Comparison theorems for conjugate points in
sub-Riemannian geometry

Davide Barilari
IMJ-PRG, Université Paris Diderot - Paris 7

Analysis and Geometry in Control Theory and applications
INDAM, Rome, Italy

June 9-13, 2014

Davide Barilari (IMJ-PRG, Paris Diderot) Sub-Riemannian geometry June 9-13, 2014



Joint work with

Joint work with Luca Rizzi (CMAP, Ecole Polytechnique)

— Main Reference:

1. Comparison theorems for conjugate points in sub-Riemannian geometry (with
L. Rizzi). Submitted. Preprint ArXiv.

— Other references:

2. The curvature: a variational approach (with A. Agrachev and L. Rizzi). Submitted.
Preprint ArXiv.

3. Curvature for contact sub-Riemannian manifold (with A. Agrachev and L. Rizzi). In
preparation.

Davide Barilari (IMJ-PRG, Paris Diderot)

Sub-Riemannian geometry June 9-13, 2014



Introduction and motivation

Outline

© Introduction and motivation

9 Geodesic growth vector and LQ models

© Jacobi fields revisited and Directional curvature
@ Main results and few examples

e Applications to 3D unimodular Lie groups

Davide Barilari (IMJ-PRG, Paris Diderot) Sub-Riemannian geometry

June 9-13, 2014



Introduction and motivation

Outline

© Introduction and motivation

(IMJ-PRG, Paris Diderot) -Ri geometry



Introduction and motivation

What do we mean by comparison theorem?

Let M be a Riemannian manifold:

Comparison between a property on M w.r.t. some model space:
@ local property = sectional curvature, Ricci curvature

@ model spaces = space forms (R”, S", H")

Many examples of these results:
@ Bonnet-Myers theorem — diameter
@ Bishop-Gromov inequality — volumes
@ Spectral Gap inequality — first eigenvalue of Laplacian

@ and also many geometric inequalities (Poincaré, Li-Yau, Sobolev, etc.)

In this talk we will focus on comparison on conjugate points.
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Introduction and motivation

Examples of comparison theorems

@ M a Riemannian manifold.
@ Sec(v, w) = sectional curvature of the plane v Aw = R(v, w, v, w).
@ Ric(v) = trace Sec(v,-).

Theorem (Riemannian comparison for conjugate points)

Let v be a unit speed geodesic:
(L) If for all t and unit v L 4(t)

Sec(¥(t),v) > k>0
then ~(t) has a conjugate point at time t.(v) < 7/+/k.
(U) If for all t and unit v L 4(t)
Sec(¥(t),v) <0

then ~(t) has no conjugate points, i.e. tc(y) = +oo.
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Introduction and motivation

Examples of comparison theorems

@ M a Riemannian manifold.
@ Sec(v, w) = sectional curvature of the plane v A w = R(v, w, v, w).
@ Ric(v) = trace Sec(v,-).

Theorem (Riemannian comparison for conjugate points)

Let v be a unit speed geodesic:

(AL) If for all t
Ric(4(t)) >« >0

then ~(t) has a finite first conjugate time t.(v) < 7/\/k.
(U) If for all t and unit v L 4(t)
Sec((t),v) <0

then ~(t) has no conjugate points, i.e. t:(vy) = +oo.

— Proof: uses theory of Jacobi fields.
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Introduction and motivation

Some ideas

The first conjugate time t.(v) is the infimum of T > 0 such that there exists a
Jacobi field .
J(t) = — t
0= 52|

such that J(0) = J(T) = 0.

@ Jacobi equation for Jacobi fields

Ji(t) + Rix(t) Jk(t) = 0
where J1(t),..., Ja(t) are n independent Jacobi fields along the geodesics and
Ry(t) = Riem(3(t), fi(t), (t), fi(t))

where fi(t),..., fo(t) is parallely transported frame along ~.

@ When M has constant curvature R(t) = I and one gets the solutions x(t)
of the equation

X+rx=0
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Introduction and motivation

Some ideas

The first conjugate time t.(v) is the infimum of T > 0 such that there exists a
Jacobi field 5

J(t) = 5 _Ovs(t)

such that J(0) = J(T) = 0.

@ Jacobi equation for Jacobi fields

J(t)+ R(t)J(t) =0

where J(t) = (4(t),...,n(t)) are n independent Jacobi fields along the
geodesics and

| R(t) = Riem(3(t),,4(¢), )|
is the directional curvature written in a parallely transported frame.

@ When M has constant curvature R(t) = I and one gets the solutions x(t)
of the equation

X+rx=0
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Introduction and motivation

¥(t)

Figure: Conjugate points: where we lose local optimality
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Introduction and motivation

Motivation

We want to expand these ideas to sub-Riemannian geometry.

— Difficulties

@ No canonical connection and/or parallel transport
@ Definition of sub-Riemannian curvature (sectional, Ricci)
@ What are model spaces?

— Main ideas:

@ Sub-Riemannian problem is an affine optimal control problem
@ Models: Linear-Quadratic problem with potential
— Potential plays the role of the curvature

@ Write the analogue of Jacobi equation

@ Try to simplify them as much as possible — curvature
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Introduction and motivation

Why LQ optimal control problems?

Optimal control problem in M = R" with k controls:

X = Ax + Bu, < Kalman condition

2
The Hamiltonian function H: T*R" — R is

-
Jr(x(?)) = 1/0 (|u|2 —x* QX) dt — min

1 1
H(p,x) = Ep*BB*p + p*Ax + EX*QX

Hamilton equations

p=—-ApP—Qx
()9, pp
X = BB*p + Ax

The conjugate time t. is the smallest T > 0 such that 3 solution of (*) such that
x(0)=x(T)=0
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Introduction and motivation

Why LQ optimal control problems?

@ t. depends only on A, B, Q.
@ for t < t. there exists a unique optimal solution joining xp and x; in time t.

@ for t > t. there are no optimal solution joining xp and xj in time t.

Example. Consider the case of a free particle in R” with potential

1 /7
X =u, Jr(x () = > / lu]?> — x* Qx dt.
0
In this case the Hamilton equations are equivalent to (A =0 and B =1)

{?:_QX & X+ Qx=0
x=p

@ These are precisely the equation of a Riemannian Jacobi field
o If @ = &I we get the conjugate time t. = 7//k.
— The potential Q represents the directional curvature .
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Introduction and motivation

What to do: main ideas

Consider a SR geodesic v(t) (+ some assumptions on the geodesic)
We associate with it
@ A “directional curvature” R, ;) 1 Ty ()M x Ty(yM — R
— suitable adaptation of the Jacobi fields/equations

@ a LQ control problem with k = dim D control.
— Related to the linearization of the control system along the geodesic
+ A quadratic cost with potential @ that represents the bound for R, y).

Such that in the Riemannian case:
o R, (n)(v) = Sec(v,¥(t))
o x=uvand Jr =3 [v®— x*Qxdt
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Geodesic growth vector and LQ models
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Geodesic growth vector and LQ models

Affine optimal control problems

(Dynamic) Let us consider a smooth affine control system on a manifold M
x=f(x,u)= +Zu, (%), x € M,u e R¥,

@ we call D, = span, {Xi,..., Xk} the distribution.
@ we assume Lie, {(ad’Xo)Xi,i =1,...,k,j € N} = T,M for all x € M.

(Cost) Given a Tonelli Lagrangian L : M x R¥ — R we define the cost at time T
as the functional

Jr(u) = /0 L(v(t), u(t))t,

For two given points xg,x3 € M and T > 0, we define the value function
S7(x0, x1) = inf{Jr(u) | u admissible, v,(0) = xo0, vu(T) = x1}, J
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Geodesic growth vector and LQ models

Sub-Riemannian geometry

The (sub-)Riemannian case corresponds to the case when
@ the system is driftless (Xp = 0)
@ k < n (k = n corresponds to Riemannian)
@ the cost is quadratic
@ Hérmander condition: Liex{Xi,..., Xk} = TxM for all x e M

k
X = ZU,’X;(X), X € M,U S Rk.
i=1

17 1
@)= [ IORd Sr0.x) = 5rdex)

— The cost is induced by a scalar product such that Xj, ..., Xy are orthonormal.
— d(+,-) Carnot-Caratheodory distance, d is finite and continuous.
— maximized Hamiltonian
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Geodesic growth vector and LQ models

Exponential map

Two kind of extremals
@ Abnormals: critical point of the end point map.
@ Normals: projection of the flow of H.

Theorem (PMP)

Let M be a SR manifold and let «y : [0, T] — M be a normal minimizer. 3
Lipschitz curve X : [0, T] — T*M, with A(t) € T5yM, such that

A(t) = HO®).

The exponential map starting from xg as

Expy, RV x TEM — M, Exp (£, X0) = (e (X)) = 7(1).
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Geodesic growth vector and LQ models

Geodesic growth vector

Let v be a normal geodesic. Let T € Xy + D an admissible extension of ¥

Geodesic flag

Fi(t) =span{[T,... [T, X]llyx) IVX €(D), j=0,...,i—1}
N———

Jj<i—1 times

For all t this defines a flag
1 2
Fy(t)Cc Fi(t) C...C T M

@ Does not depend on the choice of T
[*) ]:,%(t) = D'y(t)-

Geodesic growth vector

G, (t) = {kui(t), ka(t), ...}, ki(t) = dim ! (t)

— For an LQ problem k; = rank{B, AB, ..., A—1B}.
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Geodesic growth vector and LQ models

Ample and equiregular geodesics

A normal geodesic is
@ equiregular if dim 7! (t) does not depend on t
@ ample if 3Im > 0s.t. FI'(t) = T,,M

@ “Microlocal Hérmander condition”. G, = {ki,..., kn}
— Related with controllability of the linearised system around ~
@ Ample = 1 is not abnormal (even ~|[ 4 for all t).

@ the linearized system along +y is controllable for all T > 0.
Let g'y = {k17 k27 KRN} km}

For an equiregular ample geodesic the sequence {k; — ki_1}; is decreasing .
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Geodesic growth vector and LQ models

Young diagram of the geodesic

Let v be an ample, equiregular geodesic, with G, = {ki, ko, ..., km}

@ ki =dim Dy

@ k; — ki_1: new “directions” obtained with Lie derivative in direction of
@ ample geodesics: # boxes = dim M (— generic condition)

@ Length of the rows {ny, ..., ng}
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Geodesic growth vector and LQ models

Young diagram of the geodesic

Let v be an ample, equiregular geodesic, with G, = {ki, ko, ..., km}

@ ki =dim Dy

@ k; — ki_1: new “directions” obtained with Lie derivative in direction of 7
@ ample geodesics: # boxes = dim M (— generic condition)

@ Length of the rows {ny, ..., ng}
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Geodesic growth vector and LQ models

Young diagram of the geodesic

Let v be an ample, equiregular geodesic, with G, = {ki, ko, ..., km}

n

nz

Nk—1

s

@ ki =dim D’y(t)

@ k; — ki_1: new “directions” obtained with Lie derivative in direction of
@ ample geodesics: # boxes = dim M (— generic condition)

@ Length of the rows {ny, ..., ng}

For LQ problems: {n1,..., nk} = Kronecker/controllability indices. J
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Geodesic growth vector and LQ models

LQ models

Given an ample and equiregular geodesic with indices ny, ..., ng

LQ(ni, ..., nk; Q) is an LQ optimal control problem in R” with
@ k controls
@ A, B corresponds to the Brunovsky normal form having indices ny, ..., ng
— coupling of k scalar equations y(") = u; for i = i,..., k.

@ constant potential @

We denote by t.(ny, ..., nk; Q) its conjugate time
@ a priori t.(ny, ..., nk; Q) may be +00

— this always happens, for instance, when @ = 0.
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Jacobi fields revisited and Directional curvature

Jacobi fields revisited

o y(t)=w(A(t)) =mo e”:’()\o), where X\g € T*M initial covector of 7
o H € Vec(T*M) Hamiltonian vector field
For any variation As € T3 M of Ao we define the vector field along A(t):

_4d
T ds

e(\s) € Ty (T*M)
s=0

X(t) :

o J(t) = m X(t) is a Jacobi field along the geodesic v(t) = 7 o A(t)

J(t) ::%

e € Ty (M)

d
'YS(t) = E

s=0

The first conjugate time t(7) is the smallest T > 0 such that there exists a
Jacobi field along v such that J(0) = J(T) = 0.

— If v not abnormal, then ~ loses local optimality at time t.(7)
— No connection needed.
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Jacobi fields revisited and Directional curvature

M
Ao
A(t)
s
X0
v(t)

Figure: from “A.Agrachev, Y.Sachkov, Control Theory from the geometric viewpoint.”
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Jacobi fields revisited and Directional curvature

Moving frame along the extremal

Aim: recover Jacobi equation, and generalize it to the sub-Riemannian setting

@ o is the symplectic form on T*M

A frame along the extremal A(t):
Elo Flo € Ta(T*M),  ij=1,....n

With the following properties:
0 very(y = kermy| ) = span{E)"\(t)7 i=1,...,n}
@ It is a Darboux frame:

o(E',E'y=0, o(F,F)=0, o(E',F)=4;

— The projections . Fy ) define a set of n vector fields along y(t) = w(A(t)).
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Jacobi fields revisited and Directional curvature

Hamilton equations for the Jacobi fields

Jacobi field written in the moving frame along the extremal

n
X(t) = pi(t)E} ) + xi(t)Figy
i=1

The field X(t) is associated with a curve t — (p(t), x(t)) € R?" such that

p=—Aip— Qix

for some matrices A¢, By, Q: such that rank By = k and Q; = Q;

These are Hamilton equations in R2" for the time-dependent Hamiltonian

1 * * * 1 *
H(p,x) = 5P B:Bip + p*Ax + X Qex

— The correspondence depends on the choice of the Darboux moving frame
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Jacobi fields revisited and Directional curvature

Canonical frame

In the sub-Riemannian case, there exists a preferred choice:

o “Jacobi equation” = Hamilton equation for a LQ problem

Theorem (Agrachev-Zelenko 2002, Zelenko-Li 2009)

For any ample, equiregular geodesic (t) with indices n1, ..., nx there exists a
canonical moving frame along A(t) such that

@ A, B; are constant, with A, B in Brunovski normal form

@ Q: has particular algebraic symmetries (equations as simple as possible)

@ This “replaces” the parallel transport along v
@ In the Riemannian case this procedure gives the equations

O
{? @ & X+ Qx=0
xX=p
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Jacobi fields revisited and Directional curvature

Directional curvature

Denote fi(t) := 7. F} ) € T,()M the vector fields on ~.

Ty oyM = span{fi(t),..., fa(t)}.

Sub-Riemannian directional curvature

The formula

Ry (i, ) = [Qely

defines a well posed quadratic form

SRV(t) 5 T,Y(t)M X T,Y(t)M — R.

@ In the Riemannian case
Eﬁw(t)(v) = Sec(v,(t))

@ M, (1) can be nicely expressed for contact manifold.
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Main results and few examples

Microlocal comparison theorem

Theorem (DB, L.Rizzi, '14)

Let v be an ample, equiregular geodesic, with indices ny,...,nk. Then
(L) if Ry = Q forall t, then te(y) < te(n, ... ne; Q),

(U) ifRy) < Q for all t, then te(ny, ..oy ng Qo) < te(y)-

@ The first conjugate time of a LQ problem gives an estimate for the first
conjugate time along the geodesic

@ The LQ problem with Brunovsky normal form and constant potential is a
model (i.e. we have equality)

@ In SR case there are no example where the curvature R, ;) is equal for all
geodesics (— model spaces out of SR)

@ We can “take out the direction of motion” (dimensional reduction)
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Main results and few examples

Microlocal comparison theorem

Theorem (DB, L.Rizzi, '14)

Let v be an ample, equiregular geodesic, with indices ny,...,nk. Then
(L) if Ry > Q forall t, then t(v) < te(ny, ..., Nk Qp),

(U) ifRy) < Q for all t, then te(ny, ..., ng Qo) < te(y)-

Corollary (Constant curvature along )

Assume that R ;) = Q for all t, then te(y) = te(m, ..., nk; Q).

Corollary (Negative curvature)

Assume that R (y) < 0 for all t, then t.(y) = +oo

¢ These are matrix inequalities.

o Can be reduced to scalar with the "averaging” procedure. (— if | have time)
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Main results and few examples

Conjugate points of LQ systems

Question: when does t(ny, ..., nk; Q) < +00? J

Hamiltonian vector field of the LQ problem: I:I’(pjx) - (‘A —Q> (P)

Theorem (Agrachev - Rizzi - Silveira, 2014)

The following are equivalent

@ LQ optimal control problem has finite conjugate time
o H has at least one Jordan block of odd size with purely imaginary eigenvalue.

© computation of t.(ny, ..., nk, @) reduces to an algebraic question
o there is no (evident) explicit formula for arbitrary Q and n >> 1.

o could be simplified with the “averaging” procedure. (— if | have time)
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Main results and few examples

Example: Riemannian case

@ For all v we have G, = {dim M} = Indices: {1,1,...,1}
@ Moreover R, (4)(v) = Sec(§(t), v)

Assume that R.(;) = Sec(§(t), v) > & > 0 for all unit v € T, ;yM. Then

te(7) < t(1,...,1;k0) = 7/\VK

Indeed LQ(1,...,1; k1) is the n-dimensional harmonic oscillator

1 +o00 k<0
H(p,x) = §(|P|2+"¢|X|2)a te(1,...,1;K) = {L k>0
v/

Assume that R ;) = Sec(§(t), v) < 0 for all unit v € T (M. Then

te(y) > te(1,...,1;0) = +oo.
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Main results and few examples

Model example: Heisenberg group

@ For all v we have G, = {2,3} = Kronecker indices: {2,1}
@ Geodesic 7y with initial covector A\ = (ho, h1, h2).
— Recall that hy := (A, Z) is constant.

h 0 0
Ryp=(0 0 0 =Q constant along the extremal!
0 0 O

LQ(2,1; Q) is a LQ problem in R3, with Hamiltonian

1 1 +00 hg=0
H ==p; S te(2,1;,Q) =
(p,X) 2P1 + pox1 + > 0X1 c( ) Q) ﬁ)zr' ho # 0
T +oo  ho =
Let v be a geodesic with initial covector A, then t(v) = { 5.
ho 070
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Main results and few examples

Model Example: SU(2) and SL(2)

o For all v we have G, = {2,3} = Kronecker indices: {2,1}
@ Geodesic 7y with initial covector A = (ho, h1, h2).
— Recall that hg := (A, Z) is constant.

wp  (BF1 00 ap (-1 00
wWP= 0o o0, ®wP=| 0o 00,
0 00 0 00

— We recover [Boscain, Rossi - 2008]:

21

NG ES

SL(2) Let v be a geodesic with initial covector \, then

SU(2) Every geodesic has conjugate time t.(v) =

+00 lho| <1
tc(’Y) = 277( |ho| >1
)
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Averaging - sub-Riemannian setting

@ Collect all directions with the same controllability indices.

¢

¢

4

4

I

>

I3

e

r rows of length ¢

} 1 Generalized row I of length £.

@ Boxes, rows = generalized boxes, rows

@ Average of Ry () w.r.t. directions in a gen. box = Ricci of the gen. box

@ Riemannian case: 1 gen. box => 1 Ricci
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Averaging - sub-Riemannian setting (2)

For a gen. row I' = {I1,..., I/}, define the Ricci curvatures

Ricy(T)) = D Ry i), J=1,....¢

ierl;

We have 1 comparison theorem for each gen. row

Theorem (DB, L.Rizzi, '14)

Let ~(t) be an ample, equiregular geodesic. Assume that, for I = {I1,...,T¢}
1
P Ricw(t)(rj) > Kj, Vji=1,...,¢

Then t.(v) < t(¢; Q), where Q = diag{k1,...,k¢}
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Sub-Riemannian Bonnet-Myers Theorem

@ M complete, connected sub-Riemannian manifold
@ All the minimizing geodesics have the same growth vector

Theorem (Sub-Riemannian Bonnet-Myers)

Assume that there exists a gen. row I = {I'1,...,[,} and constants k1, ..., kg
such that, for every geodesic,

1 _. .
P Ric, (4 () > &, j=1,...,¢

Then, if the polynomial
-1
Prr,...me(X) = x4+ Z /w_szf(—l)f—J—l
j=0

has at least one simple imaginary root, the manifold is compact, has finite
diameter < t(¢; k1, ..., k). Moreover its fundamental group is finite.
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Contact structures on 3D unimodular Lie Groups

M is a unimodular, simply connected Lie group, dim M =3
1-form w is the contact form. Distribution: A = kerw
left-invariant sub-Riemannian structure (A, (-|-))

X1, Xa left-invariant orthonormal frame for (A, (-|-))

Xo Reeb vector field: Xy € ker dw, w(Xp) =1
Normalization dw|a is the area element

Structural constants: [X;, Xj] = 327_o cfXe

¢ €6 6 ¢ ¢ ¢ ¢

Theorem (Agrachev, Barilari - 2012)

The equivalence classes of isometric contact structures on 3D unimodular Lie
groups are classified by two invariants: x > 0, k € R.

Up to rescaling x? + % = 1.
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Contact structures on 3D unimodular Lie Groups

Theorem (Agrachev, Barilari - 2012)

The equivalence classes of isometric contact structures on 3D unimodular Lie
groups are classified by two invariants x, k € R.

Up to rescaling and reflections x2 + k2 = 1 and y > 0.
X

SLy(2)
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Some known results (case x = 0)

—& .4 .—li
SL.(2) H SU(2)

ho := (A, Xo) is always a constant along the extremal

Theorem (Boscain, Rossi - 2008)
Let v be a geodesic on SL(2), SU(2):
+oo K <1
o SLR) (h=-1) () =1 2 o1
V1 o

° SUQ) (k= 1) t(y) = &5
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Some new results (x > 0)

Let x > 0. There exists a left-invariant orthonormal frame Xi, X5 such that

[X1, Xo] = (x + K) Xz,
[X2, Xo] = (x — k) X1,
[Xo, Xi] = Xo
Moreover the function E : T*M — R is a constant of the motion
W o

E = E + h2, h,()\) = <)\, X,>

Theorem (Barilari, Rizzi - 2014)

Let M be a 3D unimodular Lie group with a left-invariant sub-Riemannian
structure, with x > 0 and x € R. Then there exists E = E(x, k) such that every
length parametrised geodesic v with E(y) > E has a finite conjugate time.
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Final Comments

Other results obtained:
@ Proof of a Ricci-type “average” comparison result
— Reduction to (more than one) scalar inequalities.
@ Bonnet-Myers result (diameter estimate with t. of LQ models).
@ New results about conjugate points for unimodular 3D Lie groups

Technical points in the proofs
@ Conjugate points = blow up time of a Riccati equation
@ Comparison of solution for Matrix Riccati equations
— This is highly extendable to other comparison results
@ Difficult technical point: how to “average” 7
— Collect all directions with the same controllability indices.

Good and bad points
© The method is quite general (no restriction on the sub-Riemannian structure)
o It could be very complicated to compute (and bound) R,y
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THANKS FOR YOUR ATTENTIONI!
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