On the regularity of the value function for a class of affine optimal control problems

Davide Barilari IMJ-PRG, Université Paris Diderot

Mathematical Control Theory Porquerolles, France,

June 27-30, 2017

This is a joint work with

- Francesco Boarotto (CMAP, École Polytechnique)
- D.B., F. Boarotto, On the set of points of smoothness for the value function of affine optimal control problems, ArXiv preprint 2016.

* * *

- Luca Rizzi (Institut Fourier, Univ. Grenoble Alpes)
- D.B., L. Rizzi, Sub-Riemannian interpolation inequalities : ideal case, ArXiv preprint 2017.

Outline

On the set of points of smoothness of the value function

3 Characterization of cut locus : sub-Riemannian case without abnormal

An open question

Outline

D Affine control systems with action-like cost

2) On the set of points of smoothness of the value function

3 Characterization of cut locus : sub-Riemannian case without abnormal

An open question

Affine optimal control problems

(Dynamic) Consider a smooth (C^{∞}) affine control system on a manifold M

$$\dot{x} = F(x, u) = X_0(x) + \sum_{i=1}^k u_i X_i(x), \qquad x \in M, u \in \mathbb{R}^k.$$

- fix a control $u \in L^2([0, T], \mathbb{R}^k)$ (\rightarrow control set unbounded).
- denote by $x_u(\cdot)$ the solution of the Cauchy problem with $x(0) = x_0$
- $A_{x_0}^T$ is the attainable set from x_0 in time T > 0

(Cost) Given a smooth function $L: M \times \mathbb{R}^k \to \mathbb{R}$ we define the *cost at time* T

$$C_T(u) := \int_0^T L(x_u(t), u(t)) dt,$$

Definition

For a fixed $x_0 \in M$ and T > 0, we define the *value function*

$$S_{x_0}^{T}(x) = \inf \{ C_T(u) \mid u \text{ admissible, } x_u(0) = x_0, x_u(T) = x \}$$

Affine optimal control problems

(Dynamic) Consider a smooth (C^{∞}) affine control system on a manifold M

$$\dot{x} = F(x, u) = X_0(x) + \sum_{i=1}^k u_i X_i(x), \qquad x \in M, u \in \mathbb{R}^k.$$

- fix a control $u \in L^2([0, T], \mathbb{R}^k)$ (\rightarrow control set unbounded).
- denote by $x_u(\cdot)$ the solution of the Cauchy problem with $x(0) = x_0$
- $A_{x_0}^T$ is the attainable set from x_0 in time T > 0

(Cost) In what follows we will mainly deal with action-like cost

$$C_T(u) := \frac{1}{2} \int_0^T \|u(t)\|^2 - Q(x_u(t)) dt$$

Definition

For a fixed $x_0 \in M$ and T > 0, we define the *value function*

$$S_{x_0}^{\mathcal{T}}(x) = \inf \left\{ C_{\mathcal{T}}(u) \mid u \text{ admissible, } x_u(0) = x_0, x_u(\mathcal{T}) = x \right\}$$

Affine control systems with action-like cost On the set of points of smoothness of the value function Characterization of cut locus :

Assumptions

$$\dot{x} = X_0(x) + \sum_{i=1}^k u_i X_i(x), \qquad x \in M, u \in \mathbb{R}^k.$$
(1)
$$C_T(u) := \int_0^T \|u(t)\|^2 - Q(x_u(t)) dt$$
(2)

(A1) The weak bracket generating condition is satisfied, namely

$$\mathsf{Lie}_{\mathsf{x}}\left\{(\mathsf{ad}\,\mathsf{X}_{\mathsf{0}})^{i}\mathsf{X}_{j}, i\in\mathbb{N}, j=1,\ldots,k
ight\}=\mathsf{T}_{\mathsf{x}}\mathsf{M},$$

[the vector field X_0 is not included in the generators of the Lie algebra]

(A2) For every bounded family \mathcal{U} of admissible controls, there exists a compact subset $K_T \subset M$ (depending on \mathcal{U}) such that $x_u(t) \in K_T$, for every $u \in \mathcal{U}, t \in [0, T]$.

(A3) The potential Q is a smooth function bounded from above.

(A1) The bracket generating condition is satisfied, namely

 $\operatorname{Lie}_{x}\left\{(\operatorname{ad} X_{0})^{i}X_{j}, i \in \mathbb{N}, j = 1, \ldots, k\right\} = T_{x}M,$

[the vector field X_0 is not included in the generators of the Lie algebra]

(A2) For every bounded family \mathcal{U} of admissible controls, there exists a compact subset $K_T \subset M$ (depending on \mathcal{U}) such that $x_u(t) \in K_T$, for every $u \in \mathcal{U}, t \in [0, T]$.

(A3) The potential Q is a smooth function bounded from above.

- (A1) guarantees that $int(A_{x_0}^T) \neq \emptyset$. [Jurdjevic-Sussmann, '72]
- (A2) is a completeness/compactness assumption on the dynamical system
- (A2)+(A3), guarantees the existence of optimal controls.
- \rightarrow (A2) and (A3) are automatically satisfied when M is compact.
- \rightarrow For *M* not compact, (A2) can be replaced by growth condition on vector fields (sublinear / other).

Motivation : a framework for geometry (and analysis)

This setting includes many different geometric structures such as

- Riemannian structures (or mechanical systems on Riemannian manifolds)
- sub-Riemannian structures
- smooth Finsler structures (or even sub-Finsler)

The (sub-)Riemannian case corresponds to the case when

- the system is driftless with zero potential $(X_0 = 0, Q = 0)$
- $k < n \ (k = n \text{ corresponds to Riemannian})$
- the cost is quadratic $L(x, u) = \frac{1}{2}|u|^2$
- \rightarrow The cost is induced by a scalar product such that X_1, \ldots, X_k are orthonormal.

(*) Given a smooth measure μ on M we can introduce a sub-Laplacian operator

$$\Delta_{\mu} = \operatorname{div}_{\mu}
abla = \sum_{i=1}^{k} X_i^2 + (\operatorname{div}_{\mu} X_i) X_i$$

Affine control systems with action-like cost On the set of points of smoothness of the value function Characterization of cut locus :

The (sub)-Riemannian case

$$\dot{x} = \sum_{i=1}^{k} u_i X_i(x) \qquad C_T(u) := \frac{1}{2} \int_0^T \|u(t)\|^2 dt \tag{3}$$

• (A1) is the classical bracket generating condition

$$\operatorname{Lie}_{x} \{X_{j} \mid j = 1, \ldots, k\} = T_{x}M,$$

• we have
$$A_{x_0}^T = M$$
 and $S_{x_0}^T(x) = rac{1}{2T} d_{SR}^2(x_0,x)$

where d_{SR} is the Carnot-Carathéodory distance

- (A2) is naturally replaced by (M, d_{SR}) complete metric space.
- (A3) is automatic since Q = 0

Rashevsky-Chow Theorem

The value function
$$S_{x_0}^T(x) = \frac{1}{2T} d_{SR}^2(x_0, x)$$
 is continuous on M

(Some) other results

$$\dot{x} = X_0(x) + \sum_{i=1}^k u_i X_i(x)$$
 $C_T(u) := \frac{1}{2} \int_0^T \|u(t)\|^2 - Q(x_u(t)) dt$ (4)

with some similar assumptions

- [Trélat '00] Continuity and subanaliticity with no abnormals ($Q=0,\ C^\omega)$
- [Cannarsa-Rifford '08] Semiconcavity with no abnormals (for Tonelli L)
- [Agrachev-Lee '10] Continuity (growth on L, horizontal step 3 condition)
- [Cannarsa-Frankowska et al.] Regularity along optimal trajectories
- many others

Regularity of $S_{x_0}^T$: heuristics

- $S_{x_0}^T$ is smooth at "good points" (reached by a unique "good" minimizer)
- can be not continous at "bad points" (for instance when have abnormals).

 $\rightarrow\,$ Can we have a qualitative understanding of the good set?

Regularity of $d_{SR}^2(x_0, \cdot)$ in SR geometry

Let $x_0 \in M$ and $S_{x_0}^{\mathcal{T}}(x) = \frac{1}{2\mathcal{T}} d_{SR}^2(x_0, x)$. Define the set

 $\Sigma(x_0) = \{x \in M \mid \exists! \text{ not abnormal non-conjugate minimizer from } x_0 \text{ to } x\}$

Theorem (Agrachev '09, Trélat-Rifford '05)

 $\Sigma(x_0)$ is open and dense in M. Moreover $d_{SR}^2(x_0, \cdot)$ is smooth on $\Sigma(x_0)$

- $d_{SR}^2(x_0, \cdot)$ never smooth on diagonal, i.e., $x_0 \notin \Sigma(x_0)$.
- → Big open question: is measure($M \setminus \Sigma(x_0)$) = 0?
 - crucial that $d_{SR}^2(x_0, \cdot)$ is continuous, even with "bad" abnormals.
- 1. Can we extend to our setting?
- 2. Can we characterize $\operatorname{Cut}(x_0) = M \setminus \Sigma(x_0)$? (\rightarrow in SR case)

Affine control systems with action-like cost On the set of points of smoothness of the value function Characterization of cut locus :

Outline

Affine control systems with action-like cost

On the set of points of smoothness of the value function

3 Characterization of cut locus : sub-Riemannian case without abnormal

An open question

End-point map

Fix a point $x_0 \in M$ and T > 0.

• The end-point map at time T is the smooth map

$$E_{x_0}^T: \mathcal{U} \to M, \qquad u \mapsto x_u(T),$$

where $\mathcal{U} \subset L^2([0, T], \mathbb{R}^k)$ is the open subset s.t. $x_u(t)$ is defined on [0, T]. • The attainable set $A_{x_0}^{\mathcal{T}} = E_{x_0}^{\mathcal{T}}(\mathcal{U})$.

 \rightarrow Value function rewritten via the end-point map

$$S_{x_0}^{T}(x) = \inf\{C_{T}(u) \mid E_{x_0}^{T}(u) = x\} = \inf_{(E_{x_0}^{T})^{-1}(x)} C_{T}$$

In general $E_{x_0}^T$ is smooth but

- $d_u E_{x_0}^T$ is not surjective
- the set $(E_{x_0}^T)^{-1}(x)$ is not a smooth manifold.
- $S_{x_0}^T$ is lower semicontinous (\rightarrow recall: in general not continuous)

Lagrange multipliers rule

A necessary condition for a constrained critical point for $\inf_{(E_{\infty}^{T})^{-1}(x)} C_{T}$.

Theorem

Assume $u \in U$ is a constr. crit. point, with $x = E_{x_0}^T(u)$. Then (at least) one of the two following statements hold true

(i) $\exists \lambda_T \in T^*_x M \text{ s.t. } \lambda_T \cdot d_u E^T_{x_0} = d_u C_T$,

(ii)
$$\exists \lambda_T \in T^*_x M \setminus \{0\} \text{ s.t. } \lambda_T \cdot d_u E^T_{x_0} = 0.$$

 \rightarrow A control *u* (reps. the associated trajectory γ_u) is called

- normal in case (i),
- *abnormal* in case (ii).

A priori an optimal control u can be associated with two different covectors such that both (i) and (ii) are satisfied.

Hamiltonian and PMP

$$H(\lambda) = \max_{u \in \mathbb{R}^k} \left(\langle \lambda, F(x, u) \rangle - L(x, u) \right), \qquad \lambda \in T^*M, \ x = \pi(\lambda).$$

The maximum $\bar{u} = \bar{u}(\lambda)$ is characterized as the solution to the system

$$\langle \lambda, f_i(x) \rangle - \frac{\partial L}{\partial u_i}(x, u) = 0, \qquad i = 1, \dots, k.$$

Theorem (PMP, normal case)

Let $(u(t), \gamma_u(t))$ be a normal geodesic. Then there exists a Lipschitz curve $\lambda(t) \in T^*_{\gamma_u(t)}M$ such that $\dot{\lambda}(t) = \overrightarrow{H}(\lambda(t))$.

Fix $x_0 \in M$. The *exponential map* at time T > 0 and base point x_0 is the map $\exp_{x_0}^T : T_{x_0}^* M \to M$ defined by $\exp_{x_0}^T (\lambda_0) = \pi \circ e^{t\vec{H}}(\lambda_0)$.

 \rightarrow a conjugate point is (the image of) a critical point of exp^T_{x0}.

If the value function is smooth

Lemma

Assume $S_{x_0}^T$ smooth at x. Then

(i) there exists a unique minimizer $\gamma : [0, T] \to M$ joining x_0 to x in time T

(ii) $d_x S_{x_0}^T = \lambda_T$, the Lagrange multiplier associated with γ

(iii) γ is not abnormal and not conjugate

- The functional Φ(v) = C_T(v) S^T_{x0}(E^T_{x0}(v)) is smooth and non negative.
- For every optimal u

$$0 = d_u \Phi = d_u C_T - d_x S_{x_0}^T \cdot d_u E_{x_0}^T.$$

• $\lambda_T = d_x S_{x_0}^T$ is the Lagrange multiplier of the normal trajectory.

 \rightarrow For (i) and (ii) it is enough that $\partial_P S_{x_0}^T(x) \neq \emptyset$

 $\partial_P F(x) = \{\lambda = d_x \psi \in T_x^* M \mid \psi \in C^\infty \text{ and } F - \psi \text{ has local minimum at } x\}$

If the value function is smooth

Lemma

Assume $S_{x_0}^T$ smooth at x. Then

(i) there exists a unique minimizer $\gamma : [0, T] \to M$ joining x_0 to x in time T

(ii) $d_x S_{x_0}^T = \lambda_T$, the Lagrange multiplier associated with γ

(iii) γ is not abnormal and not conjugate

- The functional Φ(v) = C_T(v) S^T_{x0}(E^T_{x0}(v)) is smooth and non negative.
- For every optimal u

$$0 = d_u \Phi = d_u C_T - \lambda_T \cdot d_u E_{x_0}^T.$$

• $\lambda_T = d_x S_{x_0}^T$ is the Lagrange multiplier of the normal trajectory.

 \rightarrow For (i) and (ii) it is enough that $\partial_P S_{x_0}^T(x) \neq \emptyset$

 $\partial_{\mathsf{P}} F(x) = \{ \lambda = d_x \psi \in T_x^* M \mid \psi \in C^{\infty} \text{ and } F - \psi \text{ has local minimum at } x \}.$

Using only sub-differential

- Fix ψ a smooth function such that $\lambda = d_x \psi \in \partial_P S_{x_0}^T(x)$
- by definition the map $S_{x_0}^T(\cdot) \psi(\cdot)$ has a local minimum at x,
- Then, set the smooth function

$$\Phi(\mathbf{v}) = C_T(\mathbf{v}) - \psi(E_{\mathbf{x}_0}^T(\mathbf{v})).$$

• Let u be a minimal control such that $E_{x_0}^T(u) = x$. Then for v close to u

$$\Phi(v) = C_{T}(v) - \psi(E_{x_{0}}^{T}(v)) \ge S_{x_{0}}^{T}(E_{x_{0}}^{T}(v)) - \psi(E_{x_{0}}^{T}(v)) \ge S_{x_{0}}^{T}(E_{x_{0}}^{T}(u)) - \psi(E_{x_{0}}^{T}(u)) = C_{T}(u) - \psi(E_{x_{0}}^{T}(u)) = \Phi(u)$$
(5)

one gets

$$0 = d_u \Phi = d_u C_T - d_x \psi \cdot d_u E_{x_0}^T.$$

Fair points

- $S_{x_0}^T$ is lower semicontinuous by a very general argument
- $\partial_P S_{\mathbf{x_0}}^{\mathcal{T}}(x) \neq \emptyset$ for a dense set of points $x \in int(A_{\mathbf{x_0}}^{\mathcal{T}})$.
- → A point $x \in int(A_{x_0}^T)$ is said to be a *fair point* if there exists a unique optimal trajectory steering x_0 to x, which admits a normal lift.
 - We call Σ_f the set of all fair points contained in the attainable set.

The set Σ_f of fair points is *dense* in int $(A_{x_0}^T)$.

- the trajectory is normal but may be also abnormal
- when $\partial_P S_{x_0}^T(x) \neq \emptyset$, then the unique normal trajectory steering x_0 to x is not abnormal if and only if $\partial_P S_{x_0}^T(x)$ is a singleton.

A general result guarantees that a lower semicontinuity functions has plenty of continuity points.

Lemma

The set Σ_c of continuity points of $S_{x_0}^T$ is a residual subset of $int (A_{x_0}^T)$.

! a residual subset = intersection of countably many sets with dense interiors.

 \rightarrow it could be $\Sigma_c \cap \Sigma_f = \emptyset \leftarrow$

- in the sub-Riemannian case $\Sigma_c = M$ so $\Sigma_c \cap \Sigma_f = \Sigma_f$
- we need openness of the end-point map
- in SR the end-point is always open (Rashevsky-Chow) even with abnormals
- ightarrow we need to locate good points of openness of end-point.

A general result guarantees that a lower semicontinuity functions has plenty of continuity points.

Lemma

The set Σ_c of continuity points of $S_{x_0}^T$ is a residual subset of $int (A_{x_0}^T)$.

! a residual subset = intersection of countably many sets with dense interiors.

$\rightarrow \text{ it could be } \Sigma_c \cap \Sigma_f = \emptyset \leftarrow$

- in the sub-Riemannian case $\Sigma_c = M$ so $\Sigma_c \cap \Sigma_f = \Sigma_f$
- we need openness of the end-point map
- in SR the end-point is always open (Rashevsky-Chow) even with abnormals
- ightarrow we need to locate good points of openness of end-point.

A general result guarantees that a lower semicontinuity functions has plenty of continuity points.

Lemma

The set Σ_c of continuity points of $S_{x_0}^T$ is a residual subset of $int (A_{x_0}^T)$.

! a residual subset = intersection of countably many sets with dense interiors.

 $\rightarrow \text{ it could be } \Sigma_c \cap \Sigma_f = \emptyset \leftarrow$

- in the sub-Riemannian case $\Sigma_c = M$ so $\Sigma_c \cap \Sigma_f = \Sigma_f$
- we need openness of the end-point map
- in SR the end-point is always open (Rashevsky-Chow) even with abnormals
- ightarrow we need to locate good points of openness of end-point

A general result guarantees that a lower semicontinuity functions has plenty of continuity points.

Lemma

The set Σ_c of continuity points of $S_{x_0}^T$ is a residual subset of $int (A_{x_0}^T)$.

! a residual subset = intersection of countably many sets with dense interiors.

 \rightarrow it could be $\Sigma_c \cap \Sigma_f = \emptyset \leftarrow$

- in the sub-Riemannian case $\Sigma_c = M$ so $\Sigma_c \cap \Sigma_f = \Sigma_f$
- we need openness of the end-point map
- in SR the end-point is always open (Rashevsky-Chow) even with abnormals
- $\rightarrow\,$ we need to locate good points of openness of end-point.

Tame points: openness

Let $x \in int(A_{x_0}^T)$. We say that x is a *tame point* if for every optimal control u steering x_0 to x there holds

$$\operatorname{rank} d_u E_{x_0}^T = \dim M$$

We call Σ_t the set of tame points.

At tame points

- the end-point is open (at first order)
- one obtains continuity

Arguments of [Trélat, '00]

The set Σ_t of tame points is open. The value function $S_{x_0}^T$ is continuous on Σ_t .

Tame points: density

Theorem (DB-Boarotto, '16)

The set Σ_t of tame points is open and dense in int $(A_{x_0}^T)$.

- let U_x set of u minimizers control reaching x
- if $\min_{u \in U_x} \operatorname{rank} d_u E_{x_0}^T = n$ then x is tame point
- \rightarrow we have to control $\min_{u \in \mathcal{U}_x} \operatorname{rank} d_u E_{x_0}^T < n$
- \rightarrow assume not dense : you can prove there exists O neighborhood

 $\Sigma_f \cap O \subset \exp_{x_0}^T(A), \qquad A = \text{ union of compact of positive codim.}$

At tame points one has indeed better regularity that continuity

Proposition

Let $K \subset \Sigma_t$ compact subset of tame points. Then $S_{x_0}^T$ is Lipschitz on K.

Consequences

Introduce the subset of $A_{x_0}^T$

 $\Sigma(x_0) = \{x \in A_{x_0}^T \mid \exists ! \text{ not abnormal non-conjugate minimizer from } x_0 \text{ to } x\}$

Adapting arguments from the SR case to our setting one improves to

Theorem (DB-Boarotto, '16)

 $\Sigma(x_0)$ is open and dense in $int(A_{x_0}^T)$. Moreover $S_{x_0}^T$ is smooth on $\Sigma(x_0)$.

The previous analysis recovers also the following corollary:

Corollary

If there are no Goh abnormals then $S_{x_0}^T$ is continuous on $int(A_{x_0}^T)$.

Outline

- Affine control systems with action-like cost
- 2) On the set of points of smoothness of the value function
- 3 Characterization of cut locus : sub-Riemannian case without abnormal
 - An open question

Riemannian cut locus and semiconvexity

- (M,g) be a Riemannian manifold
- $\operatorname{Cut}(x_0)$ the cut locus from a point $x_0 \in M \to \operatorname{Cut}(x_0) = M \setminus \Sigma(x_0)$

Theorem (Cordero-McCann-Schmuckenschläger, '01)

Let (M, g) be a Riemannian manifold. Let $x \neq x_0$. Then $x \in Cut(x_0)$ if and only if $d^2(x_0, \cdot)$ fails to be semiconvex at x, that is

$$\inf_{0 < |v| < 1} \frac{d^2(x_0, x + v) + d^2(x_0, x - v) - 2d^2(x_0, x)}{|v|^2} = -\infty.$$
 (6)

the last equality understood in local coordinates

- it is proved in relation to the optimal transport problem
- it is implied by some jacobian inequality for the exp map
- $x \mapsto d^2(x_0, x)$ is everywhere semiconcave

Riemannian cut locus and semiconvexity

- (M,g) be a Riemannian manifold
- $\operatorname{Cut}(x_0)$ the cut locus from a point $x_0 \in M \to \operatorname{Cut}(x_0) = M \setminus \Sigma(x_0)$

Theorem (Cordero-McCann-Schmuckenschläger, '01)

Let (M, g) be a Riemannian manifold. Let $x \neq x_0$. Then $x \in Cut(x_0)$ if and only if $d^2(x_0, \cdot)$ fails to be semiconvex at x, that is

$$\inf_{0 < |v| < 1} \frac{d^2(x_0, x + v) + d^2(x_0, x - v) - 2d^2(x_0, x)}{|v|^2} = -\infty.$$
 (6)

the last equality understood in local coordinates

- it is proved in relation to the optimal transport problem
- it is implied by some jacobian inequality for the exp map
- $x \mapsto d^2(x_0, x)$ is everywhere semiconcave

Abnormals and semiconcavity

Definition

A sub-Riemannian manifold M is *ideal* if the metric space (M, d_{SR}) is complete and there exists no non-trivial abnormal minimizers.

Theorem (Cannarsa-Rifford, '08)

Let *M* be an ideal sub-Riemannian manifold. Then $x \mapsto d_{SR}^2(x_0, x)$ is semiconcave out of the diagonal.

- the diagonal (constant curve) is always abnormal
- this results holds also in the general case for affine systems with our Lagrangian
- (hence our $S_{x_0}^{T}$ is semiconcave if there are no abnormals)
- \rightarrow do analogue result of [C-McC-S, '01] holds in SR geometry?

Cut locus and semiconvexity

Define $\operatorname{Cut}(x_0) := M \setminus \Sigma(x_0)$.

Theorem (DB, Rizzi, '17)

Let M be an ideal sub-Riemannian structure. Let $x \neq x_0$. Then $x \in Cut(x_0)$ if and only if $d^2(x_0, \cdot)$ fails to be semiconvex at x, that is

$$\inf_{0 < |v| < 1} \frac{d_{SR}^2(x_0, x + v) + d_{SR}^2(x_0, x - v) - 2d_{SR}^2(x_0, x)}{|v|^2} = -\infty.$$
(7)

the last equality understood in local coordinates

- one implication is trivial
- the converse uses that d_{SR}^2 is semi-concave [Cannarsa-Rifford, '08]
- ${\scriptstyle \bullet}\,$ it is sharp in this form \rightarrow not true for non-ideal structures
- \rightarrow cf. open problem in last slide!

Cut locus and semiconvexity

Define $\operatorname{Cut}(x_0) := M \setminus \Sigma(x_0)$.

Theorem (DB, Rizzi, '17)

Let M be an ideal sub-Riemannian structure. Let $x \neq x_0$. Then $x \in Cut(x_0)$ if and only if $d^2(x_0, \cdot)$ fails to be semiconvex at x, that is

$$\inf_{0 < |v| < 1} \frac{d_{SR}^2(x_0, x + v) + d_{SR}^2(x_0, x - v) - 2d_{SR}^2(x_0, x)}{|v|^2} = -\infty.$$
(7)

the last equality understood in local coordinates

- one implication is trivial
- the converse uses that d_{SR}^2 is semi-concave [Cannarsa-Rifford, '08]
- ${\scriptstyle \bullet}\,$ it is sharp in this form \rightarrow not true for non-ideal structures
- \rightarrow cf. open problem in last slide!

 \rightarrow In this slide $f(x) := d_{SR}^2(x_0, x)$.

• By standard properties of semiconcave functions there exists $p \in \mathbb{R}^n$ and $C \in \mathbb{R}$ such that

$$f(x+v) - f(x) \le p \cdot v + C|v|^2, \qquad \forall |v| < 1.$$
(8)

 $\bullet\,$ If the infimum above is finite, that is there exists ${\cal K}\in\mathbb{R}$ such that

$$f(x+v) + f(x-v) - 2f(x) \ge K|v|^2, \quad \forall |v| < 1.$$
 (9)

$$f(x+v) \ge f(x) - (f(x-v) - f(x)) + K|v|^2$$
,

 \rightarrow In this slide $f(x) := d_{SR}^2(x_0, x)$.

• By standard properties of semiconcave functions there exists $p \in \mathbb{R}^n$ and $C \in \mathbb{R}$ such that

$$f(x+v) - f(x) \le p \cdot v + C|v|^2, \qquad \forall |v| < 1.$$
(8)

 $\bullet\,$ If the infimum above is finite, that is there exists ${\cal K}\in\mathbb{R}$ such that

$$f(x+v) + f(x-v) - 2f(x) \ge K|v|^2, \quad \forall |v| < 1.$$
 (9)

$$f(x + v) \ge f(x) - (f(x - v) - f(x)) + K|v|^2$$

 \rightarrow In this slide $f(x) := d_{SR}^2(x_0, x)$.

• By standard properties of semiconcave functions there exists $p \in \mathbb{R}^n$ and $C \in \mathbb{R}$ such that

$$-(f(x-v)-f(x)) \ge p \cdot v - C|v|^2, \qquad \forall |v| < 1.$$
(8)

 $\bullet\,$ If the infimum above is finite, that is there exists ${\cal K}\in\mathbb{R}$ such that

$$f(x+v) + f(x-v) - 2f(x) \ge K|v|^2, \quad \forall |v| < 1.$$
 (9)

$$f(x + v) \ge f(x) - (f(x - v) - f(x)) + K|v|^2$$

 \rightarrow In this slide $f(x) := d_{SR}^2(x_0, x)$.

• By standard properties of semiconcave functions there exists $p \in \mathbb{R}^n$ and $C \in \mathbb{R}$ such that

$$-\left(f(x-v)-f(x)\right) \ge p \cdot v - C|v|^2, \qquad \forall |v| < 1.$$
(8)

• If the infimum above is finite, that is there exists $K \in \mathbb{R}$ such that

$$f(x+v) + f(x-v) - 2f(x) \ge K|v|^2, \quad \forall |v| < 1.$$
 (9)

$$f(x+v) \geq f(x) + p \cdot v + (K-C)|v|^2,$$

 \rightarrow In this slide $f(x) := d_{SR}^2(x_0, x)$.

• By standard properties of semiconcave functions there exists $p \in \mathbb{R}^n$ and $C \in \mathbb{R}$ such that

$$-\left(f(x-v)-f(x)\right) \ge p \cdot v - C|v|^2, \qquad \forall |v| < 1. \tag{8}$$

 $\bullet\,$ If the infimum above is finite, that is there exists ${\cal K}\in\mathbb{R}$ such that

$$f(x+v) + f(x-v) - 2f(x) \ge K|v|^2, \quad \forall |v| < 1.$$
 (9)

$$f(x+v) \geq \underbrace{f(x) + p \cdot v + (K-C)|v|^2}_{\phi},$$

 \rightarrow In this slide $f(x) := d_{SR}^2(x_0, x)$.

• By standard properties of semiconcave functions there exists $p \in \mathbb{R}^n$ and $C \in \mathbb{R}$ such that

$$-\left(f(x-v)-f(x)\right) \ge p \cdot v - C|v|^2, \qquad \forall |v| < 1.$$
(8)

• If the infimum above is finite, that is there exists $\mathcal{K} \in \mathbb{R}$ such that

$$f(x+v) + f(x-v) - 2f(x) \ge K|v|^2, \quad \forall |v| < 1.$$
 (9)

One get that

There exists a function $\phi: M \to \mathbb{R}$, twice differentiable at x, such that

 $f(x) = \phi(x),$ and $f(y) \ge \phi(y), \quad \forall y \in M.$

Davide Barilari (Univ. Paris Diderot)

Eliminating conjugate points

From optimal transport theory one is led to the following question:

Question from optimal transport [Figalli-Rifford, '10]

Assume that for $x \neq x_0 \in M$ there exists a function $\phi : M \to \mathbb{R}$, twice differentiable at x, such that

$$d_{SR}^2(x_0,x) = \phi(x),$$
 and $d_{SR}^2(x_0,y) \ge \phi(y), \quad \forall y \in M.$

Is it true that $x \notin \operatorname{Cut}(x_0)$?

 \rightarrow you are essentially asking if you can guarantee x is not conjugate.

Theorem (DB, Rizzi, '17)

It is true if M is an ideal sub-Riemannian manifold.

In transport one usually applies to situations in which ϕ is actually twice differentiable almost everywhere, such that the following map is well defined for a.e. $y \in M$.

$$T_t(y) = \exp_y(-td_y\phi)$$

Theorem (DB, Rizzi, '17)

Under the same assumptions the linear maps $d_x T_t : T_x M \to T_{\gamma(t)}M$ satisfy for all fixed $s \in (0, 1]$:

$$\det(d_x T_t)^{1/n} \geq \left(\frac{\det N_s(t)}{\det N_s(0)}\right)^{1/n} + \left(\frac{\det N_0(t)}{\det N_0(s)}\right)^{1/n} \det(d_x T_s)^{1/n}, \quad \forall t \in [0, s],$$

where $N_s(t)$ are Jacobi fields matrices.

- Both terms in the right hand side are non-negative for $t \in [0, s]$
- for $t \in [0, s)$, the first one is positive.
- In particular det $(d_x T_t) > 0$ for all $t \in [0, 1)$. But det $(d_x T_1)$ might be zero.
- The final point is not conjugate \rightarrow regularity of transport map.

Consequences

This has applications in:

- Borrell-Brascamp-Lieb and interpolation inequalities for optimal transport
- Brunn-Minkovski inequality
- recovers known results in Heisenberg group [Balogh et al., '16]
- do not require regular distributions

Theorem (DB-Rizzi '17, Grushin geodesic Brunn-Minkowski)

For all non-empty Borel sets A, $B \subset \mathbb{G}_2$, we have

 $\mathcal{L}^2(Z_t(A,B))^{1/2} \ge (1-t)^{5/2}\mathcal{L}^2(A)^{1/2} + t^{5/2}\mathcal{L}^2(B)^{1/2}, \qquad \forall t \in [0,1].$

- \rightarrow Z_t(A, B)) = t-intermediate points between A and B
- If one replaces the exponent 5 with a smaller one, the inequality fails for some choice of *A*, *B*.

Outline

- Affine control systems with action-like cost
- 2 On the set of points of smoothness of the value function
- 3 Characterization of cut locus : sub-Riemannian case without abnormal
- An open question

For a general, complete sub-Riemannian manifold M, let $x \in M$ and define :

$$SC^{-}(x) := \{y \in M \mid d_{x}^{2} \text{ fails to be semiconcave at } y\},$$

$$SC^{+}(x) := \{y \in M \mid d_{x}^{2} \text{ fails to be semiconvex at } y\},$$

$$Abn(x) := \{y \in M \mid \exists \text{ abnormal minimizing geodesic joining } x \text{ to } y\}.$$

$$CutOpt(x) := \{y \in M \mid \exists \text{ a geodesic joining } x \text{ to } y \text{ lose minimality}\}.$$

In the ideal case

- $Abn(x) = \{x\} = SC^{-}(x)$
- $\operatorname{CutOpt}(x) = \operatorname{Cut}(x) \setminus \{x\} = \operatorname{SC}^+(x)$
- $\operatorname{Cut}(x) = \operatorname{CutOpt}(x) \cup \operatorname{Abn}(x) = \operatorname{SC}^+(x) \cup \operatorname{SC}^-(x).$

Open questions

Are the following equalities true in general?

 $\operatorname{CutOpt}(x) = \operatorname{SC}^+(x),$ $\operatorname{Abn}(x) = \operatorname{SC}^-(x).$ For a general, complete sub-Riemannian manifold M, let $x \in M$ and define :

$$\begin{split} &\mathrm{SC}^-(x) := \{ y \in M \mid \mathsf{d}_x^2 \text{ fails to be semiconcave at } y \}, \\ &\mathrm{SC}^+(x) := \{ y \in M \mid \mathsf{d}_x^2 \text{ fails to be semiconvex at } y \}, \\ &\mathrm{Abn}(x) := \{ y \in M \mid \exists \text{ abnormal minimizing geodesic joining } x \text{ to } y \}. \\ &\mathrm{CutOpt}(x) := \{ y \in M \mid \exists \text{ a geodesic joining } x \text{ to } y \text{ lose minimality} \}. \end{split}$$

In the ideal case

•
$$Abn(x) = \{x\} = SC^{-}(x).$$

- $\operatorname{CutOpt}(x) = \operatorname{Cut}(x) \setminus \{x\} = \operatorname{SC}^+(x)$
- $\operatorname{Cut}(x) = \operatorname{CutOpt}(x) \cup \operatorname{Abn}(x) = \operatorname{SC}^+(x) \cup \operatorname{SC}^-(x).$

Open questions

Are the following equalities true in general?

$$\operatorname{CutOpt}(x) = \operatorname{SC}^+(x),$$

 $\operatorname{Abn}(x) = \operatorname{SC}^-(x).$

Davide Barilari (Univ. Paris Diderot)

Regularity of the value function

For a general, complete sub-Riemannian manifold M, let $x \in M$ and define :

$$\begin{split} &\mathrm{SC}^-(x) := \{ y \in M \mid \mathsf{d}_x^2 \text{ fails to be semiconcave at } y \}, \\ &\mathrm{SC}^+(x) := \{ y \in M \mid \mathsf{d}_x^2 \text{ fails to be semiconvex at } y \}, \\ &\mathrm{Abn}(x) := \{ y \in M \mid \exists \text{ abnormal minimizing geodesic joining } x \text{ to } y \}. \\ &\mathrm{CutOpt}(x) := \{ y \in M \mid \exists \text{ a geodesic joining } x \text{ to } y \text{ lose minimality} \}. \end{split}$$

In the ideal case

•
$$Abn(x) = \{x\} = SC^{-}(x).$$

•
$$\operatorname{CutOpt}(x) = \operatorname{Cut}(x) \setminus \{x\} = \operatorname{SC}^+(x)$$

• $\operatorname{Cut}(x) = \operatorname{CutOpt}(x) \cup \operatorname{Abn}(x) = \operatorname{SC}^+(x) \cup \operatorname{SC}^-(x).$

Open questions

Are the following equalities true in general?

$$\operatorname{CutOpt}(x) = \operatorname{SC}^+(x),$$

 $\operatorname{Abn}(x) = \operatorname{SC}^-(x).$

Davide Barilari (Univ. Paris Diderot)

Regularity of the value function

Affine control systems with action-like cost On the set of points of smoothness of the value function Characterization of cut locus

THANKS FOR YOUR ATTENTION !