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Affine control systems with action-like cost

Outline

@ Affine control systems with action-like cost
© On the set of points of smoothness of the value function
© Characterization of cut locus : sub-Riemannian case without abnormal

@ An open question
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Affine control systems with action-like cost

Affine optimal control problems

(Dynamic) Consider a smooth (C) affine control system on a manifold M
k
X:F(Xau):XO(X)'i‘ZUiXi(X), x € M,ueRF,
i=1

@ fix a control u € L2([0, T],R¥) (— control set unbounded).
@ denote by x,(-) the solution of the Cauchy problem with x(0) = xg
o A] is the attainable set from xo in time T >0

(Cost) Given a smooth function L : M x R¥ — R we define the cost at time T

’
Cr(u) = / L(x(2), u(t))dt,

Definition

For a fixed xo € M and T > 0, we define the value function

S)Z;(x) = inf {Cr(u) | v admissible, x,(0) = xo, x,(T) = x},
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Affine optimal control problems

(Dynamic) Consider a smooth (C) affine control system on a manifold M
k
X:F(Xau):XO(X)'i‘ZUiXi(X), x € M,ueRF,
i=1

@ fix a control u € L2([0, T],R¥) (— control set unbounded).
@ denote by x,(-) the solution of the Cauchy problem with x(0) = xg
o A] is the attainable set from xo in time T >0

(Cost) In what follows we will mainly deal with action-like cost

;
Cr(u) =5 [ Iu(e)I? = Qx(0)et

Definition

For a fixed xo € M and T > 0, we define the value function

S)Z;(x) = inf {Cr(u) | v admissible, x,(0) = xo, x,(T) = x},
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Affine control systems with action-like cost

Assumptions

X =Xo(x)+ Y uiXi(x),  x€M,ueR" (1)
i=1 ;
Cr(u) == / lu(8)2 - Q(xu(t))dt )

(A1) The weak bracket generating condition is satisfied, namely
Liex {(ad Xo)'X;,i € N,j=1,...,k} = T,M,
[the vector field Xo is not included in the generators of the Lie algebra]

(A2) For every bounded family ¢/ of admissible controls, there exists a compact
subset K+ C M (depending on U) such that x,(t) € K, for every
uel,telo, Tl

(A3) The potential Q is a smooth function bounded from above.
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Affine control systems with action-like cost On the set of points of smoothness of the value function Characterization of cut locus

(A1) The bracket generating condition is satisfied, namely
Liex {(ad Xo)'Xj,i € N,j = 1,...,k} = TM,
[the vector field Xo is not included in the generators of the Lie algebra]

(A2) For every bounded family I/ of admissible controls, there exists a compact
subset K+ C M (depending on U) such that x,(t) € Kt, for every
ueU,te|0,T].

(A3) The potential Q is a smooth function bounded from above.

o (A1) guarantees that int (Al ) # 0. [Jurdjevic-Sussmann, '72]
@ (A2) is a completeness/compactness assumption on the dynamical system
o (A2)+

A2)+(A3), guarantees the existence of optimal controls.

— (A2) and (A3) are automatically satisfied when M is compact.

— For M not compact, (A2) can be replaced by growth condition on vector
fields (sublinear / other).
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Affine control systems with action-like cost

Motivation : a framework for geometry (and analysis)

This setting includes many different geometric structures such as
@ Riemannian structures (or mechanical systems on Riemannian manifolds)
@ sub-Riemannian structures
@ smooth Finsler structures (or even sub-Finsler)

The (sub-)Riemannian case corresponds to the case when
o the system is driftless with zero potential (X =0, @ = 0)
@ k < n (k = n corresponds to Riemannian)
@ the cost is quadratic L(x, u) = 3|uf?

— The cost is induced by a scalar product such that Xi, ..., Xy are orthonormal.

(*) Given a smooth measure p on M we can introduce a sub-Laplacian operator

k
Ay =div, V =Y X? + (div, X)X
i=1
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Affine control systems with action-like cost

The (sub)-Riemannian case

=D uX() Crlu)i= JRZORE G

@ (Al) is the classical bracket generating condition
Liee {X; | j =1,...,k} = T, M,
o we have AT = M and
ST(x) = 5-dBalx0,x)

where dsg is the Carnot-Carathéodory distance
@ (A2) is naturally replaced by (M, dsg) complete metric space.
o (A3) is automatic since @ =0

Rashevsky-Chow Theorem

The value function 5] (x) = 5% d2z(xo, x) is continuous on M
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Affine control systems with action-like cost

(Some) other results

k T
X=X+ () Crlu) = [ )P - Qlle)de (@)

with some similar assumptions
- [Trélat '00] Continuity and subanaliticity with no abnormals (Q =0, C¥)
- [Cannarsa-Rifford '08] Semiconcavity with no abnormals (for Tonelli L)
- [Agrachev-Lee "10] Continuity (growth on L, horizontal step 3 condition)
- [Cannarsa-Frankowska et al.] Regularity along optimal trajectories
- many others

. T- . .
Regularity of S, : heuristics

Q 5);’; is smooth at “good points” (reached by a unique “good” minimizer)
@ can be not continous at “bad points” (for instance when have abnormals).

— Can we have a qualitative understanding of the good set?
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Affine control systems with action-like cost

Regularity of d2s(xo, ") in SR geometry

Let xp € M and S](x) = 5 d2x(x0, x). Define the set

Y (x0) = {x € M| 3! not abnormal non-conjugate minimizer from xg to x}

Theorem (Agrachev '09, Trélat-Rifford '05)

¥ (xo0) is open and dense in M. Moreover d2g(xo, ) is smooth on ¥(xo)

@ d25(x0,-) never smooth on diagonal, i.e., xo ¢ (xo).
— Big open question: is measure(M \ X(xg)) = 07
@ crucial that d2g(xo, ) is continuous, even with “bad” abnormals.

1. Can we extend to our setting?
2. Can we characterize Cut(xg) = M\ X(x0) ? (— in SR case) J
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On the set of points of smoothness of the value function

Outline

© On the set of points of smoothness of the value function
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On the set of points of smoothness of the value function

End-point map

Fix a point xo € M and T > 0.
@ The end-point map at time T is the smooth map
El -U— M,  uwx,(T),

where U C L2([0, T],R¥) is the open subset s.t. x,(t) is defined on [0, T].
o The attainable set AT = ET ().

— Value function rewritten via the end-point map

SXC(X) = inf{Cr(v)| EX:(u) =x}= Jin fl( : Cr
X
In general E/ is smooth but
o d,E] is not surjective
o the set (E])7!(x) is not a smooth manifold.
o ST is lower semicontinous (— recall: in general not continuous)
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On the set of points of smoothness of the value function

Lagrange multipliers rule

A necessary condition for a constrained critical point for infgry-1( Cr.
X0

Assume u € U is a constr. crit. point, with x = E/ (u). Then (at least) one of
the two following statements hold true

() INT e TIM s.t. Ar- duEXI =d,Cr,
(i) IAT € TAM\ {0} s.t. A7 - d,E] =0.

— A control u (reps. the associated trajectory ~,) is called
@ normal in case (i),
@ abnormal in case (ii).

A priori an optimal control u can be associated with two different covectors such
that both (i) and (ii) are satisfied.
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On the set of points of smoothness of the value function

Hamiltonian and PMP

H(\) = max ((\, F(x, u)) — L(x, ), A€ T*M, x =x(N).

The maximum & = G(\) is characterized as the solution to the system

oL .
</\’fi(x)>_8u;(x’u)_0’ i=1,..., k.

Theorem (PMP, normal case)

Let (u(t),v4(t)) be a normal geoie)sic. Then there exists a Lipschitz curve
A(t) € T, (WM such that A(t) = H(A(t)).

Fix xo € M. The exponential map at time T > Ognd base point xg is the map
expl 1 T M — M defined by exp] (Ao) = 7 0 e®(\o).

— a conjugate point is (the image of) a critical point of exp/ .
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On the set of points of smoothness of the value function

If the value function is smooth

Assume ST smooth at x. Then
(i) there exists a unique minimizer v : [0, T] — M joining xo to x in time T
(i) diSI = A7, the Lagrange multiplier associated with

(iii) « is not abnormal and not conjugate

o The functional ®(v) = Cr(v) — S (E[(v)) is smooth and non negative.
@ For every optimal u

0=d,®=d,Cr—dS] - d.E].

@ AT = dXSXZ is the Lagrange multiplier of the normal trajectory.
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On the set of points of smoothness of the value function

If the value function is smooth

Assume ST smooth at x. Then
(i) there exists a unique minimizer v : [0, T] — M joining xo to x in time T
(i) diSI = A7, the Lagrange multiplier associated with

(iii) « is not abnormal and not conjugate

o The functional ®(v) = Cr(v) — S (E[(v)) is smooth and non negative.
@ For every optimal u

0=d,®=d,Cr— \r-duE,.

o A = d.S/ is the Lagrange multiplier of the normal trajectory.

— For (i) and (ii) it is enough that 9pS,] (x) # 0

OpF(x)={A=dp € T;M | ) € C* and F — 1 has local minimum at x} .
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On the set of points of smoothness of the value function

Using only sub-differential

o Fix ¢ a smooth function such that A = dy) € 9pS] (x)
o by definition the map S/ () — ¢(-) has a local minimum at x,

@ Then, set the smooth function
O(v) = Cr(v) —¢¥(EL(v)).

o Let u be a minimal control such that E[(u) = x. Then for v close to u

®(v) = Cr(v) = (Eg(v)) = Sq(Eq(v)) — ¥(Eg(v))
> S (Eq(u)) = (Eg(w) (5)
= Cr(u) — (Eg(u))
= ®(u)

@ one gets
0=d,®=d,Cr—diip- d,E].
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On the set of points of smoothness of the value function

Fair points

° 5);’; is lower semicontinuous by a very general argument
o OpS,](x) # 0 for a dense set of points x € int (Al ).

— A point x € int (A] ) is said to be a fair point if there exists a unique optimal
trajectory steering xp to x, which admits a normal lift.

@ We call ¥ the set of all fair points contained in the attainable set.

The set ¥ of fair points is dense in int (A] ). J

@ the trajectory is normal but may be also abnormal

@ when 8PS)Z;(X) # (0, then the unique normal trajectory steering xg to x is not
abnormal if and only if 9pS] (x) is a singleton.
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On the set of points of smoothness of the value function

Fair vs continuity

A general result guarantees that a lower semicontinuity functions has plenty of
continuity points.

The set ¥ of continuity points of S| is a residual subset of int (A] ).

m a residual subset = intersection of countably many sets with dense interiors.

Davide Barilari (Univ. Paris Diderot) Regularity of the value function June 27-30, 2017 15 / 26



On the set of points of smoothness of the value function

Fair vs continuity

A general result guarantees that a lower semicontinuity functions has plenty of
continuity points.

The set ¥ of continuity points of S| is a residual subset of int (A] ).
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On the set of points of smoothness of the value function

Fair vs continuity

A general result guarantees that a lower semicontinuity functions has plenty of
continuity points.

The set ¥ of continuity points of S| is a residual subset of int (A] ).

m a residual subset = intersection of countably many sets with dense interiors.

—itcouldbe L. N¥f =0«

@ in the sub-Riemanniancase Y. = Mso L. NXf =3¢
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On the set of points of smoothness of the value function

Fair vs continuity

A general result guarantees that a lower semicontinuity functions has plenty of
continuity points.

The set ¥ of continuity points of S| is a residual subset of int (A] ).

m a residual subset = intersection of countably many sets with dense interiors.

—itcouldbe L. N¥f =0«

@ in the sub-Riemanniancase Y. = Mso L. NXf =3¢
@ we need openness of the end-point map
@ in SR the end-point is always open (Rashevsky-Chow) even with abnormals

— we need to locate good points of openness of end-point.
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On the set of points of smoothness of the value function

Tame points: openness

Let x € int (Al ). We say that x is a tame point if for every optimal control u
steering xp to x there holds

rank d,E] = dim M

We call X; the set of tame points.

At tame points
@ the end-point is open (at first order)

@ one obtains continuity

Arguments of [Trélat, '00]

The set ¥; of tame points is open. The value function SXC is continous on X ;.
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On the set of points of smoothness of the value function

Tame points: density

Theorem (DB-Boarotto, '16)

The set T, of tame points is open and dense in int (A ).

o let U, set of u minimizers control reaching x
o if minyey, rank d,E] = n then x is tame point
— we have to control min,cy, rank d,E] < n

— assume not dense : you can prove there exists O neighborhood
rnOC eprTo(A), A = union of compact of positive codim.

At tame points one has indeed better regularity that continuity

Proposition

Let K C ¥; compact subset of tame points. Then 5);’; is Lipschitz on K.
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On the set of points of smoothness of the value function

Consequences

Introduce the subset of AT

Y(xo) ={x € A)Z; | 3! not abnormal non-conjugate minimizer from xo to x}

Adapting arguments from the SR case to our setting one improves to

Theorem (DB-Boarotto, '16)

¥ (x0) is open and dense in int (Al ). Moreover ST is smooth on ¥(xo).

The previous analysis recovers also the following corollary:

If there are no Goh abnormals then S is continuous on int (A ).
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Characterization of cut locus
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© Characterization of cut locus : sub-Riemannian case without abnormal
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Characterization of cut locus

Riemannian cut locus and semiconvexity

o (M, g) be a Riemannian manifold

@ Cut(xg) the cut locus from a point xp € M — Cut(xp) = M \ X(xo)

Theorem (Cordero-McCann-Schmuckenschlager, '01)

Let (M, g) be a Riemannian manifold. Let x # xo. Then x € Cut(xo) if and only
if d?(xo, -) fails to be semiconvex at x, that is

2 2 ) 042
" d?(x0, x + v) + d*(x0, x — v) — 2d*(xo, x) . (6)
0<|v|<1 [v|?

the last equality understood in local coordinates

@ it is proved in relation to the optimal transport problem
@ it is implied by some jacobian inequality for the exp map

@ x — d?(xo, x) is everywhere semiconcave
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Characterization of cut locus

Riemannian cut locus and semiconvexity

o (M, g) be a Riemannian manifold

@ Cut(xg) the cut locus from a point xp € M — Cut(xp) = M \ X(xo)

Theorem (Cordero-McCann-Schmuckenschlager, '01)

Let (M, g) be a Riemannian manifold. Let x # xy. Then x € Cut(xo) if and only
if d?(xo, -) fails to be semiconvex at x, that is

2 2 _ ) 042
- d?(x0, x + v) + d*(x0, x — v) — 2d*(xo, x) . (6)
o<|v|<1 [v|?

the last equality understood in local coordinates

@ it is proved in relation to the optimal transport problem
@ it is implied by some jacobian inequality for the exp map

@ x — d?(xo, x) is everywhere semiconcave
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Characterization of cut locus

Abnormals and semiconcavity

Definition

A sub-Riemannian manifold M is ideal if the metric space (M, dsg) is complete
and there exists no non-trivial abnormal minimizers.

Theorem (Cannarsa-Rifford, '08)

Let M be an ideal sub-Riemannian manifold. Then x — d2z(xo,X) is semiconcave
out of the diagonal.

v

o the diagonal (constant curve) is always abnormal

@ this results holds also in the general case for affine systems with our
Lagrangian

o (hence our 5] is semiconcave if there are no abnormals)
— do analogue result of [C-McC-S, '01] holds in SR geometry?
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Characterization of cut locus

Cut locus and semiconvexity

Define Cut(xp) := M\ X(xo).
Theorem (DB, Rizzi, '17)

Let M be an ideal sub-Riemannian structure. Let x # xg. Then x € Cut(xg) if
and only if d*(xg, ) fails to be semiconvex at x, that is

” d_%R(Xo,X +v)+ d_%R(XO,X —v)— 2d§R(X0,X) _ o
0<||r\1/|<1 [v|? - (7)

the last equality understood in local coordinates

@ one implication is trivial
@ the converse uses that d25 is semi-concave [Cannarsa-Rifford, '08]
@ it is sharp in this form — not true for non-ideal structures

— cf. open problem in last slide!
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Characterization of cut locus

Cut locus and semiconvexity

Define Cut(xp) := M\ X(xo).
Theorem (DB, Rizzi, '17)

Let M be an ideal sub-Riemannian structure. Let x # xo. Then x € Cut(xg) if
and only if d*(xg, ) fails to be semiconvex at x, that is

o d_%R(Xo,X +v)+ d_%R(XO,X —v)— 2d§R(X0,X) _ o
0<||r\1/|<1 [v|? - (7)

the last equality understood in local coordinates

@ one implication is trivial
@ the converse uses that d25 is semi-concave [Cannarsa-Rifford, '08]
@ it is sharp in this form — not true for non-ideal structures

— cf. open problem in last slide!
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Characterization of cut locus

|dea of the proof

— In this slide f(x) := d2z(xo, X).
@ By standard properties of semiconcave functions there exists p € R" and
C € R such that
f(x+v)—f(x)<p-v+ClvP Viv| < 1. (8)
@ If the infimum above is finite, that is there exists K € R such that

f(x +v)+ f(x — v) —2f(x) > K|v[?, Vv] < 1. (9)
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Characterization of cut locus

|dea of the proof

— In this slide f(x) := d2z(xo, X).
@ By standard properties of semiconcave functions there exists p € R" and
C € R such that
f(x+v)—f(x)<p-v+ClvP Viv| < 1. (8)
@ If the infimum above is finite, that is there exists K € R such that

f(x +v)+ f(x — v) —2f(x) > K|v[?, Vv] < 1. (9)

@ Manipulating a little bit

Flx+v) 2 F(x) — (F(x = v) — F(x)) + KIVvP,
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Characterization of cut locus

|dea of the proof

— In this slide f(x) := d2z(xo, X).
@ By standard properties of semiconcave functions there exists p € R" and
C € R such that
—(f(x—v) = f(x))>p-v—C|v] Yv| < 1. (8)
@ If the infimum above is finite, that is there exists K € R such that

f(x +v)+ f(x — v) —2f(x) > K|v[?, Vv] < 1. (9)

@ Manipulating a little bit

Fx +v) 2 F()~(F(x — v) — F()) + K|V,
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Characterization of cut locus

|dea of the proof

— In this slide f(x) := d2g(xo, X).
@ By standard properties of semiconcave functions there exists p € R" and
C € R such that
S (Flx—v) = f(x) 2 pev— CV2, Vv <1, (8)
@ If the infimum above is finite, that is there exists K € R such that

f(x +v)+ f(x — v) —2f(x) > K|v[?, Vv] < 1. (9)

@ Manipulating a little bit

f(x+v)>f(x)+p-v+ (K- C)v]
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Characterization of cut locus

|dea of the proof

— In this slide f(x) := d2z(x0, ).
@ By standard properties of semiconcave functions there exists p € R" and
C € R such that
—(fx=v)=f(x)) = p-v—Clv[>,  V|v<L (8)
@ If the infimum above is finite, that is there exists K € R such that

f(x +v)+ f(x — v) = 2f(x) > K|v[?, Viv| < 1. (9)

@ Manipulating a little bit

Fx+v) = F(x)+p- v+ (K= OV,
[
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Characterization of cut locus

|dea of the proof

— In this slide f(x) := d2z(x0, x).
@ By standard properties of semiconcave functions there exists p € R" and
C € R such that
S (Flx—v) = f(x) 2 pev— CV2, Vv <1, (8)
@ If the infimum above is finite, that is there exists K € R such that

f(x +v)+ f(x — v) = 2f(x) > K|v[?, Viv| < 1. (9)

@ One get that

There exists a function ¢ : M — R, twice differentiable at x, such that
f(x)=¢(x), and  f(y)>é(y), VyeM. J
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Characterization of cut locus

Eliminating conjugate points

From optimal transport theory one is led to the following question:

Question from optimal transport [Figalli-Rifford, '10]

Assume that for x # xp € M there exists a function ¢ : M — R, twice
differentiable at x, such that

ng(Xo,X) = ¢(X)7 and ng(XO’y) > ¢(y)v Vy eM.

Is it true that x ¢ Cut(xp)?

— you are essentially asking if you can guarantee x is not conjugate.

Theorem (DB, Rizzi, '17)

It is true if M is an ideal sub-Riemannian manifold.
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Characterization of cut locus

In transport one usually applies to situations in which ¢ is actually twice
differentiable almost everywhere, such that the following map is well defined for
ae yeM.

Ti(y) = exp, (—tdy¢)

Theorem (DB, Rizzi, '17)

Under the same assumptions the linear maps dx T; : TxM — T, ;)M satisfy for all
fixed s € (0,1]:

det Ny(£)\ /" [ det No(t)\ ™"
/n 5 [ Z=27s\7) Zer Nt 1/n
det(d, T¢)™/" > (det Ns(0)> + 3ot No(s) det(d, T5)", Vtelo,s],

where Ny (t) are Jacobi fields matrices.

@ Both terms in the right hand side are non-negative for t € [0, s]

o for t € [0,s), the first one is positive.

@ In particular det(dy T;) > 0 for all t € [0,1). But det(dx T1) might be zero.
@ The final point is not conjugate — regularity of transport map.
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Characterization of cut locus

Consequences

This has applications in:
@ Borrell-Brascamp-Lieb and interpolation inequalities for optimal transport

@ Brunn-Minkovski inequality

@ recovers known results in Heisenberg group [Balogh et al., '16]

@ do not require regular distributions

Theorem (DB-Rizzi '17, Grushin geodesic Brunn-Minkowski)

For all non-empty Borel sets A, B C G, we have

L2(Z,(A, B)Y2 > (1 —t)>2L2(A)V2 + ¢5/2£2(B)Y/2,  vtelo,1]

— Zi(A, B)) = t-intermediate points between A and B
@ If one replaces the exponent 5 with a smaller one, the inequality fails for
some choice of A, B.
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Outline

@ An open question
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For a general, complete sub-Riemannian manifold M, let x € M and define :

SC™(x) := {y € M | d2 fails to be semiconcave at y},
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For a general, complete sub-Riemannian manifold M, let x € M and define :

SC™(x) := {y € M | d2 fails to be semiconcave at y},

SC*(x) := {y € M| d2 fails to be semiconvex at y},

Abn(x) := {y € M| 3 abnormal minimizing geodesic joining x to y}.
CutOpt(x) := {y € M | 3 a geodesic joining x to y lose minimality}.

In the ideal case
o Abn(x) = {x} =SC™ (x).
@ CutOpt(x) = Cut(x) \ {x} = SC*(x)
@ Cut(x) = CutOpt(x) U Abn(x) = SC*(x) USC™(x).
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For a general, complete sub-Riemannian manifold M, let x € M and define :

SC™(x) := {y € M | d2 fails to be semiconcave at y},

SC*(x) := {y € M| d2 fails to be semiconvex at y},

Abn(x) := {y € M| 3 abnormal minimizing geodesic joining x to y}.
CutOpt(x) := {y € M | 3 a geodesic joining x to y lose minimality}.

In the ideal case
o Abn(x) = {x} =SC™ (x).
@ CutOpt(x) = Cut(x) \ {x} = SC*(x)
@ Cut(x) = CutOpt(x) U Abn(x) = SC*(x) USC™(x).

Open questions

Are the following equalities true in general?
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