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A long story short: part 1

1960s Comparison theorems in Riemannian geometry: bounds on the
(Ricci) curvature implies bounds on the geometry

1997 Cheeger-Colding theory: extension to Ricci limits (singular spaces)
2006 Lott-Sturm-Villani theory : synthetic notion of curvature (Ricci)

bounds in metric spaces CD(K, N)

Nice properties
consistent with classical Riemannian theory
contains limits (compactness, stability)
unified viewpoint (through optimal transport)
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A limiting procedure: the Heisenberg group

Define on R3

X1 = ∂

∂x
− y

2
∂

∂z
, X2 = ∂

∂y
+ x

2
∂

∂z
, Xε

3 = ε
∂

∂z

(R3, gε) Riemannian structure with {X1, X2, Xε
3} o.n. frame.

→ The Riemannian Hamiltonian is degenerate for ε → 0:

Hε(p, x) = 1
2

3∑
i,j=1

gij
ε (x)pipj

gij(x) = limε→0 gij
ε (x) is ≥ 0 but not invertible at any x

it is like if the “inverse” gij(x) has one eigenvalue = +∞.
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∂y
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∂

∂z
, Xε

3 = ε
∂

∂z

crucial point [X1, X2] = ∂z.

As metric spaces (R3, dε) → (R3, dSR) (in the Gromov-Hausdorff sense)

Dε = span{X1, X2, Xε
3} → D = span{X1, X2}

Ricε(v) → −∞ for all v ∈ D

***The sequence of curvatures is unbounded from below***
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A long story short: part 2

Other observations
sub-Riemannian manifolds are limit of Riemannian manifolds
the curvature is unbounded at the limit
sub-Riemannian are not CD (cf. talks G.Stefani, M.Magnabosco)

2009 Juillet : the SR Heisenberg group does not satisfy CD(K, N)
- Juillet : the SR Heisenberg group satisfies MCP (0, 5)

2016 Balogh, Kristaly, Sipos : SR Heisenberg has interpolation inequalities
2019 DB, Rizzi: SR manifolds admit interpolation inequalities

Question:
is it possible a theory containing both Riem and sub-Riem geometry?
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Grande unification - C. Villani, 2017

− − −
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Outline

1 Short Riemannian recap

2 Difficulties in the sub-Riemannian setting

3 Link with Control Theory

4 A novel approach

6 of 37



Outline

1 Short Riemannian recap

2 Difficulties in the sub-Riemannian setting

3 Link with Control Theory

4 A novel approach

6 of 37



Outline

1 Short Riemannian recap

2 Difficulties in the sub-Riemannian setting

3 Link with Control Theory

4 A novel approach

7 of 37



Distortion coefficient
(M, g) Riemannian manifold, vol Riemannian volume measure

Distortion coefficient

βt(x, y) := lim sup
r→0

vol(Zt(x,Br(y)))
vol(Br(y)) , ∀(x, y) /∈ cut(M), t ∈ [0, 1]

b

b

b
b

b

b

b

Br(y)

Zt(x,Br(y)) yx

βt(x, y) = tn in Rn by homothethy
if v is the vector such that expx(v) = y.

vol(Zt(x,Br(y))) = vol(Br(y))tn

(
1 − 1

6Ric(v)t2 + o(t2)
)
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Comparison for distortion

If the space is positively curved we have a lower bound on distortion

if Ric ≥ 0 then for all t ∈ [0, 1]

βt(x, y) ≥ tn

it also implies a Brunn-Minkowski inequality:
m(Zt(A, B))1/n ≥ (1 − t)m(A)1/n + tm(B)1/n

which is stronger : take A = {x} and B = B(x, r) with r → 0
b

b

b

b

b

b b

b

bA BZt(A,B)
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Comparison for distortion

If the space is positively curved we have a lower bound on distortion

if Ric ≥ 0 then for all t ∈ [0, 1]

βt(x, y) ≥ β
0,n

t = tn

under Ric ≥ 0 one has a Brunn-Minkowski inequality:

m(Zt(A, B))1/n ≥ (β0,n

1−t)1/nm(A)1/n + (β0,n

t )1/nm(B)1/n

b

b

b

b

b

b b

b

bA BZt(A,B)
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Comparison: the Riemannian case

Distortion coefficients are in general difficult to compute,
a bound on the geometry gives a bound in terms of model spaces.

Theorem
Let (M, g) be a N -dimensional Riemannian, with m = volg Riemannian
volume. Assume that Ricg ≥ K. Then for (x, y) /∈ Cut(M) we have

βt(x, y) ≥ β
K,N

t (d(x, y)), ∀ t ∈ [0, 1]. (1)

β
K,N

t = distortion coefficient of constant curvature K and dim N .

β
K,N

t (θ) = t

(
sin(tθ

√
K/N − 1)

sin(θ
√

K/N − 1)

)N−1

, for K > 0, (2)
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Comparison: the Riemannian case

Distortion coefficients are in general difficult to compute,
a bound on the geometry gives a bound in terms of model spaces.

Theorem
Let (M, g) be a N -dimensional Riemannian, with m = volg Riemannian
volume. Assume that Ricg ≥ K. Then for (x, y) /∈ Cut(M) we have

βt(x, y) ≥ β
K,N

t (d(x, y)), ∀ t ∈ [0, 1]. (1)

β
K,N

t = distortion coefficient of constant curvature K and dim N .

β
K,N

t (θ) = t

1

(
sin(tθ

√
K/N − 1)

sin(1θ
√

K/N − 1)

)N−1

, for K > 0, (2)

β
K,N

t (θ) ∼ tN
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CD(K, N) condition

The following inequality depends only on geodesics and measure

Brunn Minkovski condition

m(Zt(A, B))1/N ≥ (βK,N

1−t )1/N m(A)1/N + (βK,N

t )1/N m(B)1/N

Could be used as a “definition” of curvature bounds on m.m.s. (X, d, m).

actually defined by optimal transport
unifies Riemannian and Finsler
stability and compactness (Ricci limits)
it implies the BM above (hence comparison on dist coeff)

note that (βK,N

t )1/N ∼ t, the weights are “linear”
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Outline

1 Short Riemannian recap

2 Difficulties in the sub-Riemannian setting

3 Link with Control Theory

4 A novel approach
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Heisenberg geodesics


x(t, θ, a) = 1

a (cos(at + θ) − cos(θ))
y(t, θ, a) = 1

a (sin(at + θ) − sin(θ))
z(t, θ, a) = 1

2a2 (at − sin(at))
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Heisenberg and Brunn-Minkovski

▶ [Juillet, ’09] proved the sharp inequality

βt(x, y) ≥ t5

→ Here 5 = geodesic dimension of SR manifold [Agrachev-DB-Rizzi ’13]

No CD(K, N) is satisfied in Heisenberg [Juillet, ’09]

m(Zt(A, B))1/5
�≥(1 − t)m(A)1/5 + tm(B)1/5

▶ [Balogh et al. ’16] the modified Brunn-Minkowski inequality:
m(Zt(A, B))1/3 ≥ (1 − t)5/3m(A)1/3 + t5/3m(B)1/3

No CD(K, N) is satisfied by any SR manifold [Rizzi-Stefani ’23,
Magnabosco-Rossi ’22, Ambrosio-Stefani ’20, Juillet ’18]
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m(Zt(x, B)) ≥ t5m(B)

The set δ1/s(Zs(x, B)) for s small [picture from Juillet ’09]
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t−4m(Zt(x, B)) ≥ t1m(B)

The set δ1/s(Zs(x, B)) for s small [picture from Juillet ’09]
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m(δ1/tZt(x, B)) ≥ t1m(B)

The set δ1/s(Zs(x, B)) for s small [picture from Juillet ’09]
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Equivalence of inequalities: ideal case

Theorem (DB, Rizzi, 2019)
Let (M, D, g) be a n-dim ideal sub-Riemannian manifold, m smooth
measure. Let N > 0. The following are equivalent:
(i) bound on the distortion coefficient:

βt(x, y) ≥ tN

(ii) the measure contraction property :

m(Zt(x, B)) ≥ tN m(B)

(iii) the modified Brunn-Minkowski inequality:
m(Zt(A, B))1/n ≥ (1 − t)N/nm(A)1/n + tN/nm(B)1/n

→ with this [Julliet ’09] implies [Balogh et al. ’16]
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interpolation inequalities for densities

dimensional parameter n ∈ [1, +∞),

For any µ0 ∈ Pbs(X, d,m), µ1 ∈ P∗
bs(X, d,m) there exists a W2-geodesic

(µt)t∈[0,1], such that µt ≪ m for all t ∈ (0, 1], and letting ρt := dµt

dm :

1
ρt(γt)1/n

≥
β

(X,d,m)
1−t (γ1, γ0)1/n

ρ0(γ0)1/n
+ β

(X,d,m)
t (γ0, γ1)1/n

ρ1(γ1)1/n
, (3)

for all t ∈ (0, 1) and ν-a.e. γ ∈ Geo(X)

induced by ν ∈ OptGeo(µ0, µ1)
the first term in the right hand side of (3) is omitted if
µ0 /∈ Pac(X,m)

→ no second order equation for determinant of the jacobian
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Heisenberg distortion coefficient

??? What if one computes explicitly the Heisenberg distortion
βH

t (x, y) = βt(a(x, y))

One can see that

βt(θ) = s(tθ)
s(θ) , s(θ) = θ sin

(
θ

2

)(
sin
(

θ

2

)
− θ

2 cos
(

θ

2

))
where

a(x, y) is the vertical part of the covector joining x and y.

the β is not a Riemannian model function
it does not depend on the distance!
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Outline

1 Short Riemannian recap

2 Difficulties in the sub-Riemannian setting

3 Link with Control Theory

4 A novel approach
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A link with Control Theory

Variational problems in Rn with minimization of a quadratic cost{
ẋ = Ax + Bu
1
2
∫ 1

0 (u∗u − x∗Qx)dt −→ min

Kalman condition: ∃ m ≥ 0 such that rank(B, AB, . . . , AmB) = n

→ Optimal trajectories solve a Hamiltonian system:

H(p, x) = 1
2(p∗BB∗p + 2p∗Ax + x∗Qx)

βA,B,Q
t (x, y) := lim sup

r→0

|Zt(x,Br(y))|
|Br(y)| , x, y ∈ Rn
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The Riemannian case

Definition (LQ distortion coefficients)

βA,B,Q
t (x, y) := lim sup

r→0

|Zt(x,Br(y))|
|Br(y)| , x, y ∈ Rn

We use the Lebesgue measure on Rn & Euclidian balls
One can replace Br with sets “nicely shrinking” to points

→ It does not depend on x, y

βA,B,Q
t = det N(t)

det N(1) ,

{
Ṅ = BB∗M + AN

Ṁ = −A∗M − QN
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The Riemannian case

A basic example: the harmonic oscillator in Rn

ẋ = u,

∫ T

0
|u|2 − K|x|2dt → min

no drift (A = 0), no constraint on velocity (B = 1),
isotropic potential (Q = K1)

⇒ βA,B,Q
t = Riemannian distortion coefficients β

(K,n)
t of curvature κ!

βA,B,Q
t = det N(t)

det N(1) ,

{
Ṅ = BB∗M + AN

Ṁ = −A∗M − QN
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The Riemannian case
A basic example: the harmonic oscillator in Rn

ẋ = u,

∫ T

0
|u|2 − K|x|2dt → min

no drift (A = 0), no constraint on velocity (B = 1),
isotropic potential (Q = K1)

⇒ βA,B,Q
t = Riemannian distortion coefficients β

(K,n)
t of curvature κ!

βA,B,Q
t = det N(t)

det N(1) ,

{
Ṅ = M

Ṁ = −QN

which is the Jacobi field equation N̈ + QN = 0.
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The Heisenberg case
A different example: “1D control of acceleration”, with potential

ẋ1 = u1

ẋ2 = x1

ẋ3 = u2

∫ T

0
(u2

1 + u2
2) − λx2

1dt → min

drift A =
(

0 0 0
1 0 0
0 0 0

)
, two controls B =

(
1 0 0
0 0 0
0 0 1

)
,

diagonal potential Q =
(

λ 0 0
0 0 0
0 0 0

)
, λ ≥ 0

βA,B,Q
t is the solution of a costant coefficient matrix Riccati equation

βA,B,Q
t = det N(t)

det N(1) ,

{
Ṅ = BB∗M + AN

Ṁ = −A∗M − QN
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ẋ1 = u1
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√
λ

2
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SR comparison

Let (x, y) /∈ Cut(M) and assume a unique length-minimizer joining
associated with matrices A, B given by Lie bracket structure

→ depend on trajectory but in Heisenberg one have same A, B for all
associate a curvature along the length minimizer Rγ(t)

Theorem (DB-Rizzi, Math.Ann. 2020)
If there exists Q such that Rγ(t) ≥ Q for every t ∈ [0, T ], then

βt(x, y) ≥ βA,B,Q
t (4)

→ it is a matrix comparison
a scalar comparison exists but more than one scalar
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A new approach
Remind problems we have encountered in the Heisenberg group

the model β is not a Riemannian one
it does not depend on distance but another function of the geometry!

Idea: generalize in two ways

the β can be more general

βt(θ) = s(tθ)
s(θ) , s(θ) = cθD + o(tD)

the metric measure space (X, d, m) is endowed with a gauge G

background idea

“CD(β, n) ⇒ βt(x, y) ≥ βt(G(x, y))′′
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Which natural choice of s?

Choice of β and s

the β can be more general

βt(θ) = s(tθ)
s(θ) , s(θ) = cθD + o(tD)

→ one can pick s as a solution of a matrix Riccati equation

Riccati distortion

β
A,B,Q

t = det N(t)
det N(1) ,

{
Ṅ = BB∗M + AN

Ṁ = −A∗M − QN

where A, B are in some normal form.

→ D is computed explicitly
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Choice of G

To develop the theory G can be any measurable function

G : X × X → [0, +∞]

→ The theory is much more simple if G is continuous
The natural G is Heisenberg is not continuous at the origin

Compatibility metric/gauge - meek condition
A natural compatibility for G is the following:

along any geodesics γt joining x = γ0 and y = γ1

G(γ0, γt) = tG(γ0, γ1)

One might think to the distance d(γ0, γt) = td(γ0, γ1)
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Natural gauge functions

Let (M, D, g) be a sub-Riemannian manifold:
fix a Riemannian extension gR of g

define D(x, y) = ∥∇R
x d(·, y)∥R,

a natural gauge function is a function G : X × X → [0, +∞], such
that

G(x, y) = f(d(x, y), D(x, y)) for all x, y ∈ X, where
f is continuous
f is 1-homogeneous : f(λa, λb) = λf(a, b) for all λ > 0

→ In the Heisenberg group the gauge is G =
√

D2 − d2
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Some formal definitions

For µ ∈ P2(X) Boltzmann-Shannon entropy

Ent(µ|m) :=
∫

X

ρ log ρm, if µ = ρm ∈ P2(X) ∩ Pac(X,m),

if ρ log ρ ∈ L1(X,m), otherwise Ent(µ|m) := +∞.
Let Dom(Ent(·|m)) be the finiteness domain of the entropy and

Pbs(X, d,m) := {µ ∈ P(X, d) | supp µ bounded, supp µ ⊆ supp m},

P∗
bs(X, d,m) := Dom(Ent(·|m)) ∩ Pbs(X, d,m).

a “dimensional” entropy [Erbar-Kuwada-Sturm],

Un(µ|m) := exp
(

−Ent(µ|m)
n

)
, n ∈ [1, +∞), (5)

with Un(µ|m) := 0 if µ /∈ Dom(Ent(·|m)).

27 of 37



Let s : [0, +∞) → R be a continuous function and N ∈ [1, +∞) such
that for some c > 0

s(θ) = c θD + o(θD) as θ → 0, (6)

→ The parameter D will be a sharp dimensional upper bound.

Θ := inf{θ > 0 | s(θ) = 0}. (7)

Θ > 0 will be a sharp upper bound on the gauge function

Define the distortion coefficient β(·)(·) : [0, 1] × [0, +∞] → [0, +∞] as

(t, θ) ∈ [0, 1] × [0, +∞] 7→ βt(θ) :=


tD θ = 0,
s(tθ)
s(θ) 0 < θ < Θ,

lim inf
ϕ→D−

s(tϕ)
s(ϕ) θ ≥ Θ.

(8)
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CD(β, n) condition

Let n ∈ [1, +∞), and β as previously. A gauge metric measure space
(X, d,m, G) satisfies:

for all µ0 ∈ Pbs(X, d,m), µ1 ∈ P∗
bs(X, d,m) supp µ0 ∩ supp µ1 = ∅,

there exists a W2-geodesic (µt)t∈[0,1] connecting them, ∀ t ∈ (0, 1),

Un(µt|m) ≥ exp
(

1
n

∫
Geo(X)

log β1−t

(
G(γ1, γ0)) ν(dγ)

)
Un(µ0|m)

+ exp
(

1
n

∫
Geo(X)

log βt

(
G(γ0, γ1)

)
ν(dγ)

)
Un(µ1|m), (9)

with the convention that ∞ · 0 = 0.
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MCP(β) condition

MCP(β) if for any x̄ ∈ suppm and µ1 ∈ P∗
bs(X, d,m) with

x̄ /∈ supp µ1 there exists a W2-geodesic (µt)t∈[0,1] ⊂ P2(X, d) from
µ0 = δx̄ to µ1 such that, ∀ t ∈ (0, 1),

Un(µt|m) ≥ exp
(

1
n

∫
X

log βt

(
G(x̄, x)

)
µ1(dx)

)
Un(µ1|m), (10)

for some (and then every) n ≥ 1.
Some remarks

1 The MCP(β) condition does not depend on the value of n.
2 Non-absolutely continuous µ0 are allowed, which by construction

gives the implication CD(β, n) ⇒ MCP(β).
3 Assuming that (X, d,m) supports interpolation inequalities for

densities with dimensional parameter n MCP(β) ⇒ CD(β, n).
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Compatibility with classical synthetic theories

The CD(β, n) and MCP(β) conditions satisfy the following compatibility
properties:

Compatibility with Lott-Sturm-Villani’s CD:
choose β = βK,N , and as gauge function the distance G = d,
for essentially non-branching m.m.s., CD(K, N) equal CD(βK,N , N).

Compatibility with Ohta-Sturm’s MCP:
for essentially non-branching m.m.s. MCP(K, N) equal MCP(βK,N )

Compatibility with Balogh-Kristály-Sipos:
choose β = βHd

and G(x, y) = ax,y

the Heisenberg group Hd satisfies the CD(βHd

, 2d + 1) condition
Compatibility with E. Milman’s conditions:

for gauge function G = d
Milman CGTD(K, N, n) for K ∈ R, n ≥ 1 equals CD(βK,N , n)
Milman QCD(Q, K, N) choose β = 1

Q
βτ

K,N
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Some results - MCP is sufficient

For some interesting cases (e.g. if G = D) it holds G ≥ d.

Theorem (Bonnet-Myers)
Let (X, d,m) be a m.m.s. with gauge function G, satisfying the
CD(β, n). Assume that G ≥ d. Then diam(suppm) ≤ Θ, and if
Θ < +∞ then suppm is compact.

The Riemannian case

β
K,N

t (θ) = t

(
sin(tθ

√
K/N − 1)

sin(θ
√

K/N − 1)

)N−1

, for K > 0, (11)

The first zero of s(θ) is at

Θ = π√
K/N − 1
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Some results - MCP is sufficient

Theorem (Doubling)
Let (X, d, m, G) satisfy CD(β, n). Assume that

θ 7→ βt(θ) is non decreasing
then ∃C > 0 such that for every x0 ∈ supp(m) and r > 0

m(B(x0, 2r)) ≤ C m(B(x0, r))

in Riemannian geometry θ 7→ βt(θ) non decreasing means K > 0

Theorem (Dimension estimate)
Let (X, d, m, G) satisfy CD(β, n). Then

dimHaus(supp(m)) ≤ D

where s(θ) = cθD + o(θD).
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Generalized Bishop-Gromov

Consider the following measure of “gauge balls” and “gauge spheres”:

vG(x0, r) := m
(

{G(x0, x) ≤ r} ∩ B(x0, ρ)
)

,

sG(x0, r) := lim sup
δ↓0

1
δ
m
(

{G(x0, x) ∈ (r − δ, r]} ∩ B(x0, ρ)
)

,

Theorem (DB-Mondino-Rizzi, ’24)
Let (X, d,m) be a m.m.s. endowed with

a meek gauge function G satisfying the CD(β, n)
Then the functions

r 7→ sG(x0, r)
s(r)/r

and r 7→ vG(x0, r) − vG(x0, 0)∫ r

0 (s(t)/t) dt

are monotone non-increasing for r > 0.
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Gauge balls

vG(x0, r) := m ({x ∈ X | G(x0, x) ≤ r, d(x0, x) ≤ r}) ,
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Compatibility with SR theory

Let (M, D, g) be a fat sub-Riemannian manifold: for all X ∈ D

D + [X, D] = TM

fix a smooth measure m

fix a Riemannian extension gR of g

as scalar gauge G(x, y) = ∥∇R
x d(·, y)∥R,

Theorem (Consistency)
Let (M, D, g) be a compact fat sub-Riemannian manifold of dim n.
Then there exists β build from the class of Riccati distortion such that
(M, D, m, G) satisfy CD(β, n).

→ need fat to use the differential SR theory of curvature
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Conclusions

One can define a new convergence for a sequence (Xk, dk, mk, Gk)k∈N

we ask for a sort of L1
loc convergence of gauge functions

need regularity of limit G

the low regularity of the gauge functions and their weaker
convergence introduce new challenges in the proof.

→ get stability and compactness results

Also:
the Grushin plane satisfy CD(β, n) class of the Heisenberg group.
canonical variations (H1, dε) within a single CD(β, n) class.
convergence to the tangent cone of sub-Riemannian structures
vector-valued gauges (→ SR 3D Lie groups)
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The Grushin plane

The Grushin plane G2 is the sub-Riemannian structure on R2 defined by
the global generating frame

X1 = ∂x, X2 = x∂y. (12)

We equip the Grushin plane with the corresponding sub-Riemannian
distance dG2 and the Lebesgue measure R2.

We set GG2 : G2 × G2 → [0, ∞):

GG2(q, q′) = v, ∀(q, q′) /∈ Cut(G2), (13)

where Fix q = (x, y) ∈ R2 and q′ /∈ Cut(q). Let γ : [0, 1] → R2 be the
geodesic from q to q′. Let λ = u dx + v dy ∈ T ∗

(x,y)R
2 be its initial

covector.
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Geodesics and cut-locus (in red) of the Grushin plane starting from the origin
and from q = (1, 0). Displayed geodesics have initial covector λ = u dx + v dy,
with v = ±π and different values of u.
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is a meek gauge function
The Grushin plane is an ideal structure, it supports interpolation
inequalities for densities n = 2
distortion coefficient

β
(G2
t (q, q′) = t

(u2 + tuv2x + v2x2) sin(tv) − tu2v cos(tv)
(u2 + uv2x + v2x2) sin(v) − u2v cos(v) , ∀t ∈ [0, 1],

(14)
where λ = u dx + v dy ∈ T ∗

(x,y)R
2 is the initial covector of the

geodesic joining q with q′.
not in the standard form
For all (q, q′) /∈ Cut(G2) it holds

β
G2,dG2
t (q, q′) ≥ βH1

t (GG2(q, q′)),

Theorem
The Grushin plane satisfies the CD(βH1

, 2) condition.
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