Heat kernel asymptotics at the cut locus for Riemannian and sub-Riemannian manifolds

Davide Barilari
IMJ, Université Paris Diderot - Paris 7

International Youth Conference "Geometry and Control", Moscow, Russia

April 14, 2014

Joint work with

- Ugo Boscain (CMAP, École Polytechnique)
- Grégoire Charlot (IF, Grenoble)
- Jacek Jendrej (CMLS, École Polytechnique)
- Robert W. Neel (Lehigh University)
\rightarrow References:

1. D.B., U.Boscain, R.Neel, Small time asymptotics of the $S R$ heat kernel at the cut locus, Journal of Differential Geometry, 92 (2012), no.3, 373-416.
2. D.B., J.Jendrej, Small time heat kernel asymptotics at the cut locus on surfaces of revolution. Ann. Inst. Henri Poincaré-Anal. Non Linéaire 31 (2014), 281-295.
3. D.B., U.Boscain, G.Charlot, R.Neel, On the heat diffusion for generic Riemannian and sub-Riemannian structures, submitted.

Outline

(1) Motivation
(2) Sub-Riemannian geometry: regularity of d^{2} and the heat equation
(3) Main results
(4) Some results for generic metrics

Outline

(1) Motivation

(2) Sub-Riemannian geometry: regularity of d^{2} and the heat equation
(3) Main results
(4) Some results for generic metrics

Introduction

(Hypo)-elliptic operators \longleftrightarrow (Sub)-Riemannian metrics

Main motivation:

- understand the interplay between
\rightarrow the analysis of the diffusion processes on the manifold (heat equation)
\rightarrow the geometry of these spaces (distance, geodesics, curvature)
Problem: relating
- analytic properties of the heat kernel $p_{t}(x, y)$ (small time asymptotics)
- geometry underlying (properties of distance and geodesics joining x and y)
\rightarrow In particular: what happens for $p_{t}(x, y)$ when $y \in \operatorname{Cut}(x)$?
\rightarrow What happens "generically"?

Heat equation on \mathbb{R}^{2}

- The classical heat equation on \mathbb{R}^{2}

$$
\partial_{t} \psi(t, x)=\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right) \psi(t, x)
$$

- The fundamental solution, or heat kernel, of this equation

$$
p_{t}(x, y)=\frac{1}{4 \pi t} \exp \left(-\frac{|x-y|^{2}}{4 t}\right)
$$

\rightarrow Every solution such that $\psi(0, x)=\phi(x)$ is of the form

$$
\psi(t, x)=\int_{\mathbb{R}^{2}} p_{t}(x, y) \phi(y) d y
$$

$\rightarrow p_{t}(\cdot, y)$ corresponds to the solution with initial datum Dirac δ_{y}.

Heat equation on \mathbb{S}^{2}

- The heat equation on the sphere \mathbb{S}^{2}

$$
\partial_{t} \psi(t, x)=\Delta \psi(t, x)
$$

where Δ is the Laplace Beltrami operator \rightarrow elliptic operator.

- It is natural to expect that

$$
p_{t}(x, y) \sim \frac{1}{4 \pi t} \exp \left(-\frac{d(x, y)^{2}}{4 t}\right)
$$

- This is true everywhere but at the antipodal point \widehat{x}, where

$$
p_{t}(x, \widehat{x}) \sim \frac{1}{4 \pi t^{3 / 2}} \exp \left(-\frac{d(x, y)^{2}}{4 t}\right)
$$

\rightarrow Here and in what follows

$$
f(t) \sim g(t) \quad \Leftrightarrow \quad f(t)=g(t)[C+o(1)], \quad C \neq 0
$$

Heat vs Cut locus

Naive idea: the heat diffuses along geodesics

- only one optimal geodesic reaches y
- \widehat{x} is the point where all geodesics meet
- $\widehat{x}=\operatorname{Cut}(x)=\operatorname{Conj}(x)$
- the function $x \mapsto d^{2}(x, \cdot)$ is not smooth at \hat{x}

\rightarrow even in this simple example it is easy to see how the structure of the geodesics is related with the heat kernel asymptotics.

Perturbation of the sphere: ellipsoid of revolution

- A complete proof on cut and conjugate locus has been proved only in 2004.
- (even if first works about geodesics on ellipsoids dates back to Jacobi)

From Wikipedia:

By Cffk (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]

Surfaces of revolution

For a metric on S^{2} of the form $d r^{2}+m^{2}(r) d \theta^{2}$ such that

+ symmetric w.r.t. the equator
+ non-singularity condition at the equator [i.e. $K^{\prime \prime} \neq 0$]
- Typical example: ellipsoid of revolution

Surfaces of revolution

For a metric on S^{2} of the form $d r^{2}+m^{2}(r) d \theta^{2}$ such that

+ symmetric w.r.t. the equator
+ non-singularity condition at the equator [i.e. $K^{\prime \prime} \neq 0$]
- Typical example: ellipsoid of revolution

Theorem (D.B., J.Jendrej, '13)

Fix $x \in M$ along the equator and let y be a cut-conjugate point with respect to x. Then we have

$$
p_{t}(x, y) \sim \frac{1}{t^{5 / 4}} e^{-d^{2}(x, y) / 4 t}, \quad \text { for } t \rightarrow 0
$$

Surfaces of revolution

For a metric on S^{2} of the form $d r^{2}+m^{2}(r) d \theta^{2}$ such that

+ symmetric w.r.t. the equator
+ non-singularity condition at the equator [i.e. $K^{\prime \prime} \neq 0$]
- Typical example: ellipsoid of revolution

Theorem (D.B., J.Jendrej, '13)

Fix $x \in M$ along the equator and let y be a cut-conjugate point with respect to x. Then we have

$$
p_{t}(x, y) \sim \frac{1}{t^{5 / 4}} e^{-d^{2}(x, y) / 4 t}, \quad \text { for } t \rightarrow 0
$$

We have just said that on S^{2}

$$
\begin{gathered}
p_{t}(x, y) \sim \frac{1}{t^{3 / 2}} e^{-d^{2}(x, y) / 4 t} \\
x=\text { nord, } y=\text { sud }
\end{gathered}
$$

Surfaces of revolution

For a metric on S^{2} of the form $d r^{2}+m^{2}(r) d \theta^{2}$ such that

+ symmetric w.r.t. the equator
+ non-singularity condition at the equator [i.e. $K^{\prime \prime} \neq 0$]
- Typical example: ellipsoid of revolution

Theorem (D.B., Jendrej)

Fix $x \in M$ along the equator and let y be a cut-conjugate point with respect to x. Then we have

$$
p_{t}(x, y) \sim \frac{1}{t^{1+1 / 4}} e^{-d^{2}(x, y) / 4 t}, \quad \text { for } t \rightarrow 0
$$

For the standard sphere S^{2}

$$
\begin{gathered}
p_{t}(x, y) \sim \frac{1}{t^{1+1 / 2}} e^{-d^{2}(x, y) / 4 t} \\
x=\text { nord, } y=\text { sud }
\end{gathered}
$$

Outline

(2) Sub-Riemannian geometry: regularity of d^{2} and the heat equation

Sub-Riemannian geometry

Definition

A sub-Riemannian manifold is a triple $(M, \mathcal{D},\langle\cdot, \cdot\rangle)$, where
(i) M manifold, C^{∞}, dimension $n \geq 3$;
(ii) \mathcal{D} vector distribution of rank $k<n$, i.e. $\mathcal{D}_{x} \subset T_{x} M$ subspace k-dim. that is bracket generating: $\operatorname{Lie}_{x} \mathcal{D}=T_{x} M$.
(iii) $\langle\cdot, \cdot\rangle_{x}$ inner product on \mathcal{D}_{x}, smooth in x.

- A curve $\gamma:[0, T] \rightarrow M$ is horizontal if $\dot{\gamma}(t) \in \Delta_{\gamma(t)}$
- For a horizontal curve $\gamma:[0, T] \rightarrow M$ its length is

$$
\ell(\gamma)=\int_{0}^{T} \sqrt{\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle} d t
$$

We can define the sub-Riemannian distance as

$$
d(x, y)=\inf \{\ell(\gamma) \mid \gamma(0)=x, \gamma(T)=y, \gamma \text { horizontal }\} .
$$

- The bracket generating condition implies
(i) $d(x, y)<+\infty$ for all $x, y \in M$.
(ii) topology $(M, d)=$ manifold topology.

Question: Regularity of d^{2} ? Relation with minimizing admissible curves?

For a minimizing curve we can define

- Conjugate locus: where geodesics lose local optimality
- Cut locus: where geodesics lose global optimality (and d^{2} is not smooth)

Regularity of d^{2}

Consider geodesics starting from $x \in M$

- geodesics lose optimality arbitrarily close to x
- $\mathfrak{f}(\cdot)=\frac{1}{2} d^{2}(x, \cdot)$ is not smooth at x
- $\mathfrak{f}: M \rightarrow \mathbb{R}$ is C^{∞} on an open and dense set $\Sigma(x)$ [A.Agrachev, 2009]

$$
x \notin \Sigma(x) \quad \text { and } \quad \operatorname{Cut}(x) \subset M \backslash \Sigma(x)
$$

$\Sigma(x)=\{y \in M \mid \exists!$ non-abnormal and non-conjugate mir
for simplicity: assume no minimizing abnormal extremals

Regularity of d^{2}

Consider geodesics starting from $x \in M$

- geodesics lose optimality arbitrarily close to x
- $\mathfrak{f}(\cdot)=\frac{1}{2} d^{2}(x, \cdot)$ is not smooth at x

- $\mathfrak{f}: M \rightarrow \mathbb{R}$ is C^{∞} on an open and dense set $\Sigma(x)$ [A.Agrachev, 2009]

$$
x \notin \Sigma(x) \quad \text { and } \quad \operatorname{Cut}(x) \subset M \backslash \Sigma(x)
$$

$\Sigma(x)=\{y \in M \mid \exists$! non-abnormal and non-conjugate minimizer from x to $y\}$
for simplicity: assume no minimizing abnormal extremals.

Regularity of d^{2}

Consider geodesics starting from $x \in M$

- geodesics lose optimality arbitrarily close to x
- $\mathfrak{f}(\cdot)=\frac{1}{2} d^{2}(x, \cdot)$ is not smooth at x

- $\mathfrak{f}: M \rightarrow \mathbb{R}$ is C^{∞} on an open and dense set $\Sigma(x)$ [A.Agrachev, 2009]

$$
x \notin \Sigma(x) \quad \text { and } \quad \operatorname{Cut}(x) \subset M \backslash \Sigma(x)
$$

$\Sigma(x)=\{y \in M \mid \exists$! non-abnormal and non-conjugate minimizer from x to $y\}$
\rightarrow for simplicity: assume no minimizing abnormal extremals.

Conjugate points and Exponential map

- Normal minimizer are projection of the flow of \vec{H}.

Theorem (PMP)

Let M be a $S R$ manifold and let $\gamma:[0, T] \rightarrow M$ be a minimizer. \exists Lipschitz curve $\lambda:[0, T] \rightarrow T^{*} M$, with $\lambda(t) \in T_{\gamma(t)}^{*} M$, such that $\dot{\lambda}(t)=\vec{H}(\lambda(t))$.

- $\lambda(t)=e^{t \vec{H}}\left(\lambda_{0}\right) \rightarrow$ parametrized by initial covectors $\lambda_{0} \in T_{\chi_{0}}^{*} M$
- $\gamma(t)=\pi(\lambda(t))$
- The exponential map starting from x_{0} as

$$
\operatorname{Exp}_{x_{0}}: T_{x_{0}}^{*} M \rightarrow M, \quad \operatorname{Exp}_{x_{0}}\left(\lambda_{0}\right)=\pi\left(e^{\vec{H}}\left(\lambda_{0}\right)\right) .
$$

- $\operatorname{Exp}_{x_{0}}\left(t \lambda_{0}\right)=\gamma(t) . \quad(\rightarrow$ by homogeneity of $H)$

Fact:

- \bar{t} first conjugate time along $\gamma \Rightarrow \bar{t} \lambda_{0}$ is a critical point of $\operatorname{Exp}_{x_{0}}$.

SR Laplacian

We introduce the SR Laplacian operator Δ to define

$$
\partial_{t} \psi(t, x)=\Delta \psi(t, x)
$$

\rightarrow If X_{1}, \ldots, X_{k} is an orthonormal basis for \mathcal{D} we set

$$
\begin{gathered}
\Delta \phi=\operatorname{div}(\nabla \phi), \quad \nabla \phi=\sum_{i} X_{i}(\phi) X_{i} \\
\Delta=\sum_{i=1}^{k} X_{i}^{2}+\left(\operatorname{div} X_{i}\right) X_{i}
\end{gathered}
$$

\rightarrow sum of squares +1 st order term that depends on the volume
We need to fix a volume μ !

SR Laplacian

We introduce the SR Laplacian operator Δ to define

$$
\partial_{t} \psi(t, x)=\Delta \psi(t, x)
$$

\rightarrow If X_{1}, \ldots, X_{k} is an orthonormal basis for \mathcal{D} we set

$$
\begin{gathered}
\Delta_{\mu} \phi=\operatorname{div}_{\mu}(\nabla \phi), \quad \nabla \phi=\sum_{i} X_{i}(\phi) X_{i} \\
\Delta=\sum_{i=1}^{k} X_{i}^{2}+\left(\operatorname{div}_{\mu} X_{i}\right) X_{i}
\end{gathered}
$$

\rightarrow sum of squares +1 sr order term that depends on the volume
We need to fix a volume μ !

Heat equation

The sub-Riemannian heat equation on a complete manifold M

$$
\begin{cases}\frac{\partial \psi}{\partial t}(t, x)=\Delta \psi(t, x), & \text { in }(0, \infty) \times M \\ \psi(0, x)=\varphi(x), & x \in M, \quad \varphi \in C_{0}^{\infty}(M)\end{cases}
$$

Theorem (Hörmander)

If $\left\{X_{1}, \ldots, X_{k}\right\}$ are bracket generating, then Δ is hypoelliptic.
The problem (*) has unique solution for $\varphi \in C_{0}^{\infty}(M)$

$$
\psi(t, x):=e^{t \Delta} \varphi(x)=\int_{M} p_{t}(x, y) \varphi(y) d \mu(y), \quad \varphi \in C_{0}^{\infty}(M)
$$

where $p_{t}(x, y) \in C^{\infty}$ is the heat kernel associated with Δ.

Results on the asymptotic of $p_{t}(x, y)$

Fix $x, y \in M, \operatorname{dim} M=n$:
Theorem (Main term, Leandre, '87)

$$
\begin{equation*}
\lim _{t \rightarrow 0} 4 t \log p_{t}(x, y)=-d^{2}(x, y) \tag{1}
\end{equation*}
$$

In Riemannian geometry $x \in \Sigma(x)$, in sub-Riemannian it is not true!
The on-the_diagonal evnancion indeed is different

Results on the asymptotic of $p_{t}(x, y)$

Fix $x, y \in M, \operatorname{dim} M=n$:
Theorem (Main term, Leandre, '87)

$$
\begin{equation*}
\lim _{t \rightarrow 0} 4 t \log p_{t}(x, y)=-d^{2}(x, y) \tag{1}
\end{equation*}
$$

Theorem (Smooth points, Ben Arous, '88)

Assume $y \in \Sigma(x)$, then

$$
\begin{equation*}
p_{t}(x, y) \sim \frac{1}{t^{n / 2}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right) \tag{1}
\end{equation*}
$$

Facts

1. In Riemannian geometry $x \in \Sigma(x)$, in sub-Riemannian it is not true! The on-the-diagonal expansion indeed is different

Results on the asymptotic of $p_{t}(x, y)$

Fix $x, y \in M, \operatorname{dim} M=n$:
Theorem (Main term, Leandre, '87)

$$
\begin{equation*}
\lim _{t \rightarrow 0} 4 t \log p_{t}(x, y)=-d^{2}(x, y) \tag{1}
\end{equation*}
$$

Theorem (Smooth points, Ben Arous, '88)

Assume $y \in \Sigma(x)$, then

$$
\begin{equation*}
p_{t}(x, y) \sim \frac{1}{t^{n / 2}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right) \tag{1}
\end{equation*}
$$

Facts

1. In Riemannian geometry $x \in \Sigma(x)$, in sub-Riemannian it is not true!
2. The on-the-diagonal expansion indeed is different.

Results on the asymptotic of $p_{t}(x, y)$

Fix $x, y \in M, \operatorname{dim} M=n$:

Theorem (Main term, Leandre, '87)

$$
\begin{equation*}
\lim _{t \rightarrow 0} 4 t \log p_{t}(x, y)=-d^{2}(x, y) \tag{1}
\end{equation*}
$$

Theorem (, Ben Arous, '89)

We have the expansion

$$
\begin{equation*}
p_{t}(x, x) \sim \frac{1}{t^{Q / 2}} \tag{1}
\end{equation*}
$$

Facts

1. In Riemannian geometry $x \in \Sigma(x)$, in sub-Riemannian it is not true!
2. The on-the-diagonal expansion indeed is different.

Results on the asymptotic of $p_{t}(x, y)$

Fix $x, y \in M, \operatorname{dim} M=n:$

Theorem (Main term, Leandre, '87)

$$
\begin{equation*}
\lim _{t \rightarrow 0} 4 t \log p_{t}(x, y)=-d^{2}(x, y) \tag{1}
\end{equation*}
$$

Theorem (Smooth points, Ben Arous, '88)

Assume $y \in \Sigma(x)$, then

$$
\begin{equation*}
p_{t}(x, y) \sim \frac{1}{t^{n / 2}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right) \tag{1}
\end{equation*}
$$

Questions

1. What happens in (1) if $y \in \operatorname{Cut}(x)$?
2. Can we relate the expansion of $p_{t}(x, y)$ with the properties of the geodesics joining x to y ?

Cut/Conjugacy vs Asymptotics

Theorem (D.B., Boscain, Neel,'12)

Let M be an n-dimensional complete $S R$ manifold, μ smooth volume. Let $x \neq y$ and assume that every optimal geodesic joining x to y is strongly normal.

- If x and y are not conjugate

$$
p_{t}(x, y)=\frac{C}{t^{n / 2}} e^{-d^{2}(x, y) / 4 t}(1+O(t))
$$

- If x and y are conjugate along at least one minimal geodesic
\rightarrow we can detect only points that are cut and conjugate.
\rightarrow If we are cut but not conjugate the constant C changes.

Cut/Conjugacy vs Asymptotics

Theorem (D.B., Boscain, Neel,'12)

Let M be an n-dimensional complete $S R$ manifold, μ smooth volume. Let $x \neq y$ and assume that every optimal geodesic joining x to y is strongly normal.

- If x and y are not conjugate

$$
p_{t}(x, y)=\frac{C}{t^{n / 2}} e^{-d^{2}(x, y) / 4 t}(1+O(t))
$$

- If x and y are conjugate along at least one minimal geodesic

$$
\frac{C}{t^{(n / 2)+(1 / 4)}} e^{-d^{2}(x, y) / 4 t} \leq p_{t}(x, y) \leq \frac{C^{\prime}}{t^{n-(1 / 2)}} e^{-d^{2}(x, y) / 4 t}
$$

\rightarrow we can detect only points that are cut and conjugate.
\rightarrow If we are cut but not conjugate the constant C changes.

Case of a 2-dim surface

The theorem in the case of a 2-dim Riemannian surface says that

- If x and y are not conjugate

$$
p_{t}(x, y)=\frac{C}{t} e^{-d^{2}(x, y) / 4 t}(1+O(t))
$$

- If x and y are conjugate along at least one minimal geodesic

$$
\frac{C}{t^{5 / 4}} e^{-d^{2}(x, y) / 4 t} \leq p_{t}(x, y) \leq \frac{C^{\prime}}{t^{3 / 2}} e^{-d^{2}(x, y) / 4 t}
$$

\rightarrow all cases are between the ellipsoid and the sphere.
\rightarrow they correspond to the "minimal" and "maximal" degeneration for a conjugate point on a surface.

Refinement

If $\gamma(t)=\operatorname{Exp}_{x}(t \lambda)$ joins x and y we say that

- γ is conjugate of order r if $r a n k\left(D_{\lambda} \operatorname{Exp}_{x}\right)=n-r$

Theorem (D.B., Boscain, Charlot, Neel,'13)

Let M be an n-dimensional complete $S R$ manifold, μ smooth volume. Let $x \neq y$ and assume that the only optimal geodesic joining x to y is conjugate of order r.

- Then there exist positive constants, such that for small t

$$
\frac{C}{t^{\frac{n}{2}+\frac{+}{4}}} e^{-d^{2}(x, y) / 4 t} \leq p_{t}(x, y) \leq \frac{C^{\prime}}{t^{\frac{n}{2}+\frac{1}{2}}} e^{-d^{2}(x, y) / 4 t},
$$

\rightarrow This result can give estimates on the order of conjugacy of a point in the cut locus once you know the heat kernel (roughly, how much it is symmetric)

Example: Heisenberg

In the Heisenberg group the Heat kernel is explicit (here $q=(x, y, z)$)

$$
p_{t}(0, q)=\frac{1}{(4 \pi t)^{2}} \int_{-\infty}^{\infty} \frac{\tau}{\sinh \tau} \exp \left(-\frac{x^{2}+y^{2}}{4 t} \frac{\tau}{\tanh \tau}\right) \cos \left(\frac{z \tau}{t}\right) d \tau
$$

and gives the asymptotics for cut-conjugate points $\zeta=(0,0, z)$

$$
p_{t}(0, \zeta) \sim \frac{1}{t^{2}} \exp \left(-\frac{\pi z}{t}\right)=\frac{1}{t^{2}} \exp \left(-\frac{d^{2}(0, \zeta)}{4 t}\right)
$$

Example: Heisenberg

In the Heisenberg group the Heat kernel is explicit (here $q=(x, y, z)$)

$$
p_{t}(0, q)=\frac{1}{(4 \pi t)^{2}} \int_{-\infty}^{\infty} \frac{\tau}{\sinh \tau} \exp \left(-\frac{x^{2}+y^{2}}{4 t} \frac{\tau}{\tanh \tau}\right) \cos \left(\frac{z \tau}{t}\right) d \tau
$$

and gives the asymptotics for cut-conjugate points $\zeta=(0,0, z)$

$$
p_{t}(0, \zeta) \sim \frac{1}{t^{\frac{4}{2}}} \exp \left(-\frac{\pi z}{t}\right)=\frac{1}{t^{\frac{4}{2}}} \exp \left(-\frac{d^{2}(0, \zeta)}{4 t}\right)
$$

Remark: The fact that $\frac{4}{2}>\frac{3}{2}$ confirm the fact that the points $\zeta=(0,0, z)$ are not smooth points. What is the meaning?

Example: Heisenberg

In the Heisenberg group we had the asymptotics for cut-conjugate points $\zeta=(0,0, z)$

$$
p_{t}(0, \zeta) \sim \frac{1}{t^{\frac{4}{2}}} \exp \left(-\frac{\pi z}{t}\right)=\frac{1}{t^{\frac{4}{2}}} \exp \left(-\frac{d^{2}(0, \zeta)}{4 t}\right)
$$

Remark: This a consequence of the fact that there exists a one parametric family of optimal trajectories (varying the angle), hence the hinged energy function is actually a function of two variables, being constant on the midpoints.

Idea of the proof: What happens at non good point?

Let $x, y \in M$ with $y \in \operatorname{Cut}(x)$ and write

$$
p_{t}(x, y)=\int_{M} p_{t / 2}(x, z) p_{t / 2}(z, y) d \mu(z)
$$

Idea: $z \in \Sigma(x) \cap \Sigma(y)$ and apply Ben-Arous expansion

$$
p_{t / 2}(x, z) p_{t / 2}(z, y) \sim \frac{1}{t^{n}} \exp \left(-\frac{d^{2}(x, z)+d^{2}(z, y)}{4 t}\right)
$$

This led to the study of an integral of the kind

$$
p_{t}(x, y)=\frac{1}{t^{n}} \int_{M} c_{x, y}(z) \exp \left(-\frac{h_{x, y}(z)}{2 t}\right) d \mu(z)
$$

where $h_{x, y}$ is the hinged energy function

$$
h_{x, y}(z)=\frac{1}{2}\left(d^{2}(x, z)+d^{2}(z, y)\right) .
$$

\rightarrow the asymptotic is given by the behavior of $h_{x, y}$ near its minimum.
(Laplace method)

Properties of $h_{x, y}$ hinged energy function

Lemma

Let Γ be the set of midpoints of the minimal geodesics joining x to y. Then $\min h_{x, y}=h_{x, y}(\Gamma)=d^{2}(x, y) / 4$.

- A minimizer is called strongly normal if any piece of it is not abnormal.

Theorem (D.B., Boscain, Neel,'12)

Let γ be a strongly normal minimizer joining x and y. Let z_{0} be its midpoint. Then
(i) y is conjugate to x along $\gamma \Leftrightarrow \operatorname{Hess}_{z_{0}} h_{x, y}$ is degenerate.
(ii) The dimension of the space of perturbations for which γ is conjugate is equal to $\operatorname{dim}\left(\operatorname{ker} \mathrm{Hess}_{z_{0}} h_{x, y}\right)$.

Remark: Hess $h_{x, y}$ is never degenerate along the direction of the geodesic!

Hinged vs Asymptotics

- To have the precise asymptotic one need that the expansion of $h_{x, y}$ is diagonal in some coordinates.

Theorem (D.B.,Boscain,Neel, '12)

Assume that, in a neighborhood of the midpoints of the strongly normal geodesic joining x to y there exists coordinates such that

$$
h_{x, y}(z)=\frac{1}{4} d^{2}(x, y)+z_{1}^{2 m_{1}}+\ldots+z_{n}^{2 m_{n}}+o\left(\left|z_{1}\right|^{2 m_{1}}+\ldots+\left|z_{n}\right|^{2 m_{n}}\right)
$$

Then for some constant $C>0$

$$
p_{t}(x, y)=\frac{1}{t^{n-\sum_{i} \frac{1}{2 m_{i}}}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right)(C+o(1)) .
$$

Hinged vs Asymptotics

- To have the precise asymptotic one need that the expansion of $h_{x, y}$ is diagonal in some coordinates.

Theorem (D.B.,Boscain,Neel, '12)

Assume that, in a neighborhood of the midpoints of the strongly normal geodesic joining x to y there exists coordinates such that

$$
h_{x, y}(z)=\frac{1}{4} d^{2}(x, y)+z_{1}^{2 m_{1}}+\ldots+z_{n}^{2 m_{n}}+o\left(\left|z_{1}\right|^{2 m_{1}}+\ldots+\left|z_{n}\right|^{2 m_{n}}\right)
$$

Then for some constant $C>0$

$$
p_{t}(x, y)=\frac{1}{t^{n-\sum_{i} \frac{1}{2 m_{i}}}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right)(C+o(1)) .
$$

Note: $h_{x, y}$ non degenerate $\left(m_{i}=2\right) \rightarrow$ the exponent is $n / 2$

Remarks

Nevertheless there are at least two cases that simplifies the analysis

- If we have symmetry \rightarrow a one parametric family of optimal trajectories then $h_{x, y}$ is constant along the trajectory of midpoints.
- If there is only one degenerate direction then $h_{x, y}$ is always diagonalizable

Lemma (Splitting Lemma - Gromoll, Meyer, '69)

Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ smooth such that $h(0)=d h(0)=0$ and that $\operatorname{dim} \operatorname{ker} d^{2} h(0)=1$. Then there exists coordinates such that

$$
h(z)=z_{1}^{2}+\ldots+z_{n-1}^{2}+\psi\left(z_{n}\right), \quad \text { where } \quad \psi\left(z_{n}\right)=O\left(z_{n}^{4}\right) .
$$

Outline

(1) Motivation

(2) Sub-Riemannian geometry: regularity of d^{2} and the heat equation
(3) Main results
(4) Some results for generic metrics

Exponential map as a Lagrangian map

- A fibration $\pi: E \rightarrow N$ is Lagrangian if E is a symplectic manifold and each fiber is Lagrangian.
- A Lagrangian map is a smooth map $f: M \rightarrow N$ between manifolds of the same dimension obtained by composition of a Lagrangian immersion $i: M \rightarrow E$ and a projection

$$
f: M \xrightarrow{i} E \xrightarrow{\pi} N .
$$

The exponential map $\operatorname{Exp}_{x_{0}}$ is a Lagrangian map

$$
\operatorname{Exp}_{x_{0}}: T_{x_{0}}^{*} M \rightarrow M, \quad \operatorname{Exp}_{x_{0}}=\left.\pi \circ e^{\vec{H}}\right|_{T_{x_{0}}^{*} M}
$$

It is the composition of

- Lagrangian immersion $e^{\vec{H}}: T_{x_{0}}^{*} M \rightarrow T^{*} M$
- a projection $\pi: T^{*} M \rightarrow M$

Normal form of generic singularities of Lagrangian maps

Theorem (Arnold's school)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a generic Lagrangian singularity at x_{0}. Then there exist changes of coordinates around x_{0} and $f\left(x_{0}\right)$ such that in the new coordinates $x_{0}=f\left(x_{0}\right)=0$ and:

- if $n=1, f$ is the map
$x \mapsto x^{2}$
- if $n=2$ then f is the map
$(x, y) \mapsto\left(x^{3}+x y, y\right)$
or a suspension of the previous one;
- if $n=3$ then f is the map
$(x, y, z) \mapsto\left(x^{4}+x y^{2}+x z, y, z\right)$
$(x, y, z) \mapsto\left(x^{2}+y^{2}+x z, x y, z\right)$
$\left(D_{4}^{+}\right)$
$(x, y, z) \mapsto\left(x^{2}-y^{2}+x z, x y, z\right)$
or a suspension of the previous ones;

Normal form of generic singularities of Lagrangian maps

Theorem (Arnold's school)

- if $n=4$ then f is the map

$$
\begin{align*}
& (x, y, z, t) \mapsto\left(x^{5}+x y^{3}+x z^{2}+x t, y, z, t\right) \tag{5}\\
& (x, y, z, t) \mapsto\left(x^{3}+y^{2}+x^{2} z+x t, x y, z, t\right) \\
& (x, y, z, t) \mapsto\left(-x^{3}+y^{2}+x^{2} z+x t, x y, z, t\right) \tag{5}
\end{align*}
$$

or a suspension of the previous ones;

- if $n=5$ then f is the map
$(x, y, z, t, u) \mapsto\left(x^{6}+x y^{4}+x z^{3}+x t^{2}+x u, y, z, t, u\right)$
$(x, y, z, t, u) \mapsto\left(x^{4}+y^{2}+x^{3} z+x t^{2}+x u, x y, z, t, u\right)$
$(x, y, z, t, u) \mapsto\left(-x^{4}+y^{2}+x^{3} z+x t^{2}+x u, x y, z, t, u\right)$
$(x, y, z, t, u) \mapsto\left(x^{2}+x y z+t y+u x, y^{3}+x^{2} z, z, t, u\right)$
$(x, y, z, t, u) \mapsto\left(x^{2}+x y z+t y+u x,-y^{3}+x^{2} z, z, t, u\right)$
or a suspension of the previous ones.
Question: which ones can appear as optimal singualities?
(i.e. as normal forms of Riemannian exponential maps at a cut-conjugate point?)

A3 singularity vs Exponential map

Let us consider the A3 singularity

$$
\Phi:(x, y) \mapsto\left(x^{3}+x y, y\right)
$$

The set of critical points is

$$
C=\{\operatorname{det} D \Phi=0\} \Leftrightarrow\left\{3 x-y^{2}=0\right\} \Leftrightarrow\left\{\left(t, 3 t^{2}\right), t \in \mathbb{R}\right\}
$$

The image of this set
$\Phi(C)=\left\{\left(-2 t^{3}, 3 t^{2}\right)\right\}=\left\{y^{3}=(27 / 4) x^{2}\right\}$
It corresponds to the cut-conjugate point on the ellipsoid!

Lagrangian generic vs Riemannian generic

Let M be a smooth manifold and \mathcal{G} be the set of all complete Riemannian metrics endowed with the C^{∞} Whitney topology.

- We say that for a generic Riemannian metric on M the property (P) holds if the property (P) is satisfied on an open and dense subset of the set \mathcal{G}.
\rightarrow Singularities of generic Riemannian exponential maps are generic Lagrangian singularities.
- Weinstein ('68), Wall ('76) and Janesko-Mostowski ('95).

Theorem

Let M be a smooth manifold with $\operatorname{dim} M \leq 5$, and fix $x \in M$. For a generic Riemannian metric on M, the singularities of the exponential map Exp ${ }_{x}$ are those listed in the previous Theorem.

Elimination of singularities

\rightarrow One can eliminate all the singularities but three of them if one restricts to optimal ones (i.e. along minimizing geodesics)

Theorem (DB, U.Boscain, G.Charlot, R.Neel)

Let M be a smooth manifold, $\operatorname{dim} M \leq 5$, and $x \in M$. For a generic Riemannian metric on M and any minimizing geodesic γ from x to y we have that γ is

- either non-conjugate,
- A_{3}-conjugate,
- or A_{5}-conjugate.

Notice that

- A_{3} appears only for $\operatorname{dim} M \geq 2$
- A_{5} can only appear for $\operatorname{dim} M \geq 4$.
\rightarrow in dimension 2 and 3 there is only "one kind" of generic cut-conjugate point.

Consequences

Corollary

Let M be a smooth manifold, $\operatorname{dim} M=n \leq 5$, and $x \in M$. For a generic Riemannian metric on M the only possible heat kernel asymptotics are:
(i) No minimal geodesic from x to y is conjugate

$$
p_{t}(x, y)=\frac{C+O(t)}{t^{\frac{n}{2}}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right)
$$

(ii) At least one min. geod. is A_{3}-conjugate but none is A_{5}-conjugate

$$
p_{t}(x, y)=\frac{C+O\left(t^{1 / 2}\right)}{t^{\frac{n}{2}+\frac{1}{4}}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right)
$$

(iii) At least one min. geod. is A_{5}-conjugate

$$
p_{t}(x, y)=\frac{C+O\left(t^{1 / 3}\right)}{t^{\frac{n}{2}+\frac{1}{6}}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right)
$$

\rightarrow consistent with the results obtained on surfaces of revolution.

What is possible for non generic surfaces?

Theorem (D.B.,Boscain, Charlot,Neel,'13)

For any integer $r \geq 3$, any positive real α, and any real β, there exists a smooth metric on S^{2} and $x \neq y$ such that

$$
p_{t}(x, y)=\frac{1}{t^{\frac{3}{2}-\frac{1}{2 r}}} e^{-d^{2}(x, y) / 4 t}\left(\alpha+t^{1 / r} \beta+o\left(t^{1 / r}\right)\right)
$$

- the existence of such expansions is not so surprising.
- the "big-O" term is computed and cannot in general be improved.
- we do see expansions in fractional powers of t (and not integer)

Idea of the proof

Let $\gamma(t)=\operatorname{Exp}_{x}\left(t \lambda_{0}\right)$ join x and y and conjugate
Singularity of Exp_{x} at $\lambda_{0} \Leftrightarrow$ Singularity of $h_{x, y}$ at midpoint z_{0}
Use two crucial facts:

- If γ is minimizing there exists a variation $\lambda(s)$ such that $y(s)=\operatorname{Exp}_{x}(\lambda(s))$ satisfies $y(s)-y=O\left(s^{3}\right)$ in a coordinate system.
- Assume $\operatorname{rank}\left(D_{\lambda} \operatorname{Exp}_{x}\right)=n-1$. Then

$$
h_{x, y}(z)=\frac{d^{2}(x, y)}{4}+z_{1}^{2}+\ldots+z_{n-1}^{2}+z_{n}^{m}
$$

where $m=\max \left\{k \in \mathbb{N} \mid y(s)-y=s^{k} v+o\left(t^{k}\right), v \neq 0\right\}$ for all variations $y(s)=\operatorname{Exp}_{x}(\lambda(s))$.

3D contact case

For the generic 3D contact case [Agrachev, Gauthier et al.,'96]

- close to the diagonal only singularities of type A_{3} appear, accumulating to the initial point.
- The local structure of the conjugate locus is
- either a suspension of a four-cusp astroid (at generic points)
- or a suspension of a "six-cusp astroid" (along some special curves).
- for the four-cusp case, two of the cusps are reached by cut-conjugate geodesics,
- in the six-cusp case this happens for three of them.
\rightarrow Notice that the conjugate locus at a generic point looks like a suspension of the first conjugate locus that one gets on a Riemannian ellipsoid

Theorem

Let M be a smooth manifold of dimension 3. Then for a generic 3D contact sub-Riemannian metric on M, every x, and every y (close enough to x) we have
(i) If no minimal geodesic from x to y is conjugate then

$$
p_{t}(x, y)=\frac{C+O(t)}{t^{3 / 2}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right)
$$

(ii) If at least one minimal geodesic from x to y is conjugate then

$$
p_{t}(x, y)=\frac{C+O\left(t^{1 / 2}\right)}{t^{7 / 4}} \exp \left(-\frac{d^{2}(x, y)}{4 t}\right),
$$

Moreover, there are points y arbitrarily close to x such that case (ii) occurs.

- exponents of the form $N / 4$, for integer N, were unexpected in the 90 s literature for points close enough

Paris, 2014 - www.cmap.polytechnique.fr/subriemannian

