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Plan of the course (g e Sro

Lecture 1
m Strichartz estimates and dispersion: the Euclidean case

m Some sub-Riemannian geometry

Lecture 2

m Fourier restriction problem

m Strichartz estimates and dispersion: the Heisenberg case
Lecture 3

m Kirillov theory for Nilpotent groups

m Applications to some specific Carnot groups
Lecture 4

m The Engel group and the quartic oscillator

m Some comments on higher step Carnot groups
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Joint work with (15 oS

A part is based on joint works with
m Hajer Bahouri (LJLL, CNRS & Sorbonne Univ)
m Isabelle Gallagher (DMA, Ecole Normale Supérieure)
m Matthieu Léautaud (IMO, Univ. Paris Saclay)

— Main references:

BBG-21 H.Bahouri, D.Barilari, 1.Gallagher,
Strichartz estimates and Fourier restriction theorems in
the Heisenberg group, JFAA, 2021

BBGM-23 H.Bahouri, D.Barilari, |.Gallagher, M.Léautaud
Spectral summability for the quartic oscillator with
applications to the Engel group, JST, 2023
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Strichartz estimates and dispersion: the Euclidean case

Some sub-Riemannian geometry
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Chapter 1: Strichartz estimates and dispersion
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Motivation (g e Sro

The Schrodinger equation

Oy — Au=0
u|t:0 = Uo,

we focus on

dispersive estimates
Strichartz estimates
applications to NLS

what happens for subelliptic laplacians? (very broad question)

Riemannian — sub-Riemannian (non isotropic diffusions)
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I ADOVA

The Schrodinger equation on R”

The Schrodinger equation on R”
iOru—Au=20
Ujt=0 = Uo,

;L
e'4
* up .

t,) = ;
u(t,-) (4mit)2
one obtains the basic dispersive estimate (for ¢t # 0)
|
e I (1)
ult, - o (Rn) S 77 || U n
Lo (Rn) T OE oll11(rn)

From the explicit expression of the solution, using Fourier analysis:




Given a solution u(t, x) of the classical Schrédinger equation (S) in R”
iOru—Au=20

{ u|t:0 = U,

the Fourier transform u(t, &) with respect to the spatial variable x

i0:u(t, &) = —[¢Pu(t,€),  @(0,€) = do(€)- (2)

Solving the corresponding ODE and taking the inverse Fourier transform

ultx) = [ NGy (e)de. 3)
JRn

This is the inverse Fourier of a product hence we get the convolution

L2

e' 4t
u(t,-) = — % Ug .
(8) = iy =



Given a solution u(t, x) of the classical Schrédinger equation (S) in R”
iOru—Au=20

(4)

the Fourier transform u(t,£) with respect to the spatial variable x
u(0,€) = uo(8)-
(5)

satisfies
i0:0(t,€) = —|¢*a(t, €),
Solving the corresponding ODE and taking the inverse Fourier transform
e eitlel o (£)de .

u(t, x) :/A
R
This is the inverse Fourier of a product hence we get the convolution

2
()=
u(t, ) = — % Ug .
' (4mit)? 0
and use Young inequality




The TT* argument e

Once one has the basic dispersive estimate (for t # 0)

1
lu(t, )| oo mny < @r? uo|| L1 (rm) (6)

)2

together with the conservation of the L2 norm (— @i(t, &) = e'l¢° Gy (¢))
|

lu(t, )l 2rey = lluoll 2(n) (7)

one can obtain interpolating estimates in LP spaces
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Fixed time interpolation

Interpolating the previous estimates one immediately has

1
llu(t, M o@ny < 7y [l ol o ey (8)
P

(4r[e)20-
but we are rather interested in time-space estimates. Something like

lullLa(r,eryy < Clluoll2wey » 9)

for suitable p, g.

T o
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Strichartz estimates e

For the free Schrodinger one has the following estimate

Strichartz estimate
For initial data ug € L?(R") we have the following

lullLaqr,Lomny) < Coqlluoll2(mey » (10)

where (p, q) satisfies the admissibility condition

2 n
E‘F*: CIZQa (n7q’p)7é(2,2,00)

n
p 2

— the necessity can be obtained by rescaling

T
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The rescaling argument e

|
Assume the following holds for every uy € L?(IR")

lullaqr, Lo ®ny) < Coqlluoll 2wy » (11)

Give a solution u = u(t, x) with u(0,-) = up then
m also, uy(t,x) = u(A?t, Ax) is a solution
m with initial datum ug x(x) = u(0, Ax) = up(Ax)

Let us compute the two sides for uy

2+ﬂ
u HU)\HL‘?(R,LP(R")) = A9 "||“||L‘*(R-,L"(R”))'

m [|uoa [l 2y = A2 [|uo]| 2(mm
One gets

24n n
ANa 5 | ull fa(r, Lorr)) < CA? o]l 2(rr) » (12)

which forces the equality —
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The rescaling argument e

|
Assume the following holds for every uy € L?(IR")

lullaqr, Lo ®ny) < Coqlluoll 2wy » (13)

Give a solution u = u(t, x) with u(0,-) = up then
m also, uy(t,x) = u(A?t, Ax) is a solution
m with initial datum ug x(x) = u(0, Ax) = up(Ax)

Let us compute the two sides for uy

2+ﬂ
u HU)\HL‘?(R,LP(R")) = A9 "||“||L‘*(R-,L"(R”))'

m [|uoa [l 2y = A2 [|uo]| 2(mm
One gets

n_2_n
|ull aqr, prnyy < CAZ7 a7 % |lug | 2(mey (14)

which forces the equality —



UNIVERSITA

Strichartz estimates e

For the free Schrodinger one has the following estimate

Strichartz estimate

For initial data up € L2(R") we have the following
[ull Lo, Lo@ny) < Cp.glltollHeo e » (15)

where (p, q) satisfies the admissibility condition

n
§§7 q227 (n’q7p)¢(2727oo)
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Strichartz estimates e

The Schrédinger equation on R” with right hand side £ = f(t, x)

{ iOyu — Au=f

Ujt=0 = Uo,

— by Duhamel formula

ot
u(t) = e™ug + / e (t=)2f(s)ds
Jo

or also for U(t) = ™2 (notice U*(s) = e~ %)

u(t) = U(t“)uo—f—/0 U(t)U*(s)f(s)ds

S



The TT* argument, part Il fifs i

dispersion implies Strichartz

If (U(t))ter is a bounded family of continuous linear operators in L? and

. c
U U (¢l < m”fﬂu

then for any (g, r) € [2,00]? such that
o
-+ - 9 (q,r,a);é(Q,oo,l)

one has
[U(t)uol|Larr < Clluollr2

/ U@ U () ()[orr < ClIFl a7
s<t

here (g, ) is also an admissible pair.




The TT* argument, part Il s

Let us replace o with the euclidean dispersion exponent

|
If (U(t))¢er is a bounded family of continuous linear operators in L? and

C
* /
U U*(t)f [l < m“fﬂu
then for any (g, r) € [2,00]? such that
1 n n
—t+ == (q7r7n)¢(270072)

one has
[U(t)uol|Larr < Clluolle2

/ U@ U () ()arr < ClIF a1
s<t

T s



The TT* argument, part Il s

Let us replace o with the euclidean dispersion exponent

|
If (U(t))¢er is a bounded family of continuous linear operators in L? and

U U™ (£)f [ <

C
m”fﬂu

then for any (g, r) € [2,00]? such that

2
=+

; =2 (grn) #(2,00,2)

27

= 5

one has
[U(t)uol|Larr < Clluollr2

/ U@ U () ()orr < ClIF a7
s<t

T o



Consequence 5

The dispersive inequality also yields the following Strichartz inequalities
for the inhomogeneous Schrodinger equation i0;u — Au = f

lullesce, ooy < € (lllizn + 1l ooy ) s (16)

m (p,q) and (p1, 1) satisfy the admissibility condition

m 2’ the dual exponent of any a € [1, o0].

m crucial in the study of semilinear and quasilinear Schrodinger
equations

]
An application : the cubic semilinear equation in R?

{ iOru — Au = |ul?u
Ujt=0 = Uo ,

T



Fixed point method e

For sufficiently small datum ug € L? the cubic equation in R?

{ i0ru — Au = |ul?u
Ujt=0 = Uo ,

has a solution in the space L3°L2 N L3LS.

u is a solution if and only if it is a fixed point of the map
ur— F(u) = U(t)uo + Q(u)
where U(t)up = €2 uy and

Qu) = /Ot e (=98 () [u(s)ds

we have 1) llzes < MuPullise < lullfyg




A fixed point argument e

|
u is a solution if and only if it is a fixed point of the map

ur— F(u) = U(t)uo + Q(u)

so that
IF()lzee < 1U()wollizis + [ Qu)ll 130
and
IF(llzee < Clluollez + CllullFaye
— if 8C?||ug||?, < 1 then F sends B(0,2C]||upl|;2) in L3LE into itself.
— if 8C?||up||?, < 1 then F is a contraction (similar computations)

By Picard fixed point theorem we have existence and uniqueness.

T o



Chapter 2: Some sub-Riemannian geometry
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Some sub-Riemannian geometry
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The Heisenberg group H =

H ~ R3
X X
Xl = 817 5263 5 X2 = 82+ 5103, X3 = 83.
Group law:
X1 n X1+
Xy | = X2 + 2
X3 y3 X3+ y3 + 3(xy2 — y1%)

m We have [X1, Xo] = X3
m the distribution D = span{Xj, X} is bracket generating
m we can define a sub-Riemannian distance

m it is also left-invariant

S



Define on R3

o x0 .0

0
=22 =2 X0 xe_ O
! 0z’ 2 8y+20z’ 37 %%z

_9 _y
COx 2
m (R3, g°) Riemannian structure with {Xi, X3, X5} o.n. frame.

|
— The Riemannian Hamiltonian is degenerate for ¢ — 0:

3
1 )
He(p.x) =5 > &2 ()pip;

ihj=1

m gi(x) = lim._0g7(x) is > 0 but not invertible at any x
m it is like if the “inverse” gjj(x) has one eigenvalue = +o0.

S o
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A limiting procedure: the Heisenberg groupi @

Define on R3

a yo J x 0 0
X1 =— —=—, Xo = — + ——, X5 =e—
T ox 20z 2 0y+ 20z’ 3 682

m (R3, g°) Riemannian structure with {X1, X2, X5} o.n. frame.
A

As metric spaces (R3, d°) — (R3, dsg) (in the Gromov-Hausdorff sense)

m Df = span{Xy, Xz, X5} — D = span{Xy, Xo}
The sequence of curvatures is unbounded from below:

m Ric*(v) - —oco forall v € D

S o
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Sub-Riemannian geometry (15 oo

Sub-Riemannian structure

m M smooth, connected manifold
m D C TM distribution of (non necessarily) constant rank
m Hoérmander condition: Lie(D)|x = T<M for all x € M

m g smooth scalar product on D

Admissible curve: v : [0,1] — M such that ¥(t) € D,

1
(0= [ Il
Sub-Riemannian distance: (or Carnot-Carathédory)

dsr(x,y) = inf{l(~) | v admissible joining x with y}

S e
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Regularity of dsp Y o

Assume M connected:

Chow-Rashevskii: dsg < +00 and (M, dsg) has the same topology of M

Features of general sub-Riemannian structures:
m d2; : M x M — R is never smooth on the diagonal
m geodesics are not parametrized by initial vector
m no Levi-Civita connection in general

m metric Hausdorff dimension dimy (M) > dim(M)

S
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Sub-Riemannian balls [ o srom

Even simple “Riemannian” questions are not trivial in this geometry

——
m regularity of length-minimizers *Q
m regularity of balls / cut locus ? 3 .

m what is curvature ?

m what is an intrinsic volume ?




The Heisenberg group H

I ADOVA

H~ R3
p X, p X1 . .
X1 = dl— 52(93 s X2 = ()2+ 5103, X3 = 03.
Group law:
X1 %1 X1+ w1
Xy | = X2+ y2
X3 3 X3+ y3 + %(sz — y1x2)

The Haar measure is equal to the Lebesgue measure.

Convolution product f * g(x) := / f(x-y He(y)dy.
JH

Homogeneous dimension
Q= jdmg; =4, |Be(x.n)| = r9|Ba(0.1)

S o



UNIVERSITA

Laplacian in Heisenberg e

m the horizontal vector fields X and Y are defined by
y X
X =0y — =0, Y=0,+=0,.
2 v+ 2
m The horizontal gradient
Viu = (Xu)X + (Yu)Y.
m Complex notations Z = X +iY and Z =X — iY

Agu= (X?>+YHu=2Z—id,,
Remark (on Shrodinger equation in H)

iOu—Agu=0 <& i(0;+0,)u=2ZZu

S o



No dispersion in Heisenberg e

The linear Schrodinger equations on H associated with the sublaplacian

iOtU — AHU =f
Ujt=0 = Uo ,

Theorem (Bahouri-Gérard-Xu 2000)

There exists a function uq in the Schwartz class S(H) such that the
solution to the free Schrodinger equation satisfies

u(t,x1, X2, x3) = tp(x1, X2, %3 + t).

In particular for all 1 < p < o0

lu(t, )l ooy = lluoll co(me)

— no dispersion _



UNIVERSITA

Carnot groups (L5 s

The Lie algebra g of a Carnot (stratified Lie) group of step r admits the
following stratification

g=oi with g1 =1[o1,0].
i=1
A sub-Riemannian structure is given by a scalar product on g
Heisenberg group H (step 2)
g1 92
—_—— —_—

g=01 @927 X15X27 X3:[X17X2]

Engel group E (step 3)

g 92 g
1 3
g=01DP 0 Dgs, Xi,Xo, Xz=[X;,Xo], Xa=I[Xi,X5]

T o




Higher codimensions e

The situation for dispersion on general step 2 is different

Theorem (Bahouri-Fermanian-Gallagher 2016)

Let G be a step 2 stratified Lie group with

m center of dimension p
m radical index k.
m non-degeneracy assumption (*) holds.
If uy € LX(G) is spectrally localized in a ring, then

C

lu(t, Mooy £ ———5=
[t]2(1+[t] =)

||UOHL1(G)

In Heisenberg k =0 and p = 1!

S o
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Baouendi-Grushin operator (L5 s

In L2 = [?(R2, dxdy), consider the action of the Baouendi-Grushin

operator
Ag = 02+ x*0;. (17)

This operator is the Laplacian of the sub-Riemannian structure on R?

defined by
X =0, Y =x0,. (18)

meaning that Ag = X2 + Y?2. Consider the associated Schrédinger
equation

iOru(x,y, t) + Agu(x,y, t) =0, u(0,-) = up. (19)

S



Geodesics of the Grushin plane

(=5
E

Geodesics of the Grushin plane starting from the origin and from (1,0).




No dispersion

The associated Schrodinger equation
iOru(x,y, t) + Apgu(x,y,t) =0, u(t=0)= up. (20)

is also nondispersive.

]
there exist initial data ug for which the solution v satisfies

lu()|r = llwollr VEER, p>1. (21)

This phenomenon is due to a transport behaviour of Ag¢ in the vertical
direction. Let us show this fact.

S o
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Baouendi-Grushin operator in Fourier

For any u € L2, write
u(x,y) = AeiAyﬁ(X, A)dA,
where 1(x, \) is the Fourier transform of u w.r.t. the y-variable.
Acu = /R M (02 — x2A2)ii(x, A)d = /R N AN i(x, \)dA,
where we defined the Hermite operator

Dc(A) =2 — x°N?

for which we know eigenvalues and eigenfunctions.

T



Let h,(x) be the n®" Hermite function, which satisfies the ODE

d2

22 hn(x) = x2ha(x) = —(2n + 1) hn(x),

then h)(x) := hn(y/|\|x) satisfies

d2
Ehg(x) —X°X2hN(x) = —(2n + D) |A\| R} (X).

We can then write for any A # 0

a(x,A) =Y un(A) (%), (22)

neN

and obtain

BoNi(x,N) = 3 —(2n + )N GN)A (x).

neN

S o



Let h,(x) be the n®" Hermite function, which satisfies the ODE

d2

22 hn(x) = x2ha(x) = —(2n + 1) hn(x),

then h)(x) := hn(y/|\|x) satisfies

d2
Ehg(x) —X°X2hN(x) = —(2n + D)\ A} (X).

We can then write for any A # 0

a(x,A) =Y un(A) (%), (23)

neN

and obtain

BeNi(x,N) = 3 (20 + 1A G) (x).

neN

S o



Summing up, by writing

u(x,y) = / <ZM > d, (24)

neN
we obtain
u(x = e n A
Ascu(x,y) /Rw (Z (2n+ DR ()G (A)) dA.

Suppose now that the initial datum ug is supported only on the Hermite
mode n = n (and on positive Fourier modes A > 0), that is,

wlx.y) = [ MRG0 s(0)dA (29)
0
then we realize that

Apcuy = i(2n+ 1), uo,

S o



m If the initial datum f is supported only on the Hermite mode n=n
and on positive Fourier modes A > 0

Apclg = I(2ﬁ+ 1)8),Llo7

— a transport equation in the vertical direction y with velocity 2n + 1.
The solution v of (20) associated to such an initial datum up € V5 4 is

thus given by
u(x,y, t) = uo(x,y — (2n+ 1)t), vVteR. (20)
m Analogously, if the initial datum ug is supported only on the Hermite

mode n = n and on negative Fourier modes A < 0
Since ||l i2(r,ax) ~ A"/2, equality (24) holds in L?(R?, dxdy) iff

Z/ |Tn(N)PA~Y2dN < 0.
R

neN

S o
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Baouendi-Grushin with two vertical directions: i

In L2 = [?(R3, dxdy;dy»), consider the action of the Baouendi-Grushin

operator
Apo = 0 + x*(07, + 03,) =: 07 + x*A,, (27)

where we have defined the vertical Laplacian
AY - 051 + 0)%2'

Consider the associated Schrodinger equation

iOru(x,y, t) + Aggau(x,y,t) =0, u(t=0)= up. (28)




Arguing as before, for any u € L2, write
u(x,y1,y2) = / Gl Ay Ap)dArd s,
JR2

where U(x, A1, A2) is the Fourier transform of u w.r.t. the y; and y»
variables. We have that

Apgou = / elCantrar) (92 _ x2(X2 4 A2))i(x, A1, Ao)dA1d s
. RZ
:ﬂ/ Ot Ay A2)h(x, Az, A2)dArd s,
]RZ

where we defined the Hermite operator

AN, A2) = 02 — x2(A2 + \2).

T an



Let h,(x) be the nt" Hermite function, and define
A2 (x) = h,((A\2 4 A3)1/%x) which satysfies

2
TR0 (N 4 N2 = (20 + 1)y + 3R ().

dx2' "

We can then write for any A\; # 0, Ay # 0,

00 A1, o) = D ln( A1, A2) )72 (x), (29)
neN
and obtain
A A)T(x A, A) = 3 —(2n 4+ 1)4 /A3 + M\ (A\) by 2 (x).
neN

Summing up

u(x, y1,y2) = / gl PiAers) (Z hﬁl’Az(X)ﬁn(/\h/\ﬁ) dhd), (30)
R2

y neN

S



We obtain

Apcau(x, y1,y2) = /2\/)@ + /\éei(’\lyl+’\2y2)>< (31)
]RY

X (Z —(2n + 1)R22(x)Gp( Ay, /\2)> dAid),.

neN

We immediately remark the appearance of \/A? + A3, which is the
symbol associated with the operator /—A,.

Suppose now that the initial datum f is supported only on the Hermite
mode n = n, that is,

Fx, 1, 0) = / et plde (£ (0 No)dhdds,  (32)

2
RY

S an



then we realize that
] ABsz - (2ﬁ+ 1)\/7Ayf
] (I'8t+Agc.;2)f:0<:>(I.at 2n+1 \/ Ay)f:O
m By multiplying the last equation with (i0; — (2n+ 1)\/—A,),

(i0r + Apga)f = 0= (=02 + (27 + 1)?A,)f =0,

m a solution to (28) with initial datum belonging to the space of
functions V; defined by (32) is also a solution to the wave equation
in the vertical direction yi, y» with velocity 2n + 1.

m Assume now that the Fourier transform in the yy, y» variables of the
initial datum f € V4 N L1(R3) is supported in an annulus.

m Thanks to the dispersive estimates enjoyed by the wave equation in
R9, we obtain that there exists a constant C such that the solution
u to (28) satisfies

C
lu(t)|| Lo m3y < mHUOHLI(H@y

S e
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Wave equation 1 s

The wave equation on R”

Pu—Au=0
w St
(W) { (Usdtu)\t:OZ(UOaU1)7

The classical dispersive estimate writes (for t # 0)

C
u(t, Yoo mny < ?(HUOHU(R") + ot rgny) -

|t

— oscillatory integrals and stationary phase theorem.

T
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