(t), . . .}, ki(t) = dimF i
γ(t)

→ For an LQ problem ki = rank{B, AB, . . . , Ai−1B}.
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Ample and equiregular geodesics

A normal geodesic is

equiregular if dimF i
γ(t) does not depend on t

ample if ∃m > 0 s.t. Fm
γ (t) = Tx0M

“Microlocal Hörmander condition”. Gγ = {k1, . . . , km}
→ Related with controllability of the linearised system around γ

Ample ⇒ γ is not abnormal (even γ|[0,t] for all t).

the linearized system along γ is controllable for all T > 0.

Let Gγ = {k1, k2, . . . , km}

Lemma

For an equiregular ample geodesic the sequence {ki − ki−1}i is decreasing .
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Young diagram of the geodesic

Let γ be an ample, equiregular geodesic, with Gγ = {k1, k2, . . . , km}

. . .

. . .
...

...

k1 = dimDγ(t)

ki − ki−1: new “directions” obtained with Lie derivative in direction of γ̇

ample geodesics: # boxes = dim M (→ generic condition)

Length of the rows {n1, . . . , nk}
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Young diagram of the geodesic

Let γ be an ample, equiregular geodesic, with Gγ = {k1, k2, . . . , km}

n1 . . .

n2 . . .
...

...
...

nk−1

nk

k1 = dimDγ(t)

ki − ki−1: new “directions” obtained with Lie derivative in direction of γ̇

ample geodesics: # boxes = dim M (→ generic condition)

Length of the rows {n1, . . . , nk}

For LQ problems: {n1, . . . , nk} = Kronecker/controllability indices.
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LQ models

Given an ample and equiregular geodesic with indices n1, . . . , nk

LQ(n1, . . . , nk ; Q) is an LQ optimal control problem in R
n with

k controls
A, B corresponds to the Brunovsky normal form having indices n1, . . . , nk

→ coupling of k scalar equations y (ni ) = ui for i = i , . . . , k .

constant potential Q

We denote by tc(n1, . . . , nk ; Q) its conjugate time

a priori tc(n1, . . . , nk ; Q) may be +∞
→ this always happens, for instance, when Q = 0.
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Jacobi fields revisited

γ(t) = π(λ(t)) = π ◦ et~H(λ0), where λ0 ∈ T ∗M initial covector of γ

~H ∈ Vec(T ∗M) Hamiltonian vector field

For any variation λs ∈ T ∗
x0

M of λ0 we define the vector field along λ(t):

X(t) :=
d

ds

∣
∣
∣
∣
s=0

et~H(λs) ∈ Tλ(t)(T
∗M)

J(t) = π∗X(t) is a Jacobi field along the geodesic γ(t) = π ◦ λ(t)

J(t) :=
d

ds

∣
∣
∣
∣
s=0

γs(t) =
d

ds

∣
∣
∣
∣
s=0

π(et~H(λs)) ∈ Tγ(t)(M)

The first conjugate time tc(γ) is the smallest T > 0 such that there exists a
Jacobi field along γ such that J(0) = J(T ) = 0.

→ If γ not abnormal, then γ loses local optimality at time tc(γ)
→ No connection needed.
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x0

λ0

γ(t)

λ(t)

M

T ∗M

π

Figure: from “A.Agrachev, Y.Sachkov, Control Theory from the geometric viewpoint.”
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Moving frame along the extremal

Aim: recover Jacobi equation, and generalize it to the sub-Riemannian setting

σ is the symplectic form on T ∗M

A frame along the extremal λ(t):

E i
λ(t), F j

λ(t) ∈ Tλ(t)(T
∗M), i , j = 1, . . . , n

With the following properties:

verλ(t) = ker π∗|λ(t) = span{E i
λ(t), i = 1, . . . , n}

It is a Darboux frame:

σ(E i , E j) = 0, σ(F i , F j) = 0, σ(E i , F j) = δij

→ The projections π∗F i
λ(t) define a set of n vector fields along γ(t) = π(λ(t)).
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Hamilton equations for the Jacobi fields

Jacobi field written in the moving frame along the extremal

X(t) =
n∑

i=1

pi(t)E i
λ(t) + xi (t)F i

λ(t)

The field X(t) is associated with a curve t 7→ (p(t), x(t)) ∈ R
2n such that

ṗ = −A∗
t p − Qtx

ẋ = BtB
∗
t p + Atx

for some matrices At , Bt , Qt such that rank Bt = k and Qt = Q∗
t

These are Hamilton equations in R
2n for the time-dependent Hamiltonian

H(p, x) =
1
2

p∗BtB
∗
t p + p∗Atx +

1
2

x∗Qtx

→ The correspondence depends on the choice of the Darboux moving frame
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Canonical frame

In the sub-Riemannian case, there exists a preferred choice:

⋄ “Jacobi equation” = Hamilton equation for a LQ problem

Theorem (Agrachev-Zelenko 2002, Zelenko-Li 2009)

For any ample, equiregular geodesic γ(t) with indices n1, . . . , nk there exists a
canonical moving frame along λ(t) such that

At , Bt are constant, with A, B in Brunovski normal form

Qt has particular algebraic symmetries (equations as simple as possible)

This “replaces” the parallel transport along γ

In the Riemannian case this procedure gives the equations
{

ṗ = −Qtx

ẋ = p
⇔ ẍ + Qtx = 0
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Directional curvature

Denote fi(t) := π∗F i
λ(t) ∈ Tγ(t)M the vector fields on γ.

Tγ(t)M = span{f1(t), . . . , fn(t)}.

Sub-Riemannian directional curvature
The formula

Rγ(t)(fi , fj) := [Qt ]ij

defines a well posed quadratic form

Rγ(t) : Tγ(t)M × Tγ(t)M → R.

In the Riemannian case

Rγ(t)(v) = Sec(v , γ̇(t))

Rγ(t) can be nicely expressed for contact manifold.

Davide Barilari (IMJ-PRG, Paris Diderot) Sub-Riemannian geometry June 9-13, 2014 22 / 29



Introduction and motivation Geodesic growth vector and LQ models Jacobi fields revisited and Directional curvature Main results and few examples Averaging

Outline

1 Introduction and motivation

2 Geodesic growth vector and LQ models

3 Jacobi fields revisited and Directional curvature

4 Main results and few examples

5 Applications to 3D unimodular Lie groups

Davide Barilari (IMJ-PRG, Paris Diderot) Sub-Riemannian geometry June 9-13, 2014 22 / 29



Introduction and motivation Geodesic growth vector and LQ models Jacobi fields revisited and Directional curvature Main results and few examples Averaging

Microlocal comparison theorem

Theorem (DB, L.Rizzi, ’14)

Let γ be an ample, equiregular geodesic, with indices n1, . . . , nk . Then

(L) if Rγ(t) ≥ Q+ for all t, then tc(γ) ≤ tc(n1, . . . , nk ; Q+),

(U) if Rγ(t) ≤ Q− for all t, then tc(n1, . . . , nk ; Q−) ≤ tc(γ).

The first conjugate time of a LQ problem gives an estimate for the first
conjugate time along the geodesic

The LQ problem with Brunovsky normal form and constant potential is a
model (i.e. we have equality)

In SR case there are no example where the curvature Rγ(t) is equal for all
geodesics (→ model spaces out of SR)

We can “take out the direction of motion” (dimensional reduction)
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Microlocal comparison theorem

Theorem (DB, L.Rizzi, ’14)

Let γ be an ample, equiregular geodesic, with indices n1, . . . , nk . Then

(L) if Rγ(t) ≥ Q+ for all t, then tc(γ) ≤ tc(n1, . . . , nk ; Q+),

(U) if Rγ(t) ≤ Q− for all t, then tc(n1, . . . , nk ; Q−) ≤ tc(γ).

Corollary (Constant curvature along γ)

Assume that Rγ(t) = Q for all t, then tc(γ) = tc(n1, . . . , nk ; Q).

Corollary (Negative curvature)

Assume that Rγ(t) ≤ 0 for all t, then tc(γ) = +∞

⋄ These are matrix inequalities.

⋄ Can be reduced to scalar with the “averaging” procedure. (→ if I have time)
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Conjugate points of LQ systems

Question: when does t(n1, . . . , nk ; Q) < +∞?

Hamiltonian vector field of the LQ problem: ~H(p, x) =

(
−A∗ −Q
BB∗ A

) (
p
x

)

Theorem (Agrachev - Rizzi - Silveira, 2014)

The following are equivalent

LQ optimal control problem has finite conjugate time
~H has at least one Jordan block of odd size with purely imaginary eigenvalue.

⋄ computation of tc(n1, . . . , nk , Q) reduces to an algebraic question

⋄ there is no (evident) explicit formula for arbitrary Q and n >> 1.

⋄ could be simplified with the “averaging” procedure. (→ if I have time)
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Example: Riemannian case

For all γ we have Gγ = {dim M} =⇒ Indices: {1, 1, . . . , 1}
Moreover Rγ(t)(v) = Sec(γ̇(t), v)

Assume that Rγ(t) = Sec(γ̇(t), v) ≥ κ > 0 for all unit v ∈ Tγ(t)M. Then

tc(γ) ≤ tc(1, . . . , 1; κI) = π/
√

κ

Indeed LQ(1, . . . , 1; κ1) is the n-dimensional harmonic oscillator

H(p, x) =
1
2

(|p|2 + κ|x |2), tc(1, . . . , 1; κ) =

{

+∞ κ ≤ 0
π√
κ

κ > 0

Assume that Rγ(t) = Sec(γ̇(t), v) ≤ 0 for all unit v ∈ Tγ(t)M. Then

tc(γ) ≥ tc(1, . . . , 1; 0) = +∞.
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Model example: Heisenberg group

For all γ we have Gγ = {2, 3} =⇒ Kronecker indices: {2, 1}
Geodesic γ with initial covector λ = (h0, h1, h2).

→ Recall that h0 := 〈λ, Z 〉 is constant.

Rγ(t) =





h2
0 0 0

0 0 0
0 0 0



 =: Q constant along the extremal!

LQ(2, 1; Q) is a LQ problem in R
3, with Hamiltonian

H(p, x) =
1
2

p2
1 + p2x1 +

1
2

h2
0x2

1 tc(2, 1; Q) =

{

+∞ h0 = 0
2π
|h0| h0 6= 0

Let γ be a geodesic with initial covector λ, then tc(γ) =

{

+∞ h0 = 0
2π
|h0| h0 6= 0
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Model Example: SU(2) and SL(2)

For all γ we have Gγ = {2, 3} =⇒ Kronecker indices: {2, 1}
Geodesic γ with initial covector λ = (h0, h1, h2).

→ Recall that h0 := 〈λ, Z 〉 is constant.

R
SU(2)
γ(t) =





h2
0 + 1 0 0

0 0 0
0 0 0



 , R
SL(2)
γ(t) =





h2
0 − 1 0 0

0 0 0
0 0 0



 ,

→ We recover [Boscain, Rossi - 2008]:

SU(2) Every geodesic has conjugate time tc(γ) =
2π

√

h2
0 + 1

.

SL(2) Let γ be a geodesic with initial covector λ, then

tc(γ) =







+∞ |h0| ≤ 1
2π

√

h2
0 − 1

|h0| > 1
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Averaging - sub-Riemannian setting

Collect all directions with the same controllability indices.

. . .

. . .
...

...
...

...

. . .







r rows of length ℓ

⇓ ⇓ ⇓ ⇓

Γ1 Γ2 Γ3 . . . Γℓ

}

1 Generalized row Γ of length ℓ.

Boxes, rows =⇒ generalized boxes, rows

Average of Rλ(t) w.r.t. directions in a gen. box =⇒ Ricci of the gen. box

Riemannian case: 1 gen. box =⇒ 1 Ricci
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Averaging - sub-Riemannian setting (2)

For a gen. row Γ = {Γ1, . . . , Γℓ}, define the Ricci curvatures

Ricγ(t)(Γj) :=
∑

i∈Γj

Rγ(t)(fi , fi), j = 1, . . . , ℓ

We have 1 comparison theorem for each gen. row

Theorem (DB, L.Rizzi, ’14)

Let γ(t) be an ample, equiregular geodesic. Assume that, for Γ = {Γ1, . . . , Γℓ}

1
r

Ricγ(t)(Γj) ≥ κj , ∀ j = 1, . . . , ℓ

Then tc(γ) ≤ tc(ℓ; Q), where Q = diag{κ1, . . . , κℓ}
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Sub-Riemannian Bonnet-Myers Theorem

M complete, connected sub-Riemannian manifold
All the minimizing geodesics have the same growth vector

Theorem (Sub-Riemannian Bonnet-Myers)

Assume that there exists a gen. row Γ = {Γ1, . . . , Γℓ} and constants κ1, . . . , κℓ

such that, for every geodesic,

1
r

Ricγ(t)(Γj) ≥ κj , j = 1, . . . , ℓ

Then, if the polynomial

Pκ1,...,κℓ
(x) = x2ℓ +

ℓ−1∑

j=0

κℓ−jx
2j(−1)ℓ−j−1

has at least one simple imaginary root, the manifold is compact, has finite
diameter ≤ t(ℓ; κ1, . . . , κℓ). Moreover its fundamental group is finite.
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Contact structures on 3D unimodular Lie Groups

M is a unimodular, simply connected Lie group, dim M = 3

1-form ω is the contact form. Distribution: ∆ = ker ω

left-invariant sub-Riemannian structure (∆, 〈·|·〉)
X1, X2 left-invariant orthonormal frame for (∆, 〈·|·〉)
X0 Reeb vector field: X0 ∈ ker dω, ω(X0) = 1

Normalization dω|∆ is the area element

Structural constants: [Xi , Xj ] =
∑2

ℓ=0 cℓ
ijXℓ

Theorem (Agrachev, Barilari - 2012)

The equivalence classes of isometric contact structures on 3D unimodular Lie
groups are classified by two invariants: χ ≥ 0, κ ∈ R.

Up to rescaling χ2 + κ2 = 1.
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Contact structures on 3D unimodular Lie Groups

Theorem (Agrachev, Barilari - 2012)

The equivalence classes of isometric contact structures on 3D unimodular Lie
groups are classified by two invariants χ, κ ∈ R.

Up to rescaling and reflections χ2 + κ2 = 1 and χ ≥ 0.
χ

κ

SU(2)
SLe(2)

SLh(2)
SH(2) SE

(2
)

b

H3

b

b bb
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Some known results (case χ = 0)

κ

SU(2)SLe(2) H3

b bb

h0 := 〈λ, X0〉 is always a constant along the extremal

Theorem (Boscain, Rossi - 2008)

Let γ be a geodesic on SL(2), SU(2):

SL(2) (κ = −1): tc(γ) =

{
+∞ h2

0 ≤ 1
2π√
h2

0−1
h2

0 > 1

SU(2) (κ = 1): tc(γ) = 2π√
h2

0
+1
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Some new results (χ > 0)

Let χ > 0. There exists a left-invariant orthonormal frame X1, X2 such that

[X1, X0] = (χ + κ)X2,

[X2, X0] = (χ− κ)X1,

[X2, X1] = X0

Moreover the function E : T ∗M → R is a constant of the motion

E =
h2

0

2χ
+ h2

2, hi(λ) := 〈λ, Xi 〉

Theorem (Barilari, Rizzi - 2014)

Let M be a 3D unimodular Lie group with a left-invariant sub-Riemannian
structure, with χ > 0 and κ ∈ R. Then there exists E = E (χ, κ) such that every
length parametrised geodesic γ with E (γ) ≥ E has a finite conjugate time.
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Final Comments

Other results obtained:
Proof of a Ricci-type “average” comparison result

→ Reduction to (more than one) scalar inequalities.
Bonnet-Myers result (diameter estimate with tc of LQ models).
New results about conjugate points for unimodular 3D Lie groups

Technical points in the proofs
Conjugate points = blow up time of a Riccati equation
Comparison of solution for Matrix Riccati equations

→ This is highly extendable to other comparison results
Difficult technical point: how to “average” ?

→ Collect all directions with the same controllability indices.

Good and bad points
⋄ The method is quite general (no restriction on the sub-Riemannian structure)
⋄ It could be very complicated to compute (and bound) Rγ(t)
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THANKS FOR YOUR ATTENTION!
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