# Unified synthetic curvature bounds for Riemannian and sub-Riemannian geometry

Davide BARILARI Dip. Matematica "Tullio Levi-Civita", UNIPD ESI Workshop, Wien May 22, 2024



Università degli Studi di Padova

# Joint work with



This is based on a joint work with

- Andrea Mondino (Oxford)
- Luca Rizzi (SISSA, Trieste)

#### Main reference:

BMR-24 DB, A.Mondino, L.Rizzi, Unified synthetic Ricci curvature lower bounds for Riemannian and sub-Riemannian structures, Memoirs of the AMS, to appear, 153 pp.

 $\rightarrow$  Other references:

- BR-20 DB, L.Rizzi, *Bakry-Emery curvature in SR geometry*, Mathematische Annalen, 2020
- BR-19 DB, L.Rizzi, *SR Interpolation inequalities*, Inventiones Mathematicae, 2019



- 1960s Comparison theorems in Riemannian geometry: bounds on the (Ricci) curvature implies bounds on the geometry
- 1997 Cheeger-Colding theory: extension to Ricci limits (singular spaces)
- 2006 Lott-Sturm-Villani theory : synthetic notion of curvature (Ricci) bounds in metric spaces CD(K, N)

Nice properties

- consistent with classical Riemannian theory
- contains limits (compactness, stability)
- unified viewpoint (through optimal transport)



Define on  $\mathbb{R}^3$ 

$$X_1 = \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial z}, \qquad X_2 = \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial z}, \qquad X_3^{\varepsilon} = \varepsilon \frac{\partial}{\partial z}$$

•  $(\mathbb{R}^3, g^{\varepsilon})$  Riemannian structure with  $\{X_1, X_2, X_3^{\varepsilon}\}$  o.n. frame.

 $\rightarrow$  The Riemannian Hamiltonian is degenerate for  $\varepsilon \rightarrow 0$ :

$$H_{\varepsilon}(p,x) = \frac{1}{2} \sum_{i,j=1}^{3} g_{\varepsilon}^{ij}(x) p_i p_j$$

■  $g^{ij}(x) = \lim_{\varepsilon \to 0} g^{ij}_{\varepsilon}(x)$  is  $\geq 0$  but not invertible at any x■ it is like if the "inverse"  $g_{ij}(x)$  has one eigenvalue  $= +\infty$ .



Define on  $\mathbb{R}^3$ 

$$X_1 = \frac{\partial}{\partial x} - \frac{y}{2}\frac{\partial}{\partial z}, \qquad X_2 = \frac{\partial}{\partial y} + \frac{x}{2}\frac{\partial}{\partial z}, \qquad X_3^\varepsilon = \varepsilon \frac{\partial}{\partial z}$$

• crucial point  $[X_1, X_2] = \partial_z$ .

As metric spaces  $(\mathbb{R}^3, d^{\varepsilon}) \to (\mathbb{R}^3, d_{SR})$  (in the Gromov-Hausdorff sense)

$$D^{\varepsilon} = \operatorname{span}\{X_1, X_2, X_3^{\varepsilon}\} \to D = \operatorname{span}\{X_1, X_2\}$$

• 
$$\operatorname{Ric}^{\varepsilon}(v) \to -\infty$$
 for all  $v \in D$ 

\*\*\*The sequence of curvatures is unbounded from below\*\*\*

Other observations

- sub-Riemannian manifolds are limit of Riemannian manifolds
- the curvature is unbounded at the limit
- sub-Riemannian are not CD (cf. talks G.Stefani, M.Magnabosco)

2009 Juillet : the SR Heisenberg group does not satisfy CD(K, N)

- Juillet : the SR Heisenberg group satisfies MCP(0,5)2016 Balogh, Kristaly, Sipos : SR Heisenberg has interpolation inequalities 2019 DB, Rizzi: SR manifolds admit interpolation inequalities

#### Question:

is it possible a theory containing both Riem and sub-Riem geometry?



### Grande unification - C. Villani, 2017



Séminaire BOURBAKI 69ème année, 2016-2017, n<sup>o</sup> 1127 Janvier 2017

#### INÉGALITÉS ISOPÉRIMÉTRIQUES DANS LES ESPACES MÉTRIQUES MESURÉS [d'après F. Cavalletti & A. Mondino]

par Cédric VILLANI

• incorporer les géométries sous-riemanniennes, du style de l'espace de Heisenberg. Si Baudoin–Bonnefont-Garofalo [BBG] ont proposé de gérer ces espaces par des familles d'inégalités fonctionnelles à la Bakry–Émery, en revanche Balogh–Krystály–Sipos [BKS] ont montré tout récemment que l'on pouvait les traiter par transport, de façon similaire aux espaces CD et CD\*, grâce à l'emploi de coefficients de distortion bien choisis, qui ne se comparent pas aux coefficients  $\beta^{K,N}$  ou  $\beta^{*}$ , et permettent d'obtenir des inégalités isopérimétriques optimales.

Un travail important de clarification reste à mener, mais on peut espérer ainsi une « grande unification » synthétique des bornes de courbure-dimension dans trois larges classes de géométries : riemanniennes, finslériennes, sous-riemanniennes.



- 3 Link with Control Theory
- 4 A novel approach



- 3 Link with Control Theory
- 4 A novel approach



- 3 Link with Control Theory
- 4 A novel approach

# Distortion coefficient



#### $\left(M,g\right)$ Riemannian manifold, vol Riemannian volume measure

### Distortion coefficient

$$\beta_t(x,y) := \limsup_{r \to 0} \frac{\operatorname{vol}(Z_t(x, \mathcal{B}_r(y)))}{\operatorname{vol}(\mathcal{B}_r(y))}, \qquad \forall (x,y) \notin \operatorname{cut}(M), \ t \in [0,1]$$



•  $\beta_t(x,y) = t^n$  in  $\mathbb{R}^n$  by homothethy

• if v is the vector such that  $\exp_x(v) = y$ .

$$\operatorname{vol}(Z_t(x, \mathcal{B}_r(y))) = \operatorname{vol}(\mathcal{B}_r(y))t^n \left(1 - \frac{1}{6}\operatorname{Ric}(v)t^2 + o(t^2)\right)$$

# Comparison for distortion



If the space is positively curved we have a lower bound on distortion

if  $\operatorname{Ric} \geq 0$  then for all  $t \in [0, 1]$ 

$$\beta_t(x,y) \ge t^n$$

it also implies a Brunn-Minkowski inequality:

$$\mathsf{m}(Z_t(A,B))^{1/n} \ge (1-t)\mathsf{m}(A)^{1/n} + t\mathsf{m}(B)^{1/n}$$

which is stronger : take  $A = \{x\}$  and B = B(x, r) with  $r \to 0$ 



# Comparison for distortion



If the space is positively curved we have a lower bound on distortion

if  $\operatorname{Ric} \geq 0$  then for all  $t \in [0, 1]$ 

$$\beta_t(x,y) \ge \overline{\beta}_t^{0,n} = t^n$$

under  $Ric \ge 0$  one has a Brunn-Minkowski inequality:

 $\mathsf{m}(Z_t(A,B))^{1/n} \ge (\overline{\beta}_{1-t}^{0,n})^{1/n} \mathsf{m}(A)^{1/n} + (\overline{\beta}_t^{0,n})^{1/n} \mathsf{m}(B)^{1/n}$ 





- Distortion coefficients are in general difficult to compute,
- a bound on the geometry gives a bound in terms of model spaces.

#### Theorem

Let (M, g) be a N-dimensional Riemannian, with  $m = vol_g$  Riemannian volume. Assume that  $\operatorname{Ric}_g \geq K$ . Then for  $(x, y) \notin \operatorname{Cut}(M)$  we have

$$\beta_t(x,y) \ge \overline{\beta}_t^{K,N}(d(x,y)), \qquad \forall t \in [0,1].$$
(1)

•  $\overline{\beta}_t^{K,N} = \text{distortion coefficient of constant curvature } K \text{ and dim } N.$  $\overline{\beta}_t^{K,N}(\theta) = t \left( \frac{\sin(t\theta\sqrt{K/N-1})}{\sin(\theta\sqrt{K/N-1})} \right)^{N-1}, \quad \text{for } K > 0, \quad (2)$ 

# Comparison: the Riemannian case



- Distortion coefficients are in general difficult to compute,
- a bound on the geometry gives a bound in terms of model spaces.

#### Theorem

Let (M,g) be a N-dimensional Riemannian, with  $m = vol_g$  Riemannian volume. Assume that  $\operatorname{Ric}_g \geq K$ . Then for  $(x,y) \notin \operatorname{Cut}(M)$  we have

$$\beta_t(x,y) \ge \overline{\beta}_t^{K,N}(\boldsymbol{d}(\boldsymbol{x},\boldsymbol{y})), \qquad \forall t \in [0,1].$$
(1)

 $\label{eq:rescaled} \begin{tabular}{ll} \begin{tabular}{ll} \overline{\beta}_t^{K,N} = \mbox{distortion coefficient of constant curvature $K$ and dim $N$. \end{tabular}$ 

$$\overline{\beta}_{t}^{K,N}(\theta) = \frac{t}{\mathbf{1}} \left( \frac{\sin(t\theta\sqrt{K/N-1})}{\sin(\mathbf{1}\theta\sqrt{K/N-1})} \right)^{N-1}, \quad \text{for } K > 0, \quad (2)$$
$$\overline{\beta}_{t}^{K,N}(\theta) \sim t^{N}$$



The following inequality depends only on geodesics and measure

### Brunn Minkovski condition

$$\mathsf{m}(Z_t(A,B))^{1/N} \geq (\overline{\beta}_{1-t}^{K,N})^{1/N} \mathsf{m}(A)^{1/N} + (\overline{\beta}_t^{K,N})^{1/N} \mathsf{m}(B)^{1/N}$$

Could be used as a "definition" of curvature bounds on m.m.s. (X, d, m).

- actually defined by optimal transport
- unifies Riemannian and Finsler
- stability and compactness (Ricci limits)
- it implies the BM above (hence comparison on dist coeff)
- note that  $(\overline{\beta}_t^{K,N})^{1/N} \sim t$ , the weights are "linear"





- 3 Link with Control Theory
- 4 A novel approach

# Heisenberg geodesics





$$\begin{cases} x(t,\theta,a) = \frac{1}{a} \left( \cos(at+\theta) - \cos(\theta) \right) \\ y(t,\theta,a) = \frac{1}{a} \left( \sin(at+\theta) - \sin(\theta) \right) \\ z(t,\theta,a) = \frac{1}{2a^2} \left( at - \sin(at) \right) \end{cases}$$



▶ [Juillet, '09] proved the sharp inequality

 $\beta_t(x,y) \ge t^5$ 

 $\rightarrow$  Here 5= geodesic dimension of SR manifold [Agrachev-DB-Rizzi '13]

No CD(K, N) is satisfied in Heisenberg [Juillet, '09]

$$m(Z_t(A,B))^{1/5} \geq (1-t)m(A)^{1/5} + tm(B)^{1/5}$$

▶ [Balogh et al. '16] the modified Brunn-Minkowski inequality:  $m(Z_t(A,B))^{1/3} \ge (1-t)^{5/3}m(A)^{1/3} + t^{5/3}m(B)^{1/3}$ 

■ No *CD*(*K*, *N*) is satisfied by any SR manifold [Rizzi-Stefani '23, Magnabosco-Rossi '22, Ambrosio-Stefani '20, Juillet '18]



▶ [Juillet, '09] proved the sharp inequality

 $\beta_t(x,y) \ge t^5$ 

 $\rightarrow$  Here 5 = geodesic dimension of SR manifold [Agrachev-DB-Rizzi '13]

No CD(K, N) is satisfied in Heisenberg [Juillet, '09]

$$\mathsf{m}(Z_t(A,B))^{1/5} \not\geq (1-t)\mathsf{m}(A)^{1/5} + t\mathsf{m}(B)^{1/5}$$

▶ [Balogh et al. '16] the modified Brunn-Minkowski inequality:  $m(Z_t(A,B))^{1/3} \ge (1-t)^{5/3}m(A)^{1/3} + t^{5/3}m(B)^{1/3}$ 

■ No *CD*(*K*, *N*) is satisfied by any SR manifold [Rizzi-Stefani '23, Magnabosco-Rossi '22, Ambrosio-Stefani '20, Juillet '18]



▶ [Juillet, '09] proved the sharp inequality

 $\beta_t(x,y) \ge t^5$ 

 $\rightarrow$  Here 5 = geodesic dimension of SR manifold [Agrachev-DB-Rizzi '13]

### No CD(K, N) is satisfied in Heisenberg [Juillet, '09]

 $\mathsf{m}(Z_t(A,B))^{1/N} \not\geq (\overline{\beta}_{1-t}^{K,N})^{1/N} \mathsf{m}(A)^{1/N} + (\overline{\beta}_t^{K,N})^{1/N} \mathsf{m}(B)^{1/N}$ 

▶ [Balogh et al. '16] the modified Brunn-Minkowski inequality:  $m(Z_t(A,B))^{1/3} \ge (1-t)^{5/3}m(A)^{1/3} + t^{5/3}m(B)^{1/3}$ 

 No CD(K, N) is satisfied by any SR manifold [Rizzi-Stefani '23, Magnabosco-Rossi '22, Ambrosio-Stefani '20, Juillet '18]



▶ [Juillet, '09] proved the sharp inequality

 $\beta_t(x,y) \ge t^5$ 

 $\rightarrow$  Here 5 = geodesic dimension of SR manifold [Agrachev-DB-Rizzi '13]

### No CD(K, N) is satisfied in Heisenberg [Juillet, '09]

 $\mathsf{m}(Z_t(A,B))^{1/N} \not\geq (\overline{\beta}_{1-t}^{K,N})^{1/N} \mathsf{m}(A)^{1/N} + (\overline{\beta}_t^{K,N})^{1/N} \mathsf{m}(B)^{1/N}$ 

▶ [Balogh et al. '16] the modified Brunn-Minkowski inequality:  $m(Z_t(A,B))^{1/3} \ge (1-t)^{5/3}m(A)^{1/3} + t^{5/3}m(B)^{1/3}$ 

 No CD(K, N) is satisfied by any SR manifold [Rizzi-Stefani '23, Magnabosco-Rossi '22, Ambrosio-Stefani '20, Juillet '18]  $\mathsf{m}(Z_t(x,B)) \ge t^{\mathbf{5}}\mathsf{m}(B)$ 



The set  $\delta_{1/s}(Z_s(x,B))$  for s small [picture from Juillet '09]

 $t^{-4}\mathsf{m}(Z_t(x,B)) \ge t^1\mathsf{m}(B)$ 



The set  $\delta_{1/s}(Z_s(x,B))$  for s small [picture from Juillet '09]

 $\mathsf{m}(\delta_{1/t}Z_t(x,B)) \ge t^1\mathsf{m}(B)$ 



The set  $\delta_{1/s}(Z_s(x,B))$  for s small [picture from Juillet '09]



### Theorem (DB, Rizzi, 2019)

Let (M, D, g) be a n-dim ideal sub-Riemannian manifold, m smooth measure. Let N > 0. The following are equivalent:

(i) bound on the distortion coefficient:

$$\beta_t(x,y) \ge t^N$$

(ii) the measure contraction property :

 $\mathsf{m}(Z_t(x,B)) \ge t^N \mathsf{m}(B)$ 

(iii) the modified Brunn-Minkowski inequality:

 $\mathsf{m}(Z_t(A,B))^{1/n} \geq (1-t)^{N/n} \mathsf{m}(A)^{1/n} + t^{N/n} \mathsf{m}(B)^{1/n}$ 

 $\rightarrow$  with this [Julliet '09] implies [Balogh et al. '16]



• dimensional parameter  $n \in [1, +\infty)$ ,

For any  $\mu_0 \in \mathcal{P}_{bs}(X, \mathsf{d}, \mathfrak{m})$ ,  $\mu_1 \in \mathcal{P}^*_{bs}(X, \mathsf{d}, \mathfrak{m})$  there exists a  $W_2$ -geodesic  $(\mu_t)_{t \in [0,1]}$ , such that  $\mu_t \ll \mathfrak{m}$  for all  $t \in (0,1]$ , and letting  $\rho_t := \frac{\mathrm{d}\mu_t}{\mathrm{d}\mathfrak{m}}$ :

$$\frac{1}{\rho_t(\gamma_t)^{1/n}} \ge \frac{\beta_{1-t}^{(X,\mathsf{d},\mathfrak{m})}(\gamma_1,\gamma_0)^{1/n}}{\rho_0(\gamma_0)^{1/n}} + \frac{\beta_t^{(X,\mathsf{d},\mathfrak{m})}(\gamma_0,\gamma_1)^{1/n}}{\rho_1(\gamma_1)^{1/n}},$$
(3)

for all  $t \in (0,1)$  and  $\nu$ -a.e.  $\gamma \in \operatorname{Geo}(X)$ 

- induced by  $\nu \in OptGeo(\mu_0, \mu_1)$
- the first term in the right hand side of (3) is omitted if  $\mu_0 \notin \mathcal{P}_{ac}(X, \mathfrak{m})$
- $\rightarrow\,$  no second order equation for determinant of the jacobian



 $\ref{eq:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:theta:the$ 

One can see that

$$\overline{\beta}_t(\theta) = \frac{\overline{s}(t\theta)}{\overline{s}(\theta)}, \quad \overline{s}(\theta) = \theta \sin\left(\frac{\theta}{2}\right) \left(\sin\left(\frac{\theta}{2}\right) - \frac{\theta}{2}\cos\left(\frac{\theta}{2}\right)\right)$$

where

- a(x,y) is the vertical part of the covector joining x and y.
- $\blacksquare$  the  $\beta$  is not a Riemannian model function
- it does not depend on the distance!



2 Difficulties in the sub-Riemannian setting

3 Link with Control Theory

#### 4 A novel approach



Variational problems in  $\mathbb{R}^n$  with minimization of a quadratic cost

$$\begin{cases} \dot{x} = Ax + Bu\\ \frac{1}{2} \int_0^1 (u^*u - x^*Qx) dt \longrightarrow \min \end{cases}$$

Kalman condition:  $\exists m \ge 0$  such that  $rank(B, AB, \dots, A^mB) = n$ 

 $\rightarrow$  Optimal trajectories solve a Hamiltonian system:

$$H(p,x) = \frac{1}{2}(p^*BB^*p + 2p^*Ax + x^*Qx)$$

$$\beta_t^{A,B,Q}(x,y) := \limsup_{r \to 0} \frac{|Z_t(x, \mathcal{B}_r(y))|}{|\mathcal{B}_r(y)|}, \qquad x, y \in \mathbb{R}^n$$



### Definition (LQ distortion coefficients)

$$\beta_t^{A,B,Q}(x,y) := \limsup_{r \to 0} \frac{|Z_t(x, \mathcal{B}_r(y))|}{|\mathcal{B}_r(y)|}, \qquad x, y \in \mathbb{R}^n$$

We use the Lebesgue measure on ℝ<sup>n</sup> & Euclidian balls
 One can replace 𝔅<sub>r</sub> with sets "nicely shrinking" to points
 → It does not depend on x, y

$$\beta_t^{A,B,Q} = \frac{\det N(t)}{\det N(1)}, \qquad \begin{cases} \dot{N} = BB^*M + AN\\ \dot{M} = -A^*M - QN \end{cases}$$

# The Riemannian case



A basic example: the harmonic oscillator in  $\mathbb{R}^n$ 

$$\dot{x} = u, \qquad \int_0^T |u|^2 - K|x|^2 dt \to \min$$

no drift (A = 0), no constraint on velocity (B = 1),
isotropic potential (Q = K1)

 $\Rightarrow \beta_t^{A,B,Q} = \text{Riemannian distortion coefficients } \beta_t^{(K,n)} \text{ of curvature } \kappa!$ 

$$\beta_t^{A,B,Q} = \frac{\det N(t)}{\det N(1)}, \qquad \begin{cases} \dot{N} = BB^*M + AN\\ \dot{M} = -A^*M - QN \end{cases}$$

# The Riemannian case



A basic example: the harmonic oscillator in  $\mathbb{R}^n$ 

$$\dot{x} = u, \qquad \int_0^T |u|^2 - K|x|^2 dt \to \min$$

no drift (A = 0), no constraint on velocity (B = 1),
isotropic potential (Q = K1)

 $\Rightarrow \beta_t^{A,B,Q} = \text{Riemannian distortion coefficients } \beta_t^{(K,n)} \text{ of curvature } \kappa!$ 

$$\beta_t^{A,B,Q} = \frac{\det N(t)}{\det N(1)}, \qquad \begin{cases} \dot{N} = BB^*M + AN\\ \dot{M} = -A^*M - QN \end{cases}$$

# The Riemannian case



A basic example: the harmonic oscillator in  $\mathbb{R}^n$ 

$$\dot{x} = u, \qquad \int_0^T |u|^2 - K|x|^2 dt \to \min$$

no drift (A = 0), no constraint on velocity (B = 1),
isotropic potential (Q = K1)

 $\Rightarrow \beta_t^{A,B,Q} = \text{Riemannian distortion coefficients } \beta_t^{(K,n)} \text{ of curvature } \kappa!$ 

$$\beta_t^{A,B,Q} = \frac{\det N(t)}{\det N(1)}, \qquad \begin{cases} \dot{N} = M\\ \dot{M} = -QN \end{cases}$$

which is the Jacobi field equation  $\ddot{N} + QN = 0$ .



A different example: "1D control of acceleration", with potential

$$\begin{cases} \dot{x}_1 = u_1 \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = u_2 \end{cases} \qquad \int_0^T (u_1^2 + u_2^2) - \lambda x_1^2 dt \to \min$$

• drift A = 
$$\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, two controls B =  $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,
• diagonal potential Q =  $\begin{pmatrix} \lambda & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ,  $\lambda \ge 0$ 

$$\beta_t^{A,B,Q} = \frac{\det N(t)}{\det N(1)}, \qquad \begin{cases} \dot{N} = BB^*M + AN\\ \dot{M} = -A^*M - QN \end{cases}$$



A different example: "1D control of acceleration", with potential

$$egin{cases} \dot{x}_1 = u_1 \ \dot{x}_2 = x_1 \ \dot{x}_3 = u_2 \ \end{pmatrix} \int_0^T (u_1^2 + u_2^2) - \lambda x_1^2 dt o \min$$

• drift 
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, two controls  $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,
• diagonal potential  $Q = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ,  $\lambda \ge 0$ 

$$\beta_t^{A,B,Q} = \frac{\det N(t)}{\det N(1)}, \qquad \begin{cases} \dot{N} = BB^*M + AN\\ \dot{M} = -A^*M - QN \end{cases}$$



A different example: "1D control of acceleration", with potential

$$\begin{cases} \dot{x}_1 = u_1 \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = u_2 \end{cases} \qquad \qquad \int_0^T (u_1^2 + u_2^2) - \lambda x_1^2 dt \to \min$$

• drift 
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, two controls  $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,
• diagonal potential  $Q = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ,  $\lambda \ge 0$ 

$$\beta_t^{A,B,Q} = \frac{\overline{s}(t\theta)}{\overline{s}(\theta)}, \quad \overline{s}(\theta) = \theta \sin\left(\frac{\theta}{2}\right) \left(\sin\left(\frac{\theta}{2}\right) - \frac{\theta}{2}\cos\left(\frac{\theta}{2}\right)\right)$$



A different example: "1D control of acceleration", with potential

$$\begin{cases} \dot{x}_1 = u_1 \\ \dot{x}_2 = x_1 \\ \dot{x}_3 = u_2 \end{cases} \qquad \qquad \int_0^T (u_1^2 + u_2^2) - \lambda x_1^2 dt \to \min$$

I drift 
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, two controls  $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,
I diagonal potential  $Q = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ ,  $\lambda \ge 0$ 

$$\theta = \frac{\sqrt{\lambda}}{2}$$

$$\beta_t^{A,B,Q} = \frac{\overline{s}(t\theta)}{\overline{s}(\theta)}, \quad \overline{s}(\theta) = \theta \sin\left(\frac{\theta}{2}\right) \left(\sin\left(\frac{\theta}{2}\right) - \frac{\theta}{2}\cos\left(\frac{\theta}{2}\right)\right)$$



Let  $(x,y)\notin \operatorname{Cut}(M)$  and assume a unique length-minimizer joining

- $\blacksquare$  associated with matrices A,B given by Lie bracket structure
- $\rightarrow$  depend on trajectory but in Heisenberg one have same A,B for all
  - associate a curvature along the length minimizer  $\mathfrak{R}_{\gamma(t)}$

### Theorem (DB-Rizzi, Math.Ann. 2020)

If there exists Q such that  $\Re_{\gamma(t)}\geq Q$  for every  $t\in[0,T],$  then

$$\beta_t(x,y) \ge \beta_t^{A,B,Q} \tag{4}$$

#### $\rightarrow$ it is a matrix comparison

a scalar comparison exists but more than one scalar



#### 2 Difficulties in the sub-Riemannian setting

3 Link with Control Theory

#### 4 A novel approach

# A new approach



Remind problems we have encountered in the Heisenberg group

- $\blacksquare$  the model  $\beta$  is not a Riemannian one
- it does not depend on distance but another function of the geometry!

Idea: generalize in two ways

• the  $\beta$  can be more general

$$\overline{\beta}_t(\theta) = \frac{\overline{s}(t\theta)}{\overline{s}(\theta)}, \qquad \overline{s}(\theta) = c\theta^D + o(t^D)$$

- the metric measure space (X, d, m) is endowed with a gauge G
- background idea

$$"CD(\beta, n) \Rightarrow \beta_t(x, y) \ge \overline{\beta}_t(G(x, y))''$$



Choice of  $\overline{\beta}$  and  $\overline{s}$ 

 $\blacksquare$  the  $\beta$  can be more general

$$\overline{\beta}_t(\theta) = \frac{\overline{s}(t\theta)}{\overline{s}(\theta)}, \qquad \overline{s}(\theta) = c\theta^D + o(t^D)$$

 $\rightarrow$  one can pick  $\overline{s}$  as a solution of a matrix Riccati equation

#### Riccati distortion

$$\overline{\beta}_t^{A,B,Q} = \frac{\det N(t)}{\det N(1)}, \qquad \begin{cases} \dot{N} = BB^*M + AN\\ \dot{M} = -A^*M - QN \end{cases}$$

where  $\boldsymbol{A},\boldsymbol{B}$  are in some normal form.

 $\rightarrow$  D is computed explicitly





To develop the theory  ${\boldsymbol{G}}$  can be any measurable function

 $G: X \times X \to [0, +\infty]$ 

- $\rightarrow\,$  The theory is much more simple if G is continuous
  - The natural G is Heisenberg is not continuous at the origin

#### Compatibility metric/gauge - meek condition

A natural compatibility for G is the following:

 $\blacksquare$  along any geodesics  $\gamma_t$  joining  $x=\gamma_0$  and  $y=\gamma_1$ 

$$G(\gamma_0, \gamma_t) = tG(\gamma_0, \gamma_1)$$

One might think to the distance  $d(\gamma_0, \gamma_t) = t d(\gamma_0, \gamma_1)$ 



Let  $\left(M,D,g\right)$  be a sub-Riemannian manifold:

- fix a Riemannian extension  $g_R$  of g
- define  $D(x,y) = \|\nabla^R_x d(\cdot,y)\|_R$ ,
- $\blacksquare$  a natural gauge function is a function  $\mathsf{G}:X\times X\to [0,+\infty],$  such that
  - $\blacksquare\ \mathsf{G}(x,y)=f(\mathsf{d}(x,y),\mathsf{D}(x,y))$  for all  $x,y\in X,$  where
  - f is continuous
  - f is 1-homogeneous :  $f(\lambda a,\lambda b)=\lambda f(a,b)$  for all  $\lambda>0$

 $\rightarrow$  In the Heisenberg group the gauge is  $G=\sqrt{\mathsf{D}^2-\mathsf{d}^2}$ 





• For  $\mu \in \mathfrak{P}_2(X)$  Boltzmann-Shannon entropy

$$\operatorname{Ent}(\mu|\mathfrak{m}) := \int_X \rho \log \rho \,\mathfrak{m}, \qquad \text{if } \mu = \rho \,\mathfrak{m} \in \mathcal{P}_2(X) \cap \mathcal{P}_{ac}(X, \mathfrak{m}),$$

if  $\rho \log \rho \in L^1(X, \mathfrak{m})$ , otherwise  $\operatorname{Ent}(\mu | \mathfrak{m}) := +\infty$ .

 $\blacksquare$  Let  $\mathrm{Dom}(\mathrm{Ent}(\cdot|\mathfrak{m}))$  be the finiteness domain of the entropy and

$$\begin{split} \mathcal{P}_{bs}(X,\mathsf{d},\mathfrak{m}) &:= \{\mu \in \mathcal{P}(X,\mathsf{d}) \mid \text{ supp } \mu \text{ bounded}, \text{supp } \mu \subseteq \text{supp } \mathfrak{m} \},\\ \mathcal{P}_{bs}^*(X,\mathsf{d},\mathfrak{m}) &:= \text{Dom}(\text{Ent}(\cdot|\mathfrak{m})) \cap \mathcal{P}_{bs}(X,\mathsf{d},\mathfrak{m}). \end{split}$$

a "dimensional" entropy [Erbar-Kuwada-Sturm],

$$U_n(\mu|\mathfrak{m}) := \exp\left(-\frac{\operatorname{Ent}(\mu|\mathfrak{m})}{n}\right), \qquad n \in [1, +\infty), \qquad (5)$$

with  $U_n(\mu|\mathfrak{m}) := 0$  if  $\mu \notin Dom(Ent(\cdot|\mathfrak{m}))$ .

Let  ${\rm s}:[0,+\infty)\to\mathbb{R}$  be a continuous function and  $N\in[1,+\infty)$  such that for some c>0

$$s(\theta) = c \,\theta^D + o(\theta^D) \qquad \text{as } \theta \to 0,$$
 (6)

 $\rightarrow$  The parameter D will be a sharp dimensional upper bound.

$$\Theta := \inf\{\theta > 0 \mid \mathsf{s}(\theta) = 0\}.$$
(7)

 $\Theta > 0$  will be a sharp upper bound on the gauge function

Define the distortion coefficient  $\beta_{(\cdot)}(\cdot): [0,1] \times [0,+\infty] \to [0,+\infty]$  as

$$(t,\theta) \in [0,1] \times [0,+\infty] \mapsto \beta_t(\theta) := \begin{cases} t^D & \theta = 0, \\ \frac{\mathsf{s}(t\theta)}{\mathsf{s}(\theta)} & 0 < \theta < \Theta, \\ \liminf_{\phi \to \mathcal{D}^-} \frac{\mathsf{s}(t\phi)}{\mathsf{s}(\phi)} & \theta \ge \Theta. \end{cases}$$
(8)



Let  $n\in [1,+\infty),$  and  $\beta$  as previously. A gauge metric measure space  $(X,\mathsf{d},\mathfrak{m},\mathsf{G})$  satisfies:

• for all  $\mu_0 \in \mathcal{P}_{bs}(X, \mathsf{d}, \mathfrak{m})$ ,  $\mu_1 \in \mathcal{P}^*_{bs}(X, \mathsf{d}, \mathfrak{m})$  supp  $\mu_0 \cap \text{supp } \mu_1 = \emptyset$ , there exists a  $W_2$ -geodesic  $(\mu_t)_{t \in [0,1]}$  connecting them,  $\forall t \in (0,1)$ ,

$$U_{n}(\mu_{t}|\mathfrak{m}) \geq \exp\left(\frac{1}{n} \int_{\operatorname{Geo}(X)} \log \beta_{1-t} \left(\mathsf{G}(\gamma_{1},\gamma_{0})\right) \nu(\mathrm{d}\gamma)\right) U_{n}(\mu_{0}|\mathfrak{m}) + \exp\left(\frac{1}{n} \int_{\operatorname{Geo}(X)} \log \beta_{t} \left(\mathsf{G}(\gamma_{0},\gamma_{1})\right) \nu(\mathrm{d}\gamma)\right) U_{n}(\mu_{1}|\mathfrak{m}), \quad (9)$$

with the convention that  $\infty \cdot 0 = 0$ .

# $\mathsf{MCP}(\beta)$ condition



• MCP( $\beta$ ) if for any  $\bar{x} \in \operatorname{supp} \mathfrak{m}$  and  $\mu_1 \in \mathcal{P}^*_{bs}(X, \mathsf{d}, \mathfrak{m})$  with  $\bar{x} \notin \operatorname{supp} \mu_1$  there exists a  $W_2$ -geodesic  $(\mu_t)_{t \in [0,1]} \subset \mathcal{P}_2(X, \mathsf{d})$  from  $\mu_0 = \delta_{\bar{x}}$  to  $\mu_1$  such that,  $\forall t \in (0, 1)$ ,

$$U_n(\mu_t|\mathfrak{m}) \ge \exp\left(\frac{1}{n} \int_X \log \beta_t \left(\mathsf{G}(\bar{x}, x)\right) \mu_1(\mathrm{d}x)\right) U_n(\mu_1|\mathfrak{m}), \quad (10)$$

for some (and then every)  $n \ge 1$ .

Some remarks

- **1** The MCP( $\beta$ ) condition does not depend on the value of n.
- 2 Non-absolutely continuous  $\mu_0$  are allowed, which by construction gives the implication  $CD(\beta, n) \Rightarrow MCP(\beta)$ .
- 3 Assuming that (X, d, m) supports interpolation inequalities for densities with dimensional parameter n MCP(β) ⇒ CD(β, n).



The  $\mathsf{CD}(\beta,n)$  and  $\mathsf{MCP}(\beta)$  conditions satisfy the following compatibility properties:

- Compatibility with Lott-Sturm-Villani's CD:
  - choose  $\beta = \beta_{K,N}$ , and as gauge function the distance  $\mathbf{G} = \mathbf{d}$ ,
  - for essentially non-branching m.m.s., CD(K, N) equal  $CD(\beta_{K,N}, N)$ .
- Compatibility with Ohta-Sturm's MCP:
  - for essentially non-branching m.m.s. MCP(K, N) equal  $MCP(\beta_{K,N})$
- Compatibility with Balogh-Kristály-Sipos:

• choose  $\beta = \beta^{\mathbb{H}^d}$  and  $\mathsf{G}(x,y) = a^{x,y}$ 

- $\blacksquare$  the Heisenberg group  $\mathbb{H}^d$  satisfies the  $\mathsf{CD}(\beta^{\mathbb{H}^d}, 2d+1)$  condition
- Compatibility with E. Milman's conditions:
  - for gauge function G = d
  - Milman  $\mathsf{CGTD}(K, N, n)$  for  $K \in \mathbb{R}$ ,  $n \ge 1$  equals  $\mathsf{CD}(\beta_{K,N}, n)$
  - Milman QCD(Q, K, N) choose  $\beta = \frac{1}{O} \beta_{K,N}^{\tau}$



The  $\mathsf{CD}(\beta,n)$  and  $\mathsf{MCP}(\beta)$  conditions satisfy the following compatibility properties:

- Compatibility with Lott-Sturm-Villani's CD:
  - choose  $\beta = \beta_{K,N}$ , and as gauge function the distance G = d,
  - for essentially non-branching m.m.s., CD(K, N) equal  $CD(\beta_{K,N}, N)$ .
- Compatibility with Ohta-Sturm's MCP:
  - for essentially non-branching m.m.s. MCP(K, N) equal  $MCP(\beta_{K,N})$
- Compatibility with Balogh-Kristály-Sipos:

• choose  $\beta = \beta^{\mathbb{H}^d}$  and  $\mathsf{G}(x,y) = a^{x,y}$ 

- the Heisenberg group  $\mathbb{H}^d$  satisfies the  $\mathsf{CD}(\beta^{\mathbb{H}^d}, 2d+1)$  condition
- Compatibility with E. Milman's conditions:
  - for gauge function G = d
  - Milman  $\mathsf{CGTD}(K,N,n)$  for  $K \in \mathbb{R}$ ,  $n \ge 1$  equals  $\mathsf{CD}(\beta_{K,N},n)$
  - Milman QCD(Q, K, N) choose  $\beta = \frac{1}{O} \beta_{K,N}^{\tau}$

Università degli Studi di Padova

The  ${\rm CD}(\beta,n)$  and  ${\rm MCP}(\beta)$  conditions satisfy the following compatibility properties:

- Compatibility with Lott-Sturm-Villani's CD:
  - choose  $\beta = \beta_{K,N}$ , and as gauge function the distance G = d,
  - for essentially non-branching m.m.s., CD(K, N) equal  $CD(\beta_{K,N}, N)$ .
- Compatibility with Ohta-Sturm's MCP:
  - for essentially non-branching m.m.s. MCP(K, N) equal  $MCP(\beta_{K,N})$
- Compatibility with Balogh-Kristály-Sipos:
  - choose  $\beta = \beta^{\mathbb{H}^d}$  and  $\mathsf{G}(x,y) = a^{x,y}$
  - $\blacksquare$  the Heisenberg group  $\mathbb{H}^d$  satisfies the  $\mathsf{CD}(\beta^{\mathbb{H}^d}, 2d+1)$  condition
- Compatibility with E. Milman's conditions:
  - for gauge function G = d
  - Milman  $\mathsf{CGTD}(K, N, n)$  for  $K \in \mathbb{R}$ ,  $n \ge 1$  equals  $\mathsf{CD}(\beta_{K,N}, n)$
  - Milman QCD(Q, K, N) choose  $\beta = \frac{1}{Q} \beta_{K,N}^{\tau}$

UNIVERSITÀ DEGLI STUDI DI PADOVA

The  ${\rm CD}(\beta,n)$  and  ${\rm MCP}(\beta)$  conditions satisfy the following compatibility properties:

- Compatibility with Lott-Sturm-Villani's CD:
  - choose  $\beta = \beta_{K,N}$ , and as gauge function the distance G = d,
  - for essentially non-branching m.m.s., CD(K, N) equal  $CD(\beta_{K,N}, N)$ .
- Compatibility with Ohta-Sturm's MCP:
  - for essentially non-branching m.m.s. MCP(K, N) equal  $MCP(\beta_{K,N})$
- Compatibility with Balogh-Kristály-Sipos:
  - choose  $\beta = \beta^{\mathbb{H}^d}$  and  $\mathsf{G}(x,y) = a^{x,y}$
  - $\blacksquare$  the Heisenberg group  $\mathbb{H}^d$  satisfies the  $\mathsf{CD}(\beta^{\mathbb{H}^d}, 2d+1)$  condition
- Compatibility with E. Milman's conditions:
  - for gauge function G = d
  - Milman  $\mathsf{CGTD}(K,N,n)$  for  $K \in \mathbb{R}$ ,  $n \ge 1$  equals  $\mathsf{CD}(\beta_{K,N},n)$
  - Milman QCD(Q, K, N) choose  $\beta = \frac{1}{Q} \beta_{K,N}^{\tau}$



For some interesting cases (e.g. if  $\mathsf{G}=\mathsf{D})$  it holds  $\mathsf{G}\geq\mathsf{d}.$ 

#### Theorem (Bonnet-Myers)

Let  $(X, d, \mathfrak{m})$  be a m.m.s. with gauge function G, satisfying the  $CD(\beta, n)$ . Assume that  $G \ge d$ . Then  $diam(supp \mathfrak{m}) \le \Theta$ , and if  $\Theta < +\infty$  then  $supp \mathfrak{m}$  is compact.

The Riemannian case

$$\overline{\beta}_t^{K,N}(\theta) = t \left( \frac{\sin(t\theta\sqrt{K/N-1})}{\sin(\theta\sqrt{K/N-1})} \right)^{N-1}, \quad \text{for } K > 0, \quad (11)$$

The first zero of  $\mathbf{s}(\boldsymbol{\theta})$  is at

$$\Theta = \frac{\pi}{\sqrt{K/N - 1}}$$



### Theorem (Doubling)

 $\blacksquare$  in Riemannian geometry  $\theta\mapsto\overline{\beta}_t(\theta)$  non decreasing means K>0

#### Theorem (Dimension estimate)

Let (X, d, m, G) satisfy  $CD(\beta, n)$ . Then

 $\dim_{Haus}(\operatorname{supp}(m)) \le D$ 

where  $s(\theta) = c\theta^D + o(\theta^D)$ .

# Generalized Bishop-Gromov



Consider the following measure of "gauge balls" and "gauge spheres":

$$\begin{aligned} \mathbf{v}_{\mathsf{G}}(x_0, r) &:= \mathfrak{m}\Big(\{\mathsf{G}(x_0, x) \le r\} \cap B(x_0, \rho)\Big), \\ \mathbf{s}_{\mathsf{G}}(x_0, r) &:= \limsup_{\delta \downarrow 0} \frac{1}{\delta} \mathfrak{m}\Big(\{\mathsf{G}(x_0, x) \in (r - \delta, r]\} \cap B(x_0, \rho)\Big), \end{aligned}$$

### Theorem (DB-Mondino-Rizzi, '24)

Let  $(X, d, \mathfrak{m})$  be a m.m.s. endowed with

• a meek gauge function G satisfying the  $CD(\beta, n)$ 

Then the functions

$$r \mapsto \frac{\mathrm{s}_{\mathsf{G}}(x_0, r)}{\mathrm{s}(r)/r} \quad \text{and} \quad r \mapsto \frac{\mathrm{v}_{\mathsf{G}}(x_0, r) - \mathrm{v}_{\mathsf{G}}(x_0, 0)}{\int_0^r (\mathrm{s}(t)/t) \,\mathrm{d}t}$$

are monotone non-increasing for r > 0.

Gauge balls







Let (M, D, g) be a fat sub-Riemannian manifold: for all  $X \in D$ 

$$D + [X, D] = TM$$

- $\blacksquare$  fix a smooth measure m
- fix a Riemannian extension  $g_R$  of g
- as scalar gauge  $G(x,y) = \|\nabla^R_x d(\cdot,y)\|_R$ ,

#### Theorem (Consistency)

Let (M, D, g) be a compact fat sub-Riemannian manifold of dim n. Then there exists  $\overline{\beta}$  build from the class of Riccati distortion such that (M, D, m, G) satisfy  $CD(\overline{\beta}, n)$ .

 $\rightarrow$  need fat to use the differential SR theory of curvature



One can define a new convergence for a sequence  $(X_k, d_k, m_k, G_k)_{k \in \mathbb{N}}$ 

- we ask for a sort of  $L^1_{loc}$  convergence of gauge functions
- need regularity of limit G
- the low regularity of the gauge functions and their weaker convergence introduce new challenges in the proof.
- $\rightarrow$  get stability and compactness results

Also:

- $\blacksquare$  the Grushin plane satisfy  $\mathsf{CD}(\beta,n)$  class of the Heisenberg group.
- canonical variations  $(\mathbb{H}^1, \mathsf{d}_{\varepsilon})$  within a single  $\mathsf{CD}(\beta, n)$  class.
- convergence to the tangent cone of sub-Riemannian structures
- vector-valued gauges ( $\rightarrow$  SR 3D Lie groups)

### THANKS FOR YOUR ATTENTION

Università degli Studi di Padova

The Grushin plane  $\mathbb{G}_2$  is the sub-Riemannian structure on  $\mathbb{R}^2$  defined by the global generating frame

$$X_1 = \partial_x, \qquad X_2 = x \partial_y. \tag{12}$$

We equip the Grushin plane with the corresponding sub-Riemannian distance  $d_{\mathbb{G}_2}$  and the Lebesgue measure  $\mathbb{R}^2$ .

We set  $G_{\mathbb{G}_2} : \mathbb{G}_2 \times \mathbb{G}_2 \to [0,\infty)$ :

$$\mathsf{G}_{\mathbb{G}_2}(q,q') = v, \qquad \forall (q,q') \notin \operatorname{Cut}(\mathbb{G}_2), \tag{13}$$

where Fix  $q = (x, y) \in \mathbb{R}^2$  and  $q' \notin \operatorname{Cut}(q)$ . Let  $\gamma : [0, 1] \to \mathbb{R}^2$  be the geodesic from q to q'. Let  $\lambda = u \, dx + v \, dy \in T^*_{(x,y)} \mathbb{R}^2$  be its initial covector.



Geodesics and cut-locus (in red) of the Grushin plane starting from the origin and from q = (1, 0). Displayed geodesics have initial covector  $\lambda = u \, dx + v \, dy$ , with  $v = \pm \pi$  and different values of u.

- is a meek gauge function
- The Grushin plane is an ideal structure, it supports interpolation inequalities for densities n = 2
- distortion coefficient

$$\beta_t^{(\mathbb{G}_2)}(q,q') = t \frac{(u^2 + tuv^2 x + v^2 x^2)\sin(tv) - tu^2 v\cos(tv)}{(u^2 + uv^2 x + v^2 x^2)\sin(v) - u^2 v\cos(v)}, \qquad \forall t \in [0,1],$$
(14)

where  $\lambda=u\,dx+v\,dy\in T^*_{(x,y)}\mathbb{R}^2$  is the initial covector of the geodesic joining q with q'.

not in the standard form

• For all 
$$(q,q') \notin Cut(\mathbb{G}_2)$$
 it holds

$$\beta_t^{\mathbb{G}_2,\mathsf{d}_{\mathbb{G}_2}}(q,q') \ge \beta_t^{\mathbb{H}^1}(\mathsf{G}_{\mathbb{G}_2}(q,q')),$$

#### Theorem

The Grushin plane satisfies the  $CD(\beta^{\mathbb{H}^1}, 2)$  condition.