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Introduction

(Hypo)-elliptic operators ←→ (Sub)-Riemannian metrics

Main motivation:

understand the interplay between

→ the analysis of the diffusion processes on the manifold (heat equation)

→ the geometry of these spaces (distance, geodesics, curvature)

Problem: relating

analytic properties of the heat kernel pt(x , y) (small time asymptotics)

geometry underlying (properties of distance and geodesics joining x and y)

→ In particular: what happens for pt(x , y) when y ∈ Cut(x)?

→ What happens “generically”?
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Heat equation on R
2

The classical heat equation on R2

∂tψ(t, x) = (∂2x1 + ∂2x2)ψ(t, x)

The fundamental solution, or heat kernel, of this equation

pt(x , y) =
1

4πt
exp

(
−
|x − y |2

4t

)

→ Every solution such that ψ(0, x) = φ(x) is of the form

ψ(t, x) =

∫

R2

pt(x , y)φ(y)dy

→ pt(·, y) corresponds to the solution with initial datum Dirac δy .
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Heat equation on S
2

The heat equation on the sphere S2

∂tψ(t, x) = ∆ψ(t, x)

where ∆ is the Laplace Beltrami operator → elliptic operator.

It is natural to expect that

pt(x , y) ∼
1

4πt
exp

(
−
d(x , y)2

4t

)

This is true everywhere but at the antipodal point x̂, where

pt(x , x̂) ∼
1

4πt3/2
exp

(
−
d(x , y)2

4t

)

→ Here and in what follows

f (t) ∼ g(t) ⇔ f (t) = g(t)[C + o(1)], C 6= 0
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Heat vs Cut locus

Naive idea:
the heat diffuses along geodesics

only one optimal geodesic reaches y

x̂ is the point where all geodesics
meet

x̂ = Cut(x) = Conj(x)

the function x 7→ d2(x , ·)
is not smooth at x̂

b

b

x

y b

x̂

→ even in this simple example it is easy to see how the structure of the geodesics
is related with the heat kernel asymptotics.
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Perturbation of the sphere: ellipsoid of revolution

A complete proof on cut and conjugate locus has been proved only in 2004.
(even if first works about geodesics on ellipsoids dates back to Jacobi)

From Wikipedia:

By Cffk (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)]
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Surfaces of revolution

For a metric on S2 of the form dr2 +m2(r)dθ2 such that

+ symmetric w.r.t. the equator

+ non-singularity condition at the equator [i.e. K ′′ 6= 0]

Typical example: ellipsoid of revolution

x y
Cut(x)

Conj(x)

bc
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For a metric on S2 of the form dr2 +m2(r)dθ2 such that

+ symmetric w.r.t. the equator

+ non-singularity condition at the equator [i.e. K ′′ 6= 0]

Typical example: ellipsoid of revolution

Theorem (D.B., J.Jendrej, ’13)

Fix x ∈ M along the equator and let y be a cut-conjugate point with respect to x.
Then we have

pt(x , y) ∼
1

t5/4
e−d2(x,y)/4t , for t → 0.

x y
Cut(x)

Conj(x)

bc
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Surfaces of revolution

For a metric on S2 of the form dr2 +m2(r)dθ2 such that
+ symmetric w.r.t. the equator
+ non-singularity condition at the equator [i.e. K ′′ 6= 0]

Typical example: ellipsoid of revolution

Theorem (D.B., J.Jendrej, ’13)

Fix x ∈ M along the equator and let y be a cut-conjugate point with respect to x.
Then we have

pt(x , y) ∼
1

t5/4
e−d2(x,y)/4t , for t → 0.

We have just said that on S2

pt(x , y) ∼
1

t3/2
e−d2(x,y)/4t

x = nord, y = sud

b

b

x

y
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Surfaces of revolution

For a metric on S2 of the form dr2 +m2(r)dθ2 such that
+ symmetric w.r.t. the equator
+ non-singularity condition at the equator [i.e. K ′′ 6= 0]

Typical example: ellipsoid of revolution

Theorem (D.B., Jendrej)

Fix x ∈ M along the equator and let y be a cut-conjugate point with respect to x.
Then we have

pt(x , y) ∼
1

t1+1/4
e−d2(x,y)/4t , for t → 0.

For the standard sphere S2

pt(x , y) ∼
1

t1+1/2
e−d2(x,y)/4t

x = nord, y = sud

b

b

x

y
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Sub-Riemannian geometry

Definition

A sub-Riemannian manifold is a triple (M ,D, 〈·, ·〉), where

(i) M manifold, C∞, dimension n ≥ 3;

(ii) D vector distribution of rank k < n, i.e. Dx ⊂ TxM subspace k-dim. that is

bracket generating: LiexD = TxM .

(iii) 〈·, ·〉x inner product on Dx , smooth in x .

A curve γ : [0,T ]→ M is horizontal if γ̇(t) ∈ ∆γ(t)

For a horizontal curve
γ : [0,T ]→ M its length is

ℓ(γ) =

∫ T

0

√
〈γ̇(t), γ̇(t)〉 dt.

horizontal curve

D(q)
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We can define the sub-Riemannian distance as

d(x , y) = inf{ℓ(γ) | γ(0) = x , γ(T ) = y , γ horizontal}.

The bracket generating condition implies

(i) d(x , y) < +∞ for all x , y ∈ M .

(ii) topology (M , d) = manifold topology.

Question: Regularity of d2? Relation with minimizing admissible curves?

Front

OPTIMAL GEODESICSGEODESICS

CUT LOCUS

Sphere

For a minimizing curve we can define

Conjugate locus: where geodesics lose local optimality

Cut locus: where geodesics lose global optimality (and d2 is not smooth)
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Regularity of d2

Consider geodesics starting from x ∈ M

geodesics lose optimality arbitrarily
close to x

f(·) = 1
2d

2(x , ·) is not smooth at x

f : M → R is C∞ on an open and dense set Σ(x) [A.Agrachev, 2009]

x /∈ Σ(x) and Cut(x) ⊂ M \ Σ(x)

Σ(x) = {y ∈ M | ∃! non-abnormal and non-conjugate minimizer from x to y}

→ for simplicity: assume no minimizing abnormal extremals.
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Conjugate points and Exponential map

Normal minimizer are projection of the flow of ~H.

Theorem (PMP)

Let M be a SR manifold and let γ : [0,T ]→ M be a minimizer. ∃ Lipschitz curve

λ : [0,T ]→ T ∗M, with λ(t) ∈ T ∗

γ(t)M, such that λ̇(t) =
−→
H (λ(t)).

λ(t) = et
~H(λ0) → parametrized by initial covectors λ0 ∈ T ∗

x0
M

γ(t) = π(λ(t))

The exponential map starting from x0 as

Expx0 : T
∗

x0
M → M , Expx0(λ0) = π(e

~H(λ0)).

Expx0(tλ0) = γ(t). (→ by homogeneity of H)

Fact:

t̄ first conjugate time along γ ⇒ t̄λ0 is a critical point of Expx0 .
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SR Laplacian

We introduce the SR Laplacian operator ∆ to define

∂tψ(t, x) = ∆ψ(t, x)

→ If X1, . . . ,Xk is an orthonormal basis for D we set

∆φ = div(∇φ), ∇φ =
∑

i

Xi (φ)Xi

∆ =

k∑

i=1

X 2
i + (div Xi )Xi

→ sum of squares + 1st order term that depends on the volume

We need to fix a volume µ!
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SR Laplacian
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∂tψ(t, x) = ∆ψ(t, x)

→ If X1, . . . ,Xk is an orthonormal basis for D we set

∆µφ = divµ(∇φ), ∇φ =
∑

i

Xi (φ)Xi

∆ =
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i=1

X 2
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Heat equation

The sub-Riemannian heat equation on a complete manifold M





∂ψ

∂t
(t, x) = ∆ψ(t, x), in (0,∞)×M ,

ψ(0, x) = ϕ(x), x ∈ M , ϕ ∈ C∞

0 (M).

(∗)

Theorem (Hörmander)

If {X1, . . . ,Xk} are bracket generating, then ∆ is hypoelliptic.

The problem (∗) has unique solution for ϕ ∈ C∞

0 (M)

ψ(t, x) := et∆ϕ(x) =

∫

M

pt(x , y)ϕ(y)dµ(y), ϕ ∈ C∞

0 (M),

where pt(x , y) ∈ C∞ is the heat kernel associated with ∆.
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Results on the asymptotic of pt(x , y)

Fix x , y ∈ M , dimM = n:

Theorem (Main term, Leandre, ’87)

lim
t→0

4t log pt(x , y) = −d
2(x , y) (1)

Theorem (Smooth points, Ben Arous, ’88)

Assume y ∈ Σ(x), then

pt(x , y) ∼
1

tn/2
exp

(
−
d2(x , y)

4t

)
(1)

Facts

1. In Riemannian geometry x ∈ Σ(x), in sub-Riemannian it is not true!

2. The on-the-diagonal expansion indeed is different.
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Results on the asymptotic of pt(x , y)

Fix x , y ∈ M , dimM = n:

Theorem (Main term, Leandre, ’87)

lim
t→0

4t log pt(x , y) = −d
2(x , y) (1)

Theorem (On the diagonal, Ben Arous, ’89)

We have the expansion

pt(x , x) ∼
1

tQ/2
(1)

Facts

1. In Riemannian geometry x ∈ Σ(x), in sub-Riemannian it is not true!

2. The on-the-diagonal expansion indeed is different.
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Results on the asymptotic of pt(x , y)

Fix x , y ∈ M , dimM = n:

Theorem (Main term, Leandre, ’87)

lim
t→0

4t log pt(x , y) = −d
2(x , y) (1)

Theorem (Smooth points, Ben Arous, ’88)

Assume y ∈ Σ(x), then

pt(x , y) ∼
1

tn/2
exp

(
−
d2(x , y)

4t

)
(1)

Questions

1. What happens in (1) if y ∈ Cut(x)?

2. Can we relate the expansion of pt(x , y) with the properties of the geodesics
joining x to y?
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Cut/Conjugacy vs Asymptotics

Theorem (D.B., Boscain, Neel,’12)

Let M be an n-dimensional complete SR manifold, µ smooth volume. Let x 6= y
and assume that every optimal geodesic joining x to y is strongly normal.

If x and y are not conjugate

pt(x , y) =
C

tn/2
e−d2(x,y)/4t (1 + O(t)),

If x and y are conjugate along at least one minimal geodesic

C

t(n/2)+(1/4)
e−d2(x,y)/4t ≤ pt(x , y) ≤

C ′

tn−(1/2)
e−d2(x,y)/4t ,

→ we can detect only points that are cut and conjugate.

→ If we are cut but not conjugate the constant C changes.
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Case of a 2-dim surface

The theorem in the case of a 2-dim Riemannian surface says that

If x and y are not conjugate

pt(x , y) =
C

t
e−d2(x,y)/4t(1 + O(t)),

If x and y are conjugate along at least one minimal geodesic

C

t5/4
e−d2(x,y)/4t ≤ pt(x , y) ≤

C ′

t3/2
e−d2(x,y)/4t ,

→ all cases are between the ellipsoid and the sphere.

→ they correspond to the “minimal” and “maximal” degeneration for a conjugate
point on a surface.
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Refinement

If γ(t) = Expx(tλ) joins x and y we say that

γ is conjugate of order r if rank(DλExpx) = n − r

Theorem (D.B., Boscain, Charlot, Neel,’13)

Let M be an n-dimensional complete SR manifold, µ smooth volume. Let x 6= y
and assume that the only optimal geodesic joining x to y is conjugate of order r .

Then there exist positive constants, such that for small t

C

t
n
2+

r
4
e−d2(x,y)/4t ≤ pt(x , y) ≤

C ′

t
n
2+

r
2
e−d2(x,y)/4t ,

→ This result can give estimates on the order of conjugacy of a point in the cut
locus once you know the heat kernel (roughly, how much it is symmetric)
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Example: Heisenberg

In the Heisenberg group the Heat kernel is explicit (here q = (x , y , z))

pt(0, q) =
1

(4πt)2

∫
∞

−∞

τ

sinh τ
exp

(
−
x2 + y2

4t

τ

tanh τ

)
cos

(zτ
t

)
dτ.

and gives the asymptotics for cut-conjugate points ζ = (0, 0, z)

pt(0, ζ) ∼
1

t2
exp

(
−
πz

t

)
=

1

t2
exp

(
−
d2(0, ζ)

4t

)

Remark: The fact that 4
2 >

3
2 confirm the fact that the points ζ = (0, 0, z) are

not smooth points. What is the meaning?
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Example: Heisenberg

In the Heisenberg group we had the asymptotics for cut-conjugate points
ζ = (0, 0, z)

pt(0, ζ) ∼
1

t
4
2

exp
(
−
πz

t

)
=

1

t
4
2

exp

(
−
d2(0, ζ)

4t

)

Remark: This a consequence of the fact that there exists a one parametric family
of optimal trajectories (varying the angle), hence the hinged energy function is
actually a function of two variables, being constant on the midpoints.
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Idea of the proof: What happens at non good point?

Let x , y ∈ M with y ∈ Cut(x) and write

pt(x , y) =

∫

M

pt/2(x , z)pt/2(z , y)dµ(z)

Idea: z ∈ Σ(x) ∩ Σ(y) and apply Ben-Arous expansion

pt/2(x , z)pt/2(z , y) ∼
1

tn
exp

(
−
d2(x , z) + d2(z , y)

4t

)

This led to the study of an integral of the kind

pt(x , y) =
1

tn

∫

M

cx,y (z) exp

(
−
hx,y (z)

2t

)
dµ(z)

where hx,y is the hinged energy function

hx,y (z) =
1

2

(
d2(x , z) + d2(z , y)

)
.

→ the asymptotic is given by the behavior of hx,y near its minimum.
(Laplace method)

Davide Barilari (IMJ, Paris Diderot) Sub-Riemannian geometry April 14, 2014 25 / 41



Motivation Sub-Riemannian geometry: regularity of d2 and the heat equation Main results Some results for generic metrics

Properties of hx ,y hinged energy function

Lemma
Let Γ be the set of midpoints of the minimal geodesics joining x to y.
Then min hx,y = hx,y (Γ) = d2(x , y)/4.

A minimizer is called strongly normal if any piece of it is not abnormal.

Theorem (D.B., Boscain, Neel,’12)

Let γ be a strongly normal minimizer joining x and y. Let z0 be its midpoint.
Then

(i) y is conjugate to x along γ ⇔ Hessz0hx,y is degenerate.

(ii) The dimension of the space of perturbations for which γ is conjugate
is equal to dim(kerHessz0hx,y ).

Remark: Hess hx,y is never degenerate along the direction of the geodesic!
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Hinged vs Asymptotics

To have the precise asymptotic one need that the expansion of hx,y is
diagonal in some coordinates.

Theorem (D.B.,Boscain,Neel,’12)

Assume that, in a neighborhood of the midpoints of the strongly normal geodesic
joining x to y there exists coordinates such that

hx,y (z) =
1

4
d2(x , y) + z2m1

1 + . . .+ z2mn
n + o(|z1|

2m1 + . . .+ |zn|
2mn)

Then for some constant C > 0

pt(x , y) =
1

t
n−

∑
i

1
2mi

exp

(
−
d2(x , y)

4t

)
(C + o(1)).

Note: hx,y non degenerate (mi = 2) → the exponent is n/2
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Remarks

Nevertheless there are at least two cases that simplifies the analysis

If we have symmetry → a one parametric family of optimal trajectories then
hx,y is constant along the trajectory of midpoints.

If there is only one degenerate direction then hx,y is always diagonalizable

Lemma (Splitting Lemma - Gromoll, Meyer, ’69)

Let h : Rn → R smooth such that h(0) = dh(0) = 0 and that dim ker d2h(0) = 1.
Then there exists coordinates such that

h(z) = z21 + . . .+ z2n−1 + ψ(zn), where ψ(zn) = O(z4n ).
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Exponential map as a Lagrangian map

A fibration π : E → N is Lagrangian if E is a symplectic manifold and each
fiber is Lagrangian.

A Lagrangian map is a smooth map f : M → N between manifolds of the
same dimension obtained by composition of a Lagrangian immersion
i : M → E and a projection

f : M
i
−→ E

π
−→ N .

The exponential map Expx0 is a Lagrangian map

Expx0 : T
∗

x0
M → M , Expx0 = π ◦ e

~H |T∗

x0
M

It is the composition of

Lagrangian immersion e
~H : T ∗

x0
M → T ∗M

a projection π : T ∗M → M
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Normal form of generic singularities of Lagrangian maps

Theorem (Arnold’s school)

Let f : Rn → R
n be a generic Lagrangian singularity at x0. Then there exist

changes of coordinates around x0 and f (x0) such that in the new coordinates
x0 = f (x0) = 0 and:

if n = 1, f is the map
x 7→ x2 (A2)

if n = 2 then f is the map
(x , y) 7→ (x3 + xy , y) (A3)
or a suspension of the previous one;

if n = 3 then f is the map
(x , y , z) 7→ (x4 + xy2 + xz , y , z) (A4)
(x , y , z) 7→ (x2 + y2 + xz , xy , z) (D+

4 )
(x , y , z) 7→ (x2 − y2 + xz , xy , z) (D−

4 )
or a suspension of the previous ones;
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Normal form of generic singularities of Lagrangian maps

Theorem (Arnold’s school)

if n = 4 then f is the map
(x , y , z , t) 7→ (x5 + xy3 + xz2 + xt, y , z , t) (A5)
(x , y , z , t) 7→ (x3 + y2 + x2z + xt, xy , z , t) (D+

5 )
(x , y , z , t) 7→ (−x3 + y2 + x2z + xt, xy , z , t) (D−

5 )
or a suspension of the previous ones;

if n = 5 then f is the map
(x , y , z , t, u) 7→ (x6 + xy4 + xz3 + xt2 + xu, y , z , t, u) (A6)
(x , y , z , t, u) 7→ (x4 + y2 + x3z + xt2 + xu, xy , z , t, u) (D+

6 )
(x , y , z , t, u) 7→ (−x4 + y2 + x3z + xt2 + xu, xy , z , t, u) (D−

6 )
(x , y , z , t, u) 7→ (x2 + xyz + ty + ux , y3 + x2z , z , t, u) (E+

6 )
(x , y , z , t, u) 7→ (x2 + xyz + ty + ux ,−y3 + x2z , z , t, u) (E−

6 )
or a suspension of the previous ones.

Question: which ones can appear as optimal singualities?
(i.e. as normal forms of Riemannian exponential maps at a cut-conjugate point?)
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A3 singularity vs Exponential map

Let us consider the A3 singularity

Φ : (x , y) 7→ (x3 + xy , y)

The set of critical points is

C = {detDΦ = 0} ⇔ {3x − y2 = 0} ⇔ {(t, 3t2), t ∈ R}

The image of this set

Φ(C ) = {(−2t3, 3t2)} = {y3 = (27/4)x2}

It corresponds to the cut-conjugate point
on the ellipsoid!
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Lagrangian generic vs Riemannian generic

Let M be a smooth manifold and G be the set of all complete Riemannian metrics
endowed with the C∞ Whitney topology.

We say that for a generic Riemannian metric on M the property (P) holds if
the property (P) is satisfied on an open and dense subset of the set G.

→ Singularities of generic Riemannian exponential maps are generic Lagrangian
singularities.

Weinstein (’68), Wall (’76) and Janesko-Mostowski (’95).

Theorem

Let M be a smooth manifold with dimM ≤ 5, and fix x ∈ M. For a generic
Riemannian metric on M, the singularities of the exponential map Expx are those
listed in the previous Theorem.
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Elimination of singularities

→ One can eliminate all the singularities but three of them if one restricts to
optimal ones (i.e. along minimizing geodesics)

Theorem (DB, U.Boscain, G.Charlot, R.Neel)

Let M be a smooth manifold, dimM ≤ 5, and x ∈ M. For a generic Riemannian
metric on M and any minimizing geodesic γ from x to y we have that γ is

either non-conjugate,

A3-conjugate,

or A5-conjugate.

Notice that

A3 appears only for dimM ≥ 2

A5 can only appear for dimM ≥ 4.

→ in dimension 2 and 3 there is only “one kind” of generic cut-conjugate point.
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Consequences

Corollary

Let M be a smooth manifold, dimM = n ≤ 5, and x ∈ M. For a generic
Riemannian metric on M the only possible heat kernel asymptotics are:

(i) No minimal geodesic from x to y is conjugate

pt(x , y) =
C + O(t)

t
n
2

exp

(
−
d2(x , y)

4t

)
,

(ii) At least one min. geod. is A3-conjugate but none is A5-conjugate

pt(x , y) =
C + O(t1/2)

t
n
2+

1
4

exp

(
−
d2(x , y)

4t

)
,

(iii) At least one min. geod. is A5-conjugate

pt(x , y) =
C + O(t1/3)

t
n
2+

1
6

exp

(
−
d2(x , y)

4t

)
.

→ consistent with the results obtained on surfaces of revolution.
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What is possible for non generic surfaces?

Theorem (D.B.,Boscain,Charlot,Neel,’13)

For any integer r ≥ 3, any positive real α, and any real β, there exists a smooth
metric on S2 and x 6= y such that

pt(x , y) =
1

t
3
2−

1
2r

e−d2(x,y)/4t (α+ t1/rβ + o(t1/r )).

the existence of such expansions is not so surprising.

the “big-O” term is computed and cannot in general be improved.

we do see expansions in fractional powers of t (and not integer)
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Idea of the proof

Let γ(t) = Expx(tλ0) join x and y and conjugate

Singularity of Expx at λ0 ⇔ Singularity of hx,y at midpoint z0

Use two crucial facts:

If γ is minimizing there exists a variation λ(s) such that y(s) = Expx(λ(s))
satisfies y(s) − y = O(s3) in a coordinate system.

Assume rank(DλExpx) = n− 1. Then

hx,y (z) =
d2(x , y)

4
+ z21 + . . .+ z2n−1 + zmn

where m = max{k ∈ N | y(s) − y = skv + o(tk), v 6= 0} for all variations
y(s) = Expx(λ(s)).
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3D contact case

For the generic 3D contact case [Agrachev, Gauthier et al.,’96]

close to the diagonal only singularities of type A3 appear, accumulating to
the initial point.

The local structure of the conjugate locus is

either a suspension of a four-cusp astroid (at generic points)
or a suspension of a “six-cusp astroid” (along some special curves).

for the four-cusp case, two of the cusps are reached by cut-conjugate
geodesics,

in the six-cusp case this happens for three of them.

→ Notice that the conjugate locus at a generic point looks like a suspension of
the first conjugate locus that one gets on a Riemannian ellipsoid
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Heisenberg sphere

cut

generic 3D contact
(at generic points)

(at non-generic points)
generic 3D contact

conjugate

cut-conjugate

cut-conjugate

cut conjugate

cut-conjugate
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Theorem

Let M be a smooth manifold of dimension 3. Then for a generic 3D contact
sub-Riemannian metric on M, every x, and every y (close enough to x) we have

(i) If no minimal geodesic from x to y is conjugate then

pt(x , y) =
C + O(t)

t3/2
exp

(
−
d2(x , y)

4t

)
,

(ii) If at least one minimal geodesic from x to y is conjugate then

pt(x , y) =
C + O(t1/2)

t7/4
exp

(
−
d2(x , y)

4t

)
,

Moreover, there are points y arbitrarily close to x such that case (ii) occurs.

exponents of the form N/4, for integer N , were unexpected in the 90s
literature for points close enough
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