# Heat kernel asymptotics at the cut locus for Riemannian and sub-Riemannian manifolds

#### Davide Barilari IMJ, Université Paris Diderot - Paris 7

#### International Youth Conference "Geometry and Control", Moscow, Russia

April 14, 2014

### Joint work with

- Ugo Boscain (CMAP, École Polytechnique)
- Grégoire Charlot (IF, Grenoble)
- Jacek Jendrej (CMLS, École Polytechnique)
- Robert W. Neel (Lehigh University)
- $\rightarrow$  References:
  - 1. D.B., U.Boscain, R.Neel, *Small time asymptotics of the SR heat kernel at the cut locus*, Journal of Differential Geometry, 92 (2012), no.3, 373-416.
  - 2. D.B., J.Jendrej, *Small time heat kernel asymptotics at the cut locus on surfaces of revolution*. Ann. Inst. Henri Poincaré-Anal. Non Linéaire 31 (2014), 281-295.
  - 3. D.B., U.Boscain, G.Charlot, R.Neel, *On the heat diffusion for generic Riemannian and sub-Riemannian structures*, submitted.

(日) (同) (三) (三)

| Motivation |  |  |
|------------|--|--|
|            |  |  |
|            |  |  |

# Outline



- 2 Sub-Riemannian geometry: regularity of  $d^2$  and the heat equation
  - 3 Main results
- Some results for generic metrics

イロト イヨト イヨト イ

### Outline

### Motivation

2) Sub-Riemannian geometry: regularity of  $d^2$  and the heat equation

### 3 Main results

4 Some results for generic metrics

・ロト ・回ト ・ヨト ・

# Introduction

(Hypo)-elliptic operators  $\longleftrightarrow$  (Sub)-Riemannian metrics

Main motivation:

- understand the interplay between
- $\rightarrow$  the analysis of the diffusion processes on the manifold (heat equation)
- $\rightarrow$  the geometry of these spaces (distance, geodesics, curvature)

Problem: relating

- analytic properties of the heat kernel  $p_t(x, y)$  (small time asymptotics)
- geometry underlying (properties of distance and geodesics joining x and y)
- $\rightarrow$  In particular: what happens for  $p_t(x, y)$  when  $y \in Cut(x)$ ?
- $\rightarrow$  What happens "generically"?

イロト イポト イヨト イヨト

# Heat equation on $\mathbb{R}^2$

 $\bullet\,$  The classical heat equation on  $\mathbb{R}^2$ 

$$\partial_t \psi(t,x) = (\partial_{x_1}^2 + \partial_{x_2}^2)\psi(t,x)$$

• The fundamental solution, or *heat kernel*, of this equation

$$p_t(x,y) = \frac{1}{4\pi t} \exp\left(-\frac{|x-y|^2}{4t}\right)$$

 $\rightarrow$  Every solution such that  $\psi(\mathbf{0},x)=\phi(x)$  is of the form

$$\psi(t,x) = \int_{\mathbb{R}^2} p_t(x,y)\phi(y)dy$$

 $\rightarrow p_t(\cdot, y)$  corresponds to the solution with initial datum Dirac  $\delta_y$ .

イロト イヨト イヨト イヨ

# Heat equation on $\mathbb{S}^2$

• The heat equation on the sphere  $\mathbb{S}^2$ 

$$\partial_t \psi(t,x) = \Delta \psi(t,x)$$

where  $\Delta$  is the Laplace Beltrami operator  $\rightarrow$  elliptic operator.

• It is natural to expect that

$$p_t(x,y) \sim \frac{1}{4\pi t} \exp\left(-\frac{d(x,y)^2}{4t}\right)$$

• This is true everywhere but at the antipodal point  $\hat{x}$ , where

$$p_t(x,\widehat{x}) \sim \frac{1}{4\pi t^{3/2}} \exp\left(-\frac{d(x,y)^2}{4t}\right)$$

 $\rightarrow$  Here and in what follows

$$f(t) \sim g(t) \qquad \Leftrightarrow \qquad f(t) = g(t)[C + o(1)], \quad C \neq 0$$

Image: A matched block of the second seco

### Heat vs Cut locus

Naive idea: the heat diffuses along geodesics • only one optimal geodesic reaches y

- $\hat{x}$  is the point where all geodesics meet
- $\widehat{x} = \operatorname{Cut}(x) = \operatorname{Conj}(x)$
- the function x → d<sup>2</sup>(x, ·) is not smooth at x



A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

 $\rightarrow$  even in this simple example it is easy to see how the structure of the geodesics is related with the heat kernel asymptotics.

### Perturbation of the sphere: ellipsoid of revolution

- A complete proof on cut and conjugate locus has been proved only in 2004.
- (even if first works about geodesics on ellipsoids dates back to Jacobi)



From Wikipedia:

By Cffk (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3\_0)]

For a metric on  $S^2$  of the form  $dr^2 + m^2(r)d\theta^2$  such that

- $+\,$  symmetric w.r.t. the equator
- + non-singularity condition at the equator [i.e.  $K'' \neq 0$ ]
- Typical example: ellipsoid of revolution



For a metric on  $S^2$  of the form  $dr^2 + m^2(r)d\theta^2$  such that

- + symmetric w.r.t. the equator
- + non-singularity condition at the equator [i.e.  $K'' \neq 0$ ]
- Typical example: ellipsoid of revolution

### Theorem (D.B., J.Jendrej, '13)

Fix  $x \in M$  along the equator and let y be a cut-conjugate point with respect to x. Then we have

$$p_t(x,y) \sim rac{1}{t^{5/4}} e^{-d^2(x,y)/4t}, \qquad {\it for} \ t o 0.$$



For a metric on  $S^2$  of the form  $dr^2 + m^2(r)d\theta^2$  such that

- $+\,$  symmetric w.r.t. the equator
- + non-singularity condition at the equator [i.e.  $K'' \neq 0$ ]
- Typical example: ellipsoid of revolution

### Theorem (D.B., J.Jendrej, '13)

Fix  $x \in M$  along the equator and let y be a cut-conjugate point with respect to x. Then we have

$$p_t(x,y) \sim rac{1}{t^{5/4}} e^{-d^2(x,y)/4t}, \qquad {\it for} \ t o 0$$

We have just said that on  $S^2$ 

$$p_t(x,y) \sim \frac{1}{t^{3/2}} e^{-d^2(x,y)/4t}$$

$$x =$$
nord,  $y =$ sud



For a metric on  $S^2$  of the form  $dr^2 + m^2(r)d\theta^2$  such that

- $+\,$  symmetric w.r.t. the equator
- + non-singularity condition at the equator [i.e.  $K'' \neq 0$ ]
- Typical example: ellipsoid of revolution

### Theorem (D.B., Jendrej)

Fix  $x \in M$  along the equator and let y be a cut-conjugate point with respect to x. Then we have

$$p_t(x,y) \sim rac{1}{t^{1+1/4}} e^{-d^2(x,y)/4t}, \qquad ext{for } t o 0.$$

For the standard sphere  $S^2$ 

$$p_t(x,y) \sim \frac{1}{t^{1+1/2}} e^{-d^2(x,y)/4t}$$

$$x =$$
nord,  $y =$ sud

Davide Barilari (IMJ, Paris Diderot

### Outline

### Motivation

2 Sub-Riemannian geometry: regularity of  $d^2$  and the heat equation

### 3 Main results

**When the set of the s** 

・ロト ・ 日 ・ ・ 目 ・

# Sub-Riemannian geometry

### Definition

A sub-Riemannian manifold is a triple  $(M, \mathcal{D}, \langle \cdot, \cdot \rangle)$ , where

- (*i*) *M* manifold,  $C^{\infty}$ , dimension  $n \geq 3$ ;
- (ii)  $\mathcal{D}$  vector distribution of rank k < n, i.e.  $\mathcal{D}_x \subset T_x M$  subspace k-dim. that is bracket generating:  $Lie_x \mathcal{D} = T_x M$ .

(*iii*)  $\langle \cdot, \cdot \rangle_x$  inner product on  $\mathcal{D}_x$ , smooth in x.

- A curve  $\gamma: [0, T] o M$  is horizontal if  $\dot{\gamma}(t) \in \Delta_{\gamma(t)}$ 
  - For a horizontal curve  $\gamma : [0, T] \rightarrow M$  its length is

$$\ell(\gamma) = \int_0^T \sqrt{\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle} dt.$$



We can define the sub-Riemannian distance as

$$d(x,y) = \inf\{\ell(\gamma) \mid \gamma(0) = x, \gamma(T) = y, \gamma \text{ horizontal}\}.$$

• The bracket generating condition implies

(i) 
$$d(x,y) < +\infty$$
 for all  $x, y \in M$ .

(ii) topology (M, d) = manifold topology.

Question: Regularity of  $d^2$ ? Relation with minimizing admissible curves?



For a minimizing curve we can define

- Conjugate locus: where geodesics lose local optimality
- Cut locus: where geodesics lose global optimality (and  $d^2$  is not smooth)

# Regularity of $d^2$

Consider geodesics starting from  $x \in M$ 

- geodesics lose optimality arbitrarily close to x
- $f(\cdot) = \frac{1}{2}d^2(x, \cdot)$  is not smooth at x



・ロト ・聞ト ・ヨト ・ヨト

•  $\mathfrak{f}: M \to \mathbb{R}$  is  $C^{\infty}$  on an open and dense set  $\Sigma(x)$  [A.Agrachev, 2009]

$$x \notin \Sigma(x)$$
 an

nd

 $\operatorname{Cut}(x) \subset M \setminus \Sigma(x)$ 

 $\Sigma(x) = \{y \in M \mid \exists! \text{ non-abnormal and non-conjugate minimizer from } x \text{ to } y\}$ 

ightarrow for simplicity: assume no minimizing abnormal extremals.

# Regularity of $d^2$

Consider geodesics starting from  $x \in M$ 

- geodesics lose optimality arbitrarily close to x
- $f(\cdot) = \frac{1}{2}d^2(x, \cdot)$  is not smooth at x



・ロト ・聞ト ・ヨト ・ヨト

•  $\mathfrak{f}: M \to \mathbb{R}$  is  $C^{\infty}$  on an open and dense set  $\Sigma(x)$  [A.Agrachev, 2009]

$$x \notin \Sigma(x)$$
 and  $\operatorname{Cut}(x) \subset M \setminus \Sigma(x)$ 

 $\Sigma(x) = \{y \in M \mid \exists! \text{ non-abnormal and non-conjugate minimizer from } x \text{ to } y\}$ 

ightarrow for simplicity: assume no minimizing abnormal extremals.

# Regularity of $d^2$

Consider geodesics starting from  $x \in M$ 

- geodesics lose optimality arbitrarily close to x
- $f(\cdot) = \frac{1}{2}d^2(x, \cdot)$  is not smooth at x



•  $\mathfrak{f}: M \to \mathbb{R}$  is  $C^{\infty}$  on an open and dense set  $\Sigma(x)$  [A.Agrachev, 2009]

$$x \notin \Sigma(x)$$
 and  $\operatorname{Cut}(x) \subset M \setminus \Sigma(x)$ 

 $\Sigma(x) = \{y \in M \mid \exists! \text{ non-abnormal and non-conjugate minimizer from } x \text{ to } y\}$ 

 $\rightarrow$  for simplicity: assume no minimizing abnormal extremals.

# Conjugate points and Exponential map

• Normal minimizer are projection of the flow of  $\vec{H}$ .

### Theorem (PMP)

Let *M* be a SR manifold and let  $\gamma : [0, T] \to M$  be a minimizer.  $\exists$  Lipschitz curve  $\lambda : [0, T] \to T^*M$ , with  $\lambda(t) \in T^*_{\gamma(t)}M$ , such that  $\dot{\lambda}(t) = \overrightarrow{H}(\lambda(t))$ .

- λ(t) = e<sup>tH̄</sup>(λ<sub>0</sub>) → parametrized by initial covectors λ<sub>0</sub> ∈ T<sup>\*</sup><sub>x<sub>0</sub></sub>M
  γ(t) = π(λ(t))
- The exponential map starting from x<sub>0</sub> as

$$\operatorname{Exp}_{\mathsf{x}_0}: \, T^*_{\mathsf{x}_0}M o M, \qquad \operatorname{Exp}_{\mathsf{x}_0}(\lambda_0) = \pi(e^{\vec{H}}(\lambda_0)).$$

•  $\operatorname{Exp}_{x_0}(t\lambda_0) = \gamma(t)$ . ( $\rightarrow$  by homogeneity of H)

Fact:

•  $\bar{t}$  first conjugate time along  $\gamma \Rightarrow \bar{t}\lambda_0$  is a critical point of  $\text{Exp}_{x_0}$ .

# SR Laplacian

We introduce the SR Laplacian operator  $\Delta$  to define

$$\partial_t \psi(t, x) = \Delta \psi(t, x)$$

 $\rightarrow$  If  $X_1, \ldots, X_k$  is an orthonormal basis for  $\mathcal D$  we set

 $\rightarrow$  sum of squares + 1st order term that depends on the volume

We need to fix a volume  $\mu$ !

・ロト ・日下・ ・ ヨト・

# SR Laplacian

We introduce the SR Laplacian operator  $\Delta$  to define

$$\partial_t \psi(t, x) = \Delta \psi(t, x)$$

 $\rightarrow$  If  $X_1, \ldots, X_k$  is an orthonormal basis for  $\mathcal D$  we set

 $\rightarrow$  sum of squares + 1sr order term that depends on the volume

We need to fix a volume  $\mu$ !

・ロト ・日下・ ・ ヨト・

### Heat equation

The sub-Riemannian heat equation on a *complete* manifold M

$$\begin{cases} \frac{\partial \psi}{\partial t}(t,x) = \Delta \psi(t,x), & \text{ in } (0,\infty) \times M, \\ \psi(0,x) = \varphi(x), & x \in M, \quad \varphi \in C_0^\infty(M). \end{cases}$$
(\*

### Theorem (Hörmander)

If  $\{X_1, \ldots, X_k\}$  are bracket generating, then  $\Delta$  is hypoelliptic.

The problem (\*) has unique solution for  $\varphi \in C_0^\infty(M)$ 

$$\psi(t,x) := e^{t\Delta}\varphi(x) = \int_M p_t(x,y)\varphi(y)d\mu(y), \qquad \varphi \in C_0^\infty(M),$$

where  $p_t(x, y) \in C^{\infty}$  is the *heat kernel* associated with  $\Delta$ .

・ロト ・聞ト ・ヨト ・ヨト

Fix  $x, y \in M$ , dim M = n:

| Theorem (Main term, Leandre, '87)            |     |
|----------------------------------------------|-----|
| $\lim_{t\to 0} 4t \log p_t(x,y) = -d^2(x,y)$ | (1) |

#### Theorem (Smooth points, Ben Arous, '88

Assume  $y \in \Sigma(x)$ , then

$$p_t(x,y) \sim rac{1}{t^{n/2}} \exp\left(-rac{d^2(x,y)}{4t}
ight)$$
 (

#### Facts

- 1. In Riemannian geometry  $x \in \Sigma(x)$ , in sub-Riemannian it is not true!
- 2. The on-the-diagonal expansion indeed is different.

イロト イヨト イヨト イヨト

Fix  $x, y \in M$ , dim M = n:

| Theorem (Main term | , Leandre, '87)                              |
|--------------------|----------------------------------------------|
|                    | $\lim_{t\to 0} 4t \log p_t(x,y) = -d^2(x,y)$ |

### Theorem (Smooth points, Ben Arous, '88)

Assume  $y \in \Sigma(x)$ , then

$$p_t(x,y) \sim rac{1}{t^{n/2}} \exp\left(-rac{d^2(x,y)}{4t}
ight)$$
 (1)

(a) < ((a) < ((b) < (((b) < (((b) < ((b) < ((b) < ((b) < ((b) < (((b) < ((b) < ((b) < ((()

#### Facts

- 1. In Riemannian geometry  $x \in \Sigma(x)$ , in sub-Riemannian it is not true!
- 2. The on-the-diagonal expansion indeed is different.

Fix  $x, y \in M$ , dim M = n:

| heorem (Main term, | Leandre, '87)                                |
|--------------------|----------------------------------------------|
|                    | $\lim_{t\to 0} 4t \log p_t(x,y) = -d^2(x,y)$ |

### Theorem (Smooth points, Ben Arous, '88)

Assume  $y \in \Sigma(x)$ , then

$$p_t(x,y) \sim rac{1}{t^{n/2}} \exp\left(-rac{d^2(x,y)}{4t}
ight)$$
 (1)

(a) < ((a) < ((b) < (((b) < (((b) < ((b) < ((b) < ((b) < ((b) < (((b) < ((b) < ((b) < ((()

#### Facts

- 1. In Riemannian geometry  $x \in \Sigma(x)$ , in sub-Riemannian it is not true!
- 2. The on-the-diagonal expansion indeed is different.

Fix  $x, y \in M$ , dim M = n:

Theorem (Main term, Leandre, '87)  $\lim_{t \to 0} 4t \log p_t(x, y) = -d^2(x, y) \tag{1}$ 

### Theorem (On the diagonal, Ben Arous, '89)

We have the expansion

$$p_t(x, \mathbf{x}) \sim \frac{1}{t^{\mathbf{Q}/2}}$$

#### Facts

- 1. In Riemannian geometry  $x \in \Sigma(x)$ , in sub-Riemannian it is not true!
- 2. The on-the-diagonal expansion indeed is different.

イロト イ団ト イヨト イヨト

(1)

Fix  $x, y \in M$ , dim M = n:

Theorem (Main term, Leandre, '87)

$$\lim_{t \to 0} 4t \log p_t(x, y) = -d^2(x, y) \tag{1}$$

### Theorem (Smooth points, Ben Arous, '88)

Assume  $y \in \Sigma(x)$ , then

$$p_t(x,y) \sim rac{1}{t^{n/2}} \exp\left(-rac{d^2(x,y)}{4t}
ight)$$
 (1)

#### Questions

- 1. What happens in (1) if  $y \in Cut(x)$ ?
- 2. Can we relate the expansion of p<sub>t</sub>(x, y) with the properties of the geodesics joining x to y?

|  | Main results |  |
|--|--------------|--|
|  |              |  |

Motivation

2 Sub-Riemannian geometry: regularity of  $d^2$  and the heat equation

3 Main results

4 Some results for generic metrics

・ロト ・ 日 ・ ・ 目 ト

# Cut/Conjugacy *vs* Asymptotics

### Theorem (D.B., Boscain, Neel,'12)

Let M be an n-dimensional complete SR manifold,  $\mu$  smooth volume. Let  $x \neq y$  and assume that every optimal geodesic joining x to y is strongly normal.

• If x and y are not conjugate

$$p_t(x,y) = \frac{C}{t^{n/2}} e^{-d^2(x,y)/4t} (1 + O(t)),$$

• If x and y are conjugate along at least one minimal geodesic

$$\frac{C}{(n/2)+(1/4)}e^{-d^2(x,y)/4t} \le p_t(x,y) \le \frac{C'}{t^{n-(1/2)}}e^{-d^2(x,y)/4t}$$

ightarrow we can detect only points that are cut and conjugate.

ightarrow If we are cut but not conjugate the constant C changes.

<ロト </p>

# Cut/Conjugacy *vs* Asymptotics

### Theorem (D.B., Boscain, Neel,'12)

Let M be an n-dimensional complete SR manifold,  $\mu$  smooth volume. Let  $x \neq y$  and assume that every optimal geodesic joining x to y is strongly normal.

• If x and y are not conjugate

$$p_t(x,y) = \frac{C}{t^{n/2}}e^{-d^2(x,y)/4t}(1+O(t)),$$

• If x and y are conjugate along at least one minimal geodesic

$$\frac{C}{t^{(n/2)+(1/4)}}e^{-d^2(x,y)/4t} \le p_t(x,y) \le \frac{C'}{t^{n-(1/2)}}e^{-d^2(x,y)/4t},$$

 $\rightarrow$  we can detect only points that are cut and conjugate.

 $\rightarrow$  If we are cut but not conjugate the constant C changes.

# Case of a 2-dim surface

The theorem in the case of a 2-dim Riemannian surface says that

• If x and y are not conjugate

$$p_t(x,y) = \frac{C}{t}e^{-d^2(x,y)/4t}(1+O(t)),$$

• If x and y are conjugate along at least one minimal geodesic

$$\frac{C}{t^{5/4}}e^{-d^2(x,y)/4t} \le p_t(x,y) \le \frac{C'}{t^{3/2}}e^{-d^2(x,y)/4t},$$

 $\rightarrow$  all cases are between the ellipsoid and the sphere.

 $\rightarrow$  they correspond to the "minimal" and "maximal" degeneration for a conjugate point on a surface.

< □ > < 同 > < 回 > < Ξ > < Ξ

|         |      | Main results |  |
|---------|------|--------------|--|
|         |      |              |  |
| Refinem | nent |              |  |

- If  $\gamma(t) = \mathsf{Exp}_x(t\lambda)$  joins x and y we say that
  - $\gamma$  is conjugate of order r if  $rank(D_{\lambda}Exp_{\chi}) = n r$

### Theorem (D.B., Boscain, Charlot, Neel,'13)

Let M be an n-dimensional complete SR manifold,  $\mu$  smooth volume. Let  $x \neq y$  and assume that the only optimal geodesic joining x to y is conjugate of order r.

• Then there exist positive constants, such that for small t

$$\frac{C}{t^{\frac{n}{2}+\frac{r}{4}}}e^{-d^2(x,y)/4t} \le p_t(x,y) \le \frac{C'}{t^{\frac{n}{2}+\frac{r}{4}}}e^{-d^2(x,y)/4t}$$

 $\rightarrow$  This result can give estimates on the order of conjugacy of a point in the cut locus once you know the heat kernel (roughly, how much it is symmetric)

(日) (同) (三) (三)

### Example: Heisenberg

In the Heisenberg group the Heat kernel is explicit (here q = (x, y, z))

$$p_t(0,q) = \frac{1}{(4\pi t)^2} \int_{-\infty}^{\infty} \frac{\tau}{\sinh \tau} \exp\left(-\frac{x^2 + y^2}{4t} \frac{\tau}{\tanh \tau}\right) \cos\left(\frac{z\tau}{t}\right) d\tau.$$

and gives the asymptotics for cut-conjugate points  $\zeta = (0,0,z)$ 

$$p_t(0,\zeta) \sim \frac{1}{t^2} \exp\left(-\frac{\pi z}{t}\right) = \frac{1}{t^2} \exp\left(-\frac{d^2(0,\zeta)}{4t}\right)$$

Remark: The fact that  $\frac{4}{2} > \frac{3}{2}$  confirm the fact that the points  $\zeta = (0, 0, z)$  are not smooth points. What is the meaning?

イロト イ団ト イヨト イヨト

### Example: Heisenberg

In the Heisenberg group the Heat kernel is explicit (here q = (x, y, z))

$$p_t(0,q) = \frac{1}{(4\pi t)^2} \int_{-\infty}^{\infty} \frac{\tau}{\sinh \tau} \exp\left(-\frac{x^2 + y^2}{4t} \frac{\tau}{\tanh \tau}\right) \cos\left(\frac{z\tau}{t}\right) d\tau.$$

and gives the asymptotics for cut-conjugate points  $\zeta = (0,0,z)$ 

$$p_t(0,\zeta) \sim \frac{1}{t^{\frac{4}{2}}} \exp\left(-\frac{\pi z}{t}\right) = \frac{1}{t^{\frac{4}{2}}} \exp\left(-\frac{d^2(0,\zeta)}{4t}\right)$$

Remark: The fact that  $\frac{4}{2} > \frac{3}{2}$  confirm the fact that the points  $\zeta = (0, 0, z)$  are not smooth points. What is the meaning?

# Example: Heisenberg

In the Heisenberg group we had the asymptotics for cut-conjugate points  $\zeta = (0, 0, z)$ 

$$p_t(0,\zeta) \sim \frac{1}{t^{\frac{4}{2}}} \exp\left(-\frac{\pi z}{t}\right) = \frac{1}{t^{\frac{4}{2}}} \exp\left(-\frac{d^2(0,\zeta)}{4t}\right)$$

**Remark**: This a consequence of the fact that there exists a one parametric family of optimal trajectories (varying the angle), hence the hinged energy function is actually a function of two variables, being constant on the midpoints.

< □ > < 同 > < 回 > < Ξ > < Ξ

### Idea of the proof: What happens at non good point?

Let  $x, y \in M$  with  $y \in Cut(x)$  and write

$$p_t(x,y) = \int_M p_{t/2}(x,z) p_{t/2}(z,y) d\mu(z)$$

Idea:  $z \in \Sigma(x) \cap \Sigma(y)$  and apply Ben-Arous expansion

$$p_{t/2}(x,z)p_{t/2}(z,y) \sim \frac{1}{t^n} \exp\left(-\frac{d^2(x,z)+d^2(z,y)}{4t}\right)$$

This led to the study of an integral of the kind

$$p_t(x,y) = \frac{1}{t^n} \int_M c_{x,y}(z) \exp\left(-\frac{h_{x,y}(z)}{2t}\right) d\mu(z)$$

where  $h_{x,y}$  is the hinged energy function

$$h_{x,y}(z) = rac{1}{2} \left( d^2(x,z) + d^2(z,y) 
ight).$$

 $\rightarrow$  the asymptotic is given by the behavior of  $h_{x,y}$  near its minimum. (Laplace method)

# Properties of $h_{x,y}$ hinged energy function

#### Lemma

Let  $\Gamma$  be the set of midpoints of the minimal geodesics joining x to y. Then min  $h_{x,y} = h_{x,y}(\Gamma) = d^2(x,y)/4$ .

• A minimizer is called strongly normal if any piece of it is not abnormal.

### Theorem (D.B., Boscain, Neel,'12)

Let  $\gamma$  be a strongly normal minimizer joining x and y. Let  $z_0$  be its midpoint. Then

- (i) y is conjugate to x along  $\gamma \Leftrightarrow \text{Hess}_{z_0}h_{x,y}$  is degenerate.
- (ii) The dimension of the space of perturbations for which  $\gamma$  is conjugate is equal to dim(ker  $\text{Hess}_{z_0}h_{x,y}$ ).

**Remark**: Hess  $h_{x,y}$  is never degenerate along the direction of the geodesic!

・ロン ・聞と ・ヨン ・ヨン

# Hinged vs Asymptotics

• To have the precise asymptotic one need that the expansion of  $h_{x,y}$  is diagonal in some coordinates.

### Theorem (D.B., Boscain, Neel, '12)

Assume that, in a neighborhood of the midpoints of the strongly normal geodesic joining x to y there exists coordinates such that

$$h_{x,y}(z) = rac{1}{4}d^2(x,y) + z_1^{2m_1} + \ldots + z_n^{2m_n} + o(|z_1|^{2m_1} + \ldots + |z_n|^{2m_n})$$

Then for some constant C > 0

$$p_t(x,y) = rac{1}{t^{n-\sum_i rac{1}{2m_i}}} \exp\left(-rac{d^2(x,y)}{4t}\right) (C+o(1)).$$

Note:  $h_{x,y}$  non degenerate  $(m_i = 2) \rightarrow$  the exponent is n/2

イロト イヨト イヨト イヨト

# Hinged vs Asymptotics

• To have the precise asymptotic one need that the expansion of  $h_{x,y}$  is diagonal in some coordinates.

### Theorem (D.B.,Boscain,Neel,'12)

Assume that, in a neighborhood of the midpoints of the strongly normal geodesic joining x to y there exists coordinates such that

$$h_{x,y}(z) = rac{1}{4}d^2(x,y) + z_1^{2m_1} + \ldots + z_n^{2m_n} + o(|z_1|^{2m_1} + \ldots + |z_n|^{2m_n})$$

Then for some constant C > 0

$$p_t(x,y) = rac{1}{t^{n-\sum_i rac{1}{2m_i}}} \exp\left(-rac{d^2(x,y)}{4t}\right) (C+o(1)).$$

Note:  $h_{x,y}$  non degenerate  $(m_i = 2) \rightarrow$  the exponent is n/2

イロト イ団ト イヨト イヨト

|        |   | Main results |  |
|--------|---|--------------|--|
|        |   |              |  |
| Remark | S |              |  |

Nevertheless there are at least two cases that simplifies the analysis

- If we have symmetry  $\rightarrow$  a one parametric family of optimal trajectories then  $h_{x,y}$  is constant along the trajectory of midpoints.
- If there is only one degenerate direction then  $h_{x,y}$  is always diagonalizable

### Lemma (Splitting Lemma - Gromoll, Meyer, '69)

Let  $h : \mathbb{R}^n \to \mathbb{R}$  smooth such that h(0) = dh(0) = 0 and that dim ker  $d^2h(0) = 1$ . Then there exists coordinates such that

$$h(z) = z_1^2 + \ldots + z_{n-1}^2 + \psi(z_n),$$
 where  $\psi(z_n) = O(z_n^4).$ 

(a) < ((a) <

### Outline

### Motivation

2) Sub-Riemannian geometry: regularity of  $d^2$  and the heat equation

### 3 Main results

4 Some results for generic metrics

・ロト ・ 日 ・ ・ 目 ト

### Exponential map as a Lagrangian map

- A fibration π : E → N is Lagrangian if E is a symplectic manifold and each fiber is Lagrangian.
- A Lagrangian map is a smooth map f : M → N between manifolds of the same dimension obtained by composition of a Lagrangian immersion i : M → E and a projection

$$f: M \stackrel{i}{\longrightarrow} E \stackrel{\pi}{\longrightarrow} N.$$

The exponential map  $Exp_{x_0}$  is a Lagrangian map

$$\operatorname{Exp}_{x_0}: T^*_{x_0}M \to M, \qquad \operatorname{Exp}_{x_0} = \pi \circ e^{\vec{H}}|_{T^*_{x_0}M}$$

It is the composition of

- Lagrangian immersion  $e^{\vec{H}}: T^*_{x_0}M 
  ightarrow T^*M$
- a projection  $\pi : T^*M \to M$

< □ > < 同 > < 回 > < Ξ > < Ξ

# Normal form of generic singularities of Lagrangian maps

### Theorem (Arnold's school)

Let  $f : \mathbb{R}^n \to \mathbb{R}^n$  be a generic Lagrangian singularity at  $x_0$ . Then there exist changes of coordinates around  $x_0$  and  $f(x_0)$  such that in the new coordinates  $x_0 = f(x_0) = 0$  and:

• if 
$$n = 1$$
, f is the map  $x \mapsto x^2$ 

• if 
$$n = 2$$
 then f is the map  
 $(x, y) \mapsto (x^3 + xy, y)$   
or a suspension of the previous one,

• if 
$$n = 3$$
 then f is the map  
 $(x, y, z) \mapsto (x^4 + xy^2 + xz, y, z)$   
 $(x, y, z) \mapsto (x^2 + y^2 + xz, xy, z)$   
 $(x, y, z) \mapsto (x^2 - y^2 + xz, xy, z)$   
or a suspension of the previous on

or a suspension of the previous ones;

<ロト </p>

 $(A_2)$ 

 $(A_3)$ 

 $(A_4)$ 

# Normal form of generic singularities of Lagrangian maps

### Theorem (Arnold's school)

• if 
$$n = 4$$
 then  $f$  is the map  
 $(x, y, z, t) \mapsto (x^5 + xy^3 + xz^2 + xt, y, z, t)$   $(A_5 = (x, y, z, t) \mapsto (x^3 + y^2 + x^2z + xt, xy, z, t)$   $(D_5^+ + (x, y, z, t) \mapsto (-x^3 + y^2 + x^2z + xt, xy, z, t)$   $(D_5^- + (x, y, z, t)) \mapsto (x^6 + xy^4 + xz^3 + xt^2 + xu, y, z, t, u)$   $(A_6 = (x, y, z, t, u) \mapsto (x^6 + xy^4 + xz^3 + xt^2 + xu, xy, z, t, u)$   $(D_6^+ + (x, y, z, t, u)) \mapsto (-x^4 + y^2 + x^3z + xt^2 + xu, xy, z, t, u)$   $(D_6^- + (x, y, z, t, u)) \mapsto (x^2 + xyz + ty + ux, y^3 + x^2z, z, t, u)$   $(E_6^+ + (x, y, z, t, u)) \mapsto (x^2 + xyz + ty + ux, -y^3 + x^2z, z, t, u)$   $(E_6^- + (x, y, z, t, u)) \mapsto (x^2 + xyz + ty + ux, -y^3 + x^2z, z, t, u)$   $(E_6^- + (x, y, z, t, u)) \mapsto (x^2 + xyz + ty + ux, -y^3 + x^2z, z, t, u)$ 

Question: which ones can appear as optimal singualities? (i.e. as normal forms of Riemannian exponential maps at a cut-conjugate point?)

or a suspension of the previous ones.

# A3 singularity vs Exponential map

Let us consider the A3 singularity

$$\Phi:(x,y)\mapsto (x^3+xy,y)$$

The set of critical points is

$$\mathcal{C} = \{\det D\Phi = 0\} \Leftrightarrow \{3x - y^2 = 0\} \Leftrightarrow \{(t, 3t^2), t \in \mathbb{R}\}$$

The image of this set

$$\Phi(C) = \{(-2t^3, 3t^2)\} = \{y^3 = (27/4)x^2\}$$

It corresponds to the cut-conjugate point on the ellipsoid!

Image: A image: A

### Lagrangian generic vs Riemannian generic

Let *M* be a smooth manifold and *G* be the set of all complete Riemannian metrics endowed with the  $C^{\infty}$  Whitney topology.

• We say that for a generic Riemannian metric on M the property (P) holds if the property (P) is satisfied on an open and dense subset of the set G.

 $\rightarrow$  Singularities of generic Riemannian exponential maps are generic Lagrangian singularities.

• Weinstein ('68), Wall ('76) and Janesko-Mostowski ('95).

#### Theorem

Let *M* be a smooth manifold with dim  $M \le 5$ , and fix  $x \in M$ . For a generic Riemannian metric on *M*, the singularities of the exponential map  $Exp_x$  are those listed in the previous Theorem.

イロト イヨト イヨト イヨト

# Elimination of singularities

 $\rightarrow$  One can eliminate all the singularities but three of them if one restricts to optimal ones (i.e. along minimizing geodesics)

### Theorem (DB, U.Boscain, G.Charlot, R.Neel)

Let M be a smooth manifold, dim  $M \le 5$ , and  $x \in M$ . For a generic Riemannian metric on M and any minimizing geodesic  $\gamma$  from x to y we have that  $\gamma$  is

- either non-conjugate,
- A<sub>3</sub>-conjugate,
- or A<sub>5</sub>-conjugate.

Notice that

- $A_3$  appears only for dim  $M \ge 2$
- $A_5$  can only appear for dim  $M \ge 4$ .

 $\rightarrow$  in dimension 2 and 3 there is only "one kind" of generic cut-conjugate point.

イロト イ団ト イヨト イヨト

### Consequences

### Corollary

Let M be a smooth manifold, dim  $M = n \le 5$ , and  $x \in M$ . For a generic Riemannian metric on M the only possible heat kernel asymptotics are:

(i) No minimal geodesic from x to y is conjugate

$$p_t(x,y) = \frac{C+O(t)}{t^{\frac{n}{2}}} \exp\left(-\frac{d^2(x,y)}{4t}\right),$$

(ii) At least one min. geod. is  $A_3$ -conjugate but none is  $A_5$ -conjugate

$$p_t(x,y) = \frac{C + O(t^{1/2})}{t^{\frac{n}{2} + \frac{1}{4}}} \exp\left(-\frac{d^2(x,y)}{4t}\right),$$

(iii) At least one min. geod. is  $A_5$ -conjugate

$$p_t(x,y) = rac{C + O(t^{1/3})}{t^{rac{n}{2} + rac{1}{6}}} \exp\left(-rac{d^2(x,y)}{4t}\right)$$

 $\rightarrow$  consistent with the results obtained on surfaces of revolution.

# What is possible for non generic surfaces?

### Theorem (D.B., Boscain, Charlot, Neel, '13)

For any integer  $r \ge 3$ , any positive real  $\alpha$ , and any real  $\beta$ , there exists a smooth metric on  $S^2$  and  $x \ne y$  such that

$$p_t(x,y) = \frac{1}{t^{\frac{3}{2} - \frac{1}{2r}}} e^{-d^2(x,y)/4t} (\alpha + t^{1/r}\beta + o(t^{1/r})).$$

- the existence of such expansions is not so surprising.
- the "big-O" term is computed and cannot in general be improved.
- we do see expansions in fractional powers of t (and not integer)

< □ > < 同 > < 回 > < Ξ > < Ξ

# Idea of the proof

Let  $\gamma(t) = \mathsf{Exp}_x(t\lambda_0)$  join x and y and conjugate

Singularity of  $\operatorname{Exp}_x$  at  $\lambda_0 \Leftrightarrow$  Singularity of  $h_{x,y}$  at midpoint  $z_0$ 

Use two crucial facts:

• If  $\gamma$  is minimizing there exists a variation  $\lambda(s)$  such that  $y(s) = \text{Exp}_x(\lambda(s))$ satisfies  $y(s) - y = O(s^3)$  in a coordinate system.

• Assume  $rank(D_{\lambda}Exp_{x}) = n - 1$ . Then

$$h_{x,y}(z) = \frac{d^2(x,y)}{4} + z_1^2 + \ldots + z_{n-1}^2 + z_n^m$$

where  $m = \max\{k \in \mathbb{N} \mid y(s) - y = s^k v + o(t^k), v \neq 0\}$  for all variations  $y(s) = \operatorname{Exp}_x(\lambda(s))$ .

イロト イポト イヨト イヨト

### 3D contact case

For the generic 3D contact case [Agrachev, Gauthier et al.,'96]

- close to the diagonal only singularities of type A<sub>3</sub> appear, accumulating to the initial point.
- The local structure of the conjugate locus is
  - either a suspension of a four-cusp astroid (at generic points)
  - or a suspension of a "six-cusp astroid" (along some special curves).
- for the four-cusp case, two of the cusps are reached by cut-conjugate geodesics,
- in the six-cusp case this happens for three of them.

 $\rightarrow$  Notice that the conjugate locus at a generic point looks like a suspension of the first conjugate locus that one gets on a Riemannian ellipsoid

(a) < ((a) < ((b) < (((b) < (((b) < ((b) < ((b) < ((b) < ((b) < (((b) < ((b) < ((b) < ((((



・ロト ・聞 ト ・ヨト ・ヨト

#### Theorem

Let M be a smooth manifold of dimension 3. Then for a generic 3D contact sub-Riemannian metric on M, every x, and every y (close enough to x) we have (i) If no minimal geodesic from x to y is conjugate then

$$p_t(x,y) = \frac{C+O(t)}{t^{3/2}} \exp\left(-\frac{d^2(x,y)}{4t}\right),$$

(ii) If at least one minimal geodesic from x to y is conjugate then

$$p_t(x,y) = rac{C + O(t^{1/2})}{t^{7/4}} \exp\left(-rac{d^2(x,y)}{4t}\right),$$

Moreover, there are points y arbitrarily close to x such that case (ii) occurs.

• exponents of the form N/4, for integer N, were unexpected in the 90s literature for points close enough

(日) (同) (三) (三)

# Paris, 2014 - www.cmap.polytechnique.fr/subriemannian



Davide Barilari (IMJ, Paris Diderot)

Sub-Riemannian geometry

April 14, 2014 41 / 41