Strichartz estimates and sub-Riemannian geometry Lecture 1

Davide Barilari,

Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova

Spring School "Modern Aspects of Analysis on Lie groups", Gottinga, April 2-5, 2024

Università degli Studi di Padova

Plan of the course

Lecture 1

- Strichartz estimates and dispersion: the Euclidean case

■ Some sub-Riemannian geometry
Lecture 2
■ Fourier restriction problem
■ Strichartz estimates and dispersion: the Heisenberg case
Lecture 3
■ Kirillov theory for Nilpotent groups

- Applications to some specific Carnot groups

Lecture 4

- The Engel group and the quartic oscillator

■ Some comments on higher step Carnot groups

Joint work with

A part is based on joint works with
■ Hajer Bahouri (LJLL, CNRS \& Sorbonne Univ)

- Isabelle Gallagher (DMA, École Normale Supérieure)

■ Matthieu Léautaud (IMO, Univ. Paris Saclay)
\rightarrow Main references:
BBG-21 H.Bahouri, D.Barilari, I.Gallagher, Strichartz estimates and Fourier restriction theorems in the Heisenberg group, JFAA, 2021
BBGM-23 H.Bahouri, D.Barilari, I.Gallagher, M.Léautaud Spectral summability for the quartic oscillator with applications to the Engel group, JST, 2023

Outline

1 Strichartz estimates and dispersion: the Euclidean case

2 Some sub-Riemannian geometry

Chapter 1: Strichartz estimates and dispersion

Motivation

The Schrödinger equation

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=0 \\
u_{\mid t=0}=u_{0},
\end{array}\right.
$$

we focus on

- dispersive estimates
- Strichartz estimates
- applications to NLS
- what happens for subelliptic laplacians? (very broad question)
- Riemannian \rightarrow sub-Riemannian (non isotropic diffusions)

The Schrödinger equation on \mathbb{R}^{n}

The Schrödinger equation on \mathbb{R}^{n}

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=0 \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

From the explicit expression of the solution, using Fourier analysis:

$$
u(t, \cdot)=\frac{\mathrm{e}^{i \frac{\left.1 \cdot\right|^{2}}{4 t}}}{(4 \pi i t)^{\frac{n}{2}}} \star u_{0} .
$$

one obtains the basic dispersive estimate (for $t \neq 0$)

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \frac{1}{(4 \pi|t|)^{\frac{n}{2}}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \tag{1}
\end{equation*}
$$

Given a solution $u(t, x)$ of the classical Schrödinger equation (S) in \mathbb{R}^{n}

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=0 \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

the Fourier transform $\widehat{u}(t, \xi)$ with respect to the spatial variable x

$$
\begin{equation*}
i \partial_{t} \widehat{u}(t, \xi)=-|\xi|^{2} \widehat{u}(t, \xi), \quad \widehat{u}(0, \xi)=\widehat{u}_{0}(\xi) . \tag{2}
\end{equation*}
$$

Solving the corresponding ODE and taking the inverse Fourier transform

$$
\begin{equation*}
u(t, x)=\int_{\widehat{\mathbb{R}}^{n}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{u}_{0}(\xi) d \xi \tag{3}
\end{equation*}
$$

This is the inverse Fourier of a product hence we get the convolution

$$
u(t, \cdot)=\frac{\mathrm{e}^{i \frac{\left.1 \cdot\right|^{2}}{4 t}}}{(4 \pi i t)^{\frac{n}{2}}} \star u_{0}
$$

Given a solution $u(t, x)$ of the classical Schrödinger equation (S) in \mathbb{R}^{n}

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=0 \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

the Fourier transform $\widehat{u}(t, \xi)$ with respect to the spatial variable x satisfies

$$
\begin{equation*}
i \partial_{t} \widehat{u}(t, \xi)=-|\xi|^{2} \widehat{u}(t, \xi), \quad \widehat{u}(0, \xi)=\widehat{u}_{0}(\xi) \tag{4}
\end{equation*}
$$

Solving the corresponding ODE and taking the inverse Fourier transform

$$
\begin{equation*}
u(t, x)=\int_{\widehat{\mathbb{R}}^{n}} e^{i(x \cdot \xi)} e^{i t|\xi|^{2}} \widehat{u}_{0}(\xi) d \xi \tag{5}
\end{equation*}
$$

This is the inverse Fourier of a product hence we get the convolution

$$
u(t, \cdot)=\frac{\mathrm{e}^{i \frac{|\cdot \cdot|^{2}}{4 t}}}{(4 \pi i t)^{\frac{n}{2}}} \star u_{0}
$$

and use Young inequality

The $T T^{*}$ argument

Once one has the basic dispersive estimate (for $t \neq 0$)

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \frac{1}{(4 \pi|t|)^{\frac{n}{2}}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)} \tag{6}
\end{equation*}
$$

together with the conservation of the $L^{2} \operatorname{norm}\left(\rightarrow \widehat{u}(t, \xi)=e^{i t|\xi|^{2}} \widehat{u}_{0}(\xi)\right)$

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{7}
\end{equation*}
$$

one can obtain interpolating estimates in L^{p} spaces

Fixed time interpolation

Interpolating the previous estimates one immediately has

$$
\begin{equation*}
\|u(t, \cdot)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq \frac{1}{(4 \pi|t|)^{\frac{n}{2}\left(1-\frac{2}{p}\right)}}\left\|u_{0}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)} \tag{8}
\end{equation*}
$$

but we are rather interested in time-space estimates. Something like

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{9}
\end{equation*}
$$

for suitable p, q.

Strichartz estimates

For the free Schrödinger one has the following estimate

Strichartz estimate

For initial data $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$ we have the following

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C_{p, q}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{10}
\end{equation*}
$$

where (p, q) satisfies the admissibility condition

$$
\frac{2}{q}+\frac{n}{p}=\frac{n}{2}, \quad q \geq 2,(n, q, p) \neq(2,2, \infty)
$$

\rightarrow the necessity can be obtained by rescaling

The rescaling argument

Assume the following holds for every $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C_{p, q}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{11}
\end{equation*}
$$

Give a solution $u=u(t, x)$ with $u(0, \cdot)=u_{0}$ then
■ also, $u_{\lambda}(t, x)=u\left(\lambda^{2} t, \lambda x\right)$ is a solution
■ with initial datum $u_{0, \lambda}(x)=u(0, \lambda x)=u_{0}(\lambda x)$
Let us compute the two sides for u_{λ}
■ $\left\|u_{\lambda}\right\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)}=\lambda^{\frac{2}{q}+\frac{n}{p}}\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)}$.
■ $\left\|u_{0, \lambda}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\lambda^{\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$
One gets

$$
\begin{equation*}
\lambda^{\frac{2}{q}+\frac{n}{p}}\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C \lambda^{\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{12}
\end{equation*}
$$

which forces the equality

The rescaling argument

Assume the following holds for every $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C_{p, q}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{13}
\end{equation*}
$$

Give a solution $u=u(t, x)$ with $u(0, \cdot)=u_{0}$ then
■ also, $u_{\lambda}(t, x)=u\left(\lambda^{2} t, \lambda x\right)$ is a solution
■ with initial datum $u_{0, \lambda}(x)=u(0, \lambda x)=u_{0}(\lambda x)$
Let us compute the two sides for u_{λ}
■ $\left\|u_{\lambda}\right\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)}=\lambda^{\frac{2}{q}+\frac{n}{p}}\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)}$.
■ $\left\|u_{0, \lambda}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\lambda^{\frac{n}{2}}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$
One gets

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C \lambda^{\frac{n}{2}-\frac{2}{q}-\frac{n}{p}}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \tag{14}
\end{equation*}
$$

which forces the equality

Strichartz estimates

For the free Schrödinger one has the following estimate

Strichartz estimate

For initial data $u_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$ we have the following

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C_{p, q}\left\|u_{0}\right\|_{H^{\sigma}\left(\mathbb{R}^{n}\right)}, \tag{15}
\end{equation*}
$$

where (p, q) satisfies the admissibility condition

$$
\frac{2}{q}+\frac{n}{p} \leq \frac{n}{2}, \quad q \geq 2,(n, q, p) \neq(2,2, \infty)
$$

\rightarrow the necessity can be obtained by rescaling
\rightarrow here $\sigma=\frac{n}{2}-\frac{2}{q}-\frac{n}{p}$

Strichartz estimates

The Schrödinger equation on \mathbb{R}^{n} with right hand side $f=f(t, x)$

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=f \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

\rightarrow by Duhamel formula

$$
u(t)=e^{i t \Delta} u_{0}+\int_{0}^{t} e^{i(t-s) \Delta} f(s) d s
$$

or also for $U(t)=e^{i t \Delta}\left(\right.$ notice $\left.U^{*}(s)=e^{-i s \Delta}\right)$

$$
u(t)=U(t) u_{0}+\int_{0}^{t} U(t) U^{*}(s) f(s) d s
$$

The $T T^{*}$ argument, part II

dispersion implies Strichartz

If $(U(t))_{t \in \mathbb{R}}$ is a bounded family of continuous linear operators in L^{2} and

$$
\left\|U(t) U^{*}\left(t^{\prime}\right) f\right\|_{L^{\infty}} \leq \frac{C}{\left|t-t^{\prime}\right|^{\sigma}}\|f\|_{L^{1}}
$$

then for any $(q, r) \in[2, \infty]^{2}$ such that

$$
\frac{1}{q}+\frac{\sigma}{r}=\frac{\sigma}{2}, \quad(q, r, \sigma) \neq(2, \infty, 1)
$$

one has

$$
\begin{gathered}
\left\|U(t) u_{0}\right\|_{L a L^{r}} \leq C\left\|u_{0}\right\|_{L^{2}} \\
\int_{s<t}\left\|U(t) U^{*}(s) f(s)\right\|_{L a L^{r}} \leq C\|f\|_{L^{q^{\prime}} L^{F^{\prime}}}
\end{gathered}
$$

here (\tilde{q}, \tilde{r}) is also an admissible pair.

The $T T^{*}$ argument, part II

Let us replace σ with the euclidean dispersion exponent
If $(U(t))_{t \in \mathbb{R}}$ is a bounded family of continuous linear operators in L^{2} and

$$
\left\|U(t) U^{*}\left(t^{\prime}\right) f\right\|_{L^{\infty}} \leq \frac{C}{\left|t-t^{\prime}\right|^{n / 2}}\|f\|_{L^{1}}
$$

then for any $(q, r) \in[2, \infty]^{2}$ such that

$$
\frac{1}{q}+\frac{n}{2 r}=\frac{n}{4}, \quad(q, r, n) \neq(2, \infty, 2)
$$

one has

$$
\begin{gathered}
\left\|U(t) u_{0}\right\|_{L q^{L^{r}}} \leq C\left\|u_{0}\right\|_{L^{2}} \\
\int_{s<t}\left\|U(t) U^{*}(s) f(s)\right\|_{L^{q} L^{r}} \leq C\|f\|_{L^{q^{\prime}} L^{F^{\prime}}}
\end{gathered}
$$

The $T T^{*}$ argument, part II

Let us replace σ with the euclidean dispersion exponent

If $(U(t))_{t \in \mathbb{R}}$ is a bounded family of continuous linear operators in L^{2} and

$$
\left\|U(t) U^{*}\left(t^{\prime}\right) f\right\|_{L^{\infty}} \leq \frac{C}{\left|t-t^{\prime}\right|^{n / 2}}\|f\|_{L^{1}}
$$

then for any $(q, r) \in[2, \infty]^{2}$ such that

$$
\frac{2}{q}+\frac{n}{r}=\frac{n}{2}, \quad(q, r, n) \neq(2, \infty, 2)
$$

one has

$$
\begin{gathered}
\left\|U(t) u_{0}\right\|_{L q^{L^{r}}} \leq C\left\|u_{0}\right\|_{L^{2}} \\
\int_{s<t}\left\|U(t) U^{*}(s) f(s)\right\|_{L^{q} L^{r}} \leq C\|f\|_{L^{q^{\prime}} L^{F^{\prime}}}
\end{gathered}
$$

Consequence

The dispersive inequality also yields the following Strichartz inequalities for the inhomogeneous Schrödinger equation $i \partial_{t} u-\Delta u=f$

$$
\begin{equation*}
\|u\|_{L^{q}\left(\mathbb{R}, L^{p}\left(\mathbb{R}^{n}\right)\right)} \leq C\left(\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}+\|f\|_{L^{\tilde{q}^{\prime}}\left(\mathbb{R}, L^{\tilde{p}^{\prime}}\left(\mathbb{R}^{n}\right)\right)}\right) \tag{16}
\end{equation*}
$$

- (p, q) and $\left(p_{1}, q_{1}\right)$ satisfy the admissibility condition
- a^{\prime} the dual exponent of any $a \in[1, \infty]$.
- crucial in the study of semilinear and quasilinear Schrödinger equations

An application: the cubic semilinear equation in \mathbb{R}^{2}

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=|u|^{2} u \\
u_{\mid t=0}=u_{0},
\end{array}\right.
$$

Fixed point method

For sufficiently small datum $u_{0} \in L^{2}$ the cubic equation in \mathbb{R}^{2}

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=|u|^{2} u \\
u_{\mid t=0}=u_{0},
\end{array}\right.
$$

has a solution in the space $L_{t}^{\infty} L_{x}^{2} \cap L_{t}^{3} L_{x}^{6}$.
u is a solution if and only if it is a fixed point of the map

$$
u \mapsto F(u)=U(t) u_{0}+Q(u)
$$

where $U(t) u_{0}=e^{i t \Delta} u_{0}$ and

$$
Q(u)=\int_{0}^{t} e^{i(t-s) \Delta}|u(s)|^{2} u(s) d s
$$

we have

$$
\|Q(u)\|_{L_{t}^{3} L_{x}^{6}} \leq\left\||u|^{2} u\right\|_{L_{t}^{2} L_{x}^{2}} \leq\|u\|_{L_{t}^{3} L_{x}^{6}}^{3}
$$

A fixed point argument

u is a solution if and only if it is a fixed point of the map

$$
u \mapsto F(u)=U(t) u_{0}+Q(u)
$$

so that

$$
\|F(u)\|_{L_{t}^{3} L_{x}^{6}} \leq\left\|U(t) u_{0}\right\|_{L_{t}^{3} L_{x}^{6}}+\|Q(u)\|_{L_{t}^{3} L_{x}^{6}}
$$

and

$$
\|F(u)\|_{L_{t}^{3} L_{x}^{6}} \leq C\left\|u_{0}\right\|_{L^{2}}+C\|u\|_{L_{t}^{3} L_{x}^{6}}^{3}
$$

\rightarrow if $8 C^{2}\left\|u_{0}\right\|_{L^{2}}^{2} \leq \frac{1}{2}$ then F sends $B\left(0,2 C\left\|u_{0}\right\|_{L^{2}}\right)$ in $L_{t}^{3} L_{x}^{6}$ into itself.
\rightarrow if $8 C^{2}\left\|u_{0}\right\|_{L^{2}}^{2} \leq \frac{1}{2}$ then F is a contraction (similar computations)
By Picard fixed point theorem we have existence and uniqueness.

Chapter 2: Some sub-Riemannian geometry

Outline

1. Strichartz estimates and dispersion: the Euclidean case

2 Some sub-Riemannian geometry

The Heisenberg group \mathbb{H}

$\mathbb{H} \sim \mathbb{R}^{3}$

$$
x_{1}:=\partial_{1}-\frac{x_{2}}{2} \partial_{3}, \quad X_{2}:=\partial_{2}+\frac{x_{1}}{2} \partial_{3}, \quad X_{3}:=\partial_{3} .
$$

Group law:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}+\frac{1}{2}\left(x_{1} y_{2}-y_{1} x_{2}\right)
\end{array}\right)
$$

- We have $\left[X_{1}, X_{2}\right]=X_{3}$
- the distribution $D=\operatorname{span}\left\{X_{1}, X_{2}\right\}$ is bracket generating
- we can define a sub-Riemannian distance
- it is also left-invariant

A limiting procedure: the Heisenberg group

Define on \mathbb{R}^{3}

$$
X_{1}=\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z}, \quad X_{2}=\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z}, \quad X_{3}^{\varepsilon}=\varepsilon \frac{\partial}{\partial z}
$$

■ $\left(\mathbb{R}^{3}, g^{\varepsilon}\right)$ Riemannian structure with $\left\{X_{1}, X_{2}, X_{3}^{\varepsilon}\right\}$ o.n. frame.
\rightarrow The Riemannian Hamiltonian is degenerate for $\varepsilon \rightarrow 0$:

$$
H_{\varepsilon}(p, x)=\frac{1}{2} \sum_{i, j=1}^{3} g_{\varepsilon}^{i j}(x) p_{i} p_{j}
$$

■ $g^{i j}(x)=\lim _{\varepsilon \rightarrow 0} g_{\varepsilon}^{i j}(x)$ is ≥ 0 but not invertible at any x
■ it is like if the "inverse" $g_{i j}(x)$ has one eigenvalue $=+\infty$.

Define on \mathbb{R}^{3}

$$
X_{1}=\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z}, \quad X_{2}=\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z}, \quad X_{3}^{\varepsilon}=\varepsilon \frac{\partial}{\partial z}
$$

$\square\left(\mathbb{R}^{3}, g^{\varepsilon}\right)$ Riemannian structure with $\left\{X_{1}, X_{2}, X_{3}^{\varepsilon}\right\}$ o.n. frame.

As metric spaces $\left(\mathbb{R}^{3}, d^{\varepsilon}\right) \rightarrow\left(\mathbb{R}^{3}, d_{S R}\right)$ (in the Gromov-Hausdorff sense)

- $D^{\varepsilon}=\operatorname{span}\left\{X_{1}, X_{2}, X_{3}^{\varepsilon}\right\} \rightarrow D=\operatorname{span}\left\{X_{1}, X_{2}\right\}$

The sequence of curvatures is unbounded from below:

- $\operatorname{Ric}^{\varepsilon}(v) \rightarrow-\infty$ for all $v \in D$

Sub-Riemannian geometry

Sub-Riemannian structure

- M smooth, connected manifold

■ $D \subseteq T M$ distribution of (non necessarily) constant rank
■ Hörmander condition: $\left.\operatorname{Lie}(D)\right|_{x}=T_{x} M$ for all $x \in M$

- g smooth scalar product on D

Admissible curve: $\gamma:[0,1] \rightarrow M$ such that $\dot{\gamma}(t) \in D_{\gamma(t)}$

$$
\ell(\gamma)=\int_{0}^{1}\|\dot{\gamma}(t)\| d t
$$

Sub-Riemannian distance: (or Carnot-Carathédory)

$$
d_{S R}(x, y)=\inf \{\ell(\gamma) \mid \gamma \text { admissible joining } x \text { with } y\}
$$

Regularity of $d_{S R}$

Assume M connected:
Chow-Rashevskii: $d_{S R}<+\infty$ and $\left(M, d_{S R}\right)$ has the same topology of M

Features of general sub-Riemannian structures:

- $d_{S R}^{2}: M \times M \rightarrow \mathbb{R}$ is never smooth on the diagonal

■ geodesics are not parametrized by initial vector
■ no Levi-Civita connection in general

- metric Hausdorff dimension $\operatorname{dim}_{H}(M)>\operatorname{dim}(M)$

Sub-Riemannian balls

Even simple "Riemannian" questions are not trivial in this geometry

- regularity of length-minimizers

■ regularity of balls / cut locus ?
■ what is curvature ?
■ what is an intrinsic volume ?

The Heisenberg group \mathbb{H}

$\mathbb{H} \sim \mathbb{R}^{3}$

$$
X_{1}:=\partial_{1}-\frac{x_{2}}{2} \partial_{3}, \quad X_{2}:=\partial_{2}+\frac{x_{1}}{2} \partial_{3}, \quad X_{3}:=\partial_{3}
$$

Group law:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}+\frac{1}{2}\left(x_{1} y_{2}-y_{1} x_{2}\right)
\end{array}\right)
$$

The Haar measure is equal to the Lebesgue measure.
Convolution product $f \star g(x):=\int_{\mathbb{H}} f\left(x \cdot y^{-1}\right) g(y) d y$.
Homogeneous dimension
$Q=\sum_{j} j \operatorname{dimg}_{j}=4, \quad\left|B_{\mathbb{H}}(x, r)\right|=r^{Q}\left|B_{\mathbb{H}}(0,1)\right|$

Laplacian in Heisenberg

- the horizontal vector fields X and Y are defined by

$$
X=\partial_{x}-\frac{y}{2} \partial_{z}, \quad Y=\partial_{y}+\frac{x}{2} \partial_{z} .
$$

- The horizontal gradient

$$
\nabla_{\mathbb{H}} u=(X u) X+(Y u) Y .
$$

- Complex notations $Z=X+i Y$ and $\bar{Z}=X-i Y$

$$
\Delta_{\mathbb{H}} u=\left(X^{2}+Y^{2}\right) u=Z \bar{Z}-i \partial_{z},
$$

Remark (on Shrödinger equation in \mathbb{H})

$$
i \partial_{t} u-\Delta_{\mathbb{H}} u=0 \quad \Leftrightarrow \quad i\left(\partial_{t}+\partial_{z}\right) u=Z \bar{Z} u
$$

No dispersion in Heisenberg

The linear Schrödinger equations on \mathbb{H} associated with the sublaplacian

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta_{\mathbb{H}} u=f \\
u_{\mid t=0}=u_{0},
\end{array}\right.
$$

Theorem (Bahouri-Gérard-Xu 2000)

There exists a function u_{0} in the Schwartz class $\mathcal{S}(\mathbb{H})$ such that the solution to the free Schrödinger equation satisfies

$$
u\left(t, x_{1}, x_{2}, x_{3}\right)=u_{0}\left(x_{1}, x_{2}, x_{3}+t\right) .
$$

In particular for all $1 \leq p \leq \infty$

$$
\|u(t, \cdot)\|_{L^{p}\left(\mathbb{H}^{d}\right)}=\left\|u_{0}\right\|_{L^{p}\left(\mathbb{H}^{d}\right)}
$$

\rightarrow no dispersion

Carnot groups

The Lie algebra \mathfrak{g} of a Carnot (stratified Lie) group of step r admits the following stratification

$$
\mathfrak{g}=\bigoplus_{i=1}^{r} \mathfrak{g}_{i} \quad \text { with } \quad \mathfrak{g}_{i+1}=\left[\mathfrak{g}_{1}, \mathfrak{g}_{i}\right]
$$

A sub-Riemannian structure is given by a scalar product on \mathfrak{g}_{1} Heisenberg group \mathbb{H} (step 2)

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}, \quad \overbrace{X_{1}, X_{2}}^{\mathfrak{g}_{1}}, \quad \overbrace{X_{3}=\left[X_{1}, X_{2}\right]}^{\mathfrak{g}_{2}}
$$

Engel group \mathbb{E} (step 3)

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{3}, \quad \overbrace{X_{1}, X_{2}}^{\mathfrak{g}_{1}}, \quad \overbrace{X_{3}=\left[X_{1}, X_{2}\right]}^{\mathfrak{g}_{2}}, \quad \overbrace{X_{4}=\left[X_{1}, X_{3}\right]}^{\mathfrak{y}_{3}}
$$

Higher codimensions

The situation for dispersion on general step 2 is different

Theorem (Bahouri-Fermanian-Gallagher 2016)

Let G be a step 2 stratified Lie group with

- center of dimension p

■ radical index k.
■ non-degeneracy assumption (*) holds.
If $u_{0} \in L^{1}(G)$ is spectrally localized in a ring, then

$$
\|u(t, \cdot)\|_{L^{\infty}(G)} \leq \frac{C}{|t|^{\frac{k}{2}}\left(1+|t|^{\frac{p-1}{2}}\right)}\left\|u_{0}\right\|_{L^{1}(G)}
$$

In Heisenberg $k=0$ and $p=1$!

Baouendi-Grushin operator

In $L^{2}=L^{2}\left(\mathbb{R}^{2}, d x d y\right)$, consider the action of the Baouendi-Grushin operator

$$
\begin{equation*}
\Delta_{G}=\partial_{x}^{2}+x^{2} \partial_{y}^{2} . \tag{17}
\end{equation*}
$$

This operator is the Laplacian of the sub-Riemannian structure on \mathbb{R}^{2} defined by

$$
\begin{equation*}
X=\partial_{x}, \quad Y=x \partial_{y} . \tag{18}
\end{equation*}
$$

meaning that $\Delta_{G}=X^{2}+Y^{2}$. Consider the associated Schrödinger equation

$$
\begin{equation*}
i \partial_{t} u(x, y, t)+\Delta_{G} u(x, y, t)=0, \quad u(0, \cdot)=u_{0} . \tag{19}
\end{equation*}
$$

Geodesics of the Grushin plane

Geodesics of the Grushin plane starting from the origin and from $(1,0)$.

No dispersion

The associated Schrödinger equation

$$
\begin{equation*}
i \partial_{t} u(x, y, t)+\Delta_{B G} u(x, y, t)=0, \quad u(t=0)=u_{0} . \tag{20}
\end{equation*}
$$

is also nondispersive.
there exist initial data u_{0} for which the solution u satisfies

$$
\begin{equation*}
\|u(t)\|_{L^{p}}=\left\|u_{0}\right\|_{L^{p}} \quad \forall t \in \mathbb{R}, \quad p \geq 1 \tag{21}
\end{equation*}
$$

This phenomenon is due to a transport behaviour of $\Delta_{B G}$ in the vertical direction. Let us show this fact.

Baouendi-Grushin operator in Fourier

For any $u \in L^{2}$, write

$$
u(x, y)=\int_{\mathbb{R}} e^{i \lambda y} \widehat{u}(x, \lambda) d \lambda
$$

where $\widehat{u}(x, \lambda)$ is the Fourier transform of u w.r.t. the y-variable.

$$
\Delta_{G} u=\int_{\mathbb{R}} e^{i \lambda y}\left(\partial_{x}^{2}-x^{2} \lambda^{2}\right) \widehat{u}(x, \lambda) d \lambda=: \int_{\mathbb{R}} e^{i \lambda y} \widehat{\Delta_{G}}(\lambda) \widehat{u}(x, \lambda) d \lambda
$$

where we defined the Hermite operator

$$
\widehat{\Delta_{G}}(\lambda)=\partial_{x}^{2}-x^{2} \lambda^{2}
$$

for which we know eigenvalues and eigenfunctions.

Let $h_{n}(x)$ be the $n^{\text {th }}$ Hermite function, which satisfies the ODE

$$
\frac{d^{2}}{d x^{2}} h_{n}(x)-x^{2} h_{n}(x)=-(2 n+1) h_{n}(x)
$$

then $h_{n}^{\lambda}(x):=h_{n}(\sqrt{|\lambda|} x)$ satisfies

$$
\frac{d^{2}}{d x^{2}} h_{n}^{\lambda}(x)-x^{2} \lambda^{2} h_{n}^{\lambda}(x)=-(2 n+1)|\lambda| h_{n}^{\lambda}(x)
$$

We can then write for any $\lambda \neq 0$

$$
\begin{equation*}
\widehat{u}(x, \lambda)=\sum_{n \in \mathbb{N}} \widehat{u}_{n}(\lambda) h_{n}^{\lambda}(x) \tag{22}
\end{equation*}
$$

and obtain

$$
\widehat{\Delta_{G}}(\lambda) \widehat{u}(x, \lambda)=\sum_{n \in \mathbb{N}}-(2 n+1)|\lambda| \widehat{u}_{n}(\lambda) h_{n}^{\lambda}(x)
$$

Let $h_{n}(x)$ be the $n^{\text {th }}$ Hermite function, which satisfies the ODE

$$
\frac{d^{2}}{d x^{2}} h_{n}(x)-x^{2} h_{n}(x)=-(2 n+1) h_{n}(x)
$$

then $h_{n}^{\lambda}(x):=h_{n}(\sqrt{|\lambda|} x)$ satisfies

$$
\frac{d^{2}}{d x^{2}} h_{n}^{\lambda}(x)-x^{2} \lambda^{2} h_{n}^{\lambda}(x)=-(2 n+1)|\lambda| h_{n}^{\lambda}(x)
$$

We can then write for any $\lambda \neq 0$

$$
\begin{equation*}
\widehat{u}(x, \lambda)=\sum_{n \in \mathbb{N}} \widehat{u}_{n}(\lambda) h_{n}^{\lambda}(x) \tag{23}
\end{equation*}
$$

and obtain

$$
\widehat{\Delta_{G}}(\lambda) \widehat{u}(x, \lambda)=\sum_{n \in \mathbb{N}}-(2 n+1)|\lambda| \widehat{u}_{n}(\lambda) h_{n}^{\lambda}(x)
$$

Summing up, by writing

$$
\begin{equation*}
u(x, y)=\int_{\mathbb{R}} e^{i \lambda y}\left(\sum_{n \in \mathbb{N}} h_{n}^{\lambda}(x) \widehat{u}_{n}(\lambda)\right) d \lambda \tag{24}
\end{equation*}
$$

we obtain

$$
\Delta_{B G} u(x, y)=\int_{\mathbb{R}}|\lambda| e^{i \lambda y}\left(\sum_{n \in \mathbb{N}}-(2 n+1) h_{n}^{\lambda}(x) \widehat{u}_{n}(\lambda)\right) d \lambda
$$

Suppose now that the initial datum u_{0} is supported only on the Hermite mode $n=\tilde{n}$ (and on positive Fourier modes $\lambda \geq 0$), that is,

$$
\begin{equation*}
u_{0}(x, y)=\int_{0}^{\infty} e^{i \lambda y} h_{\tilde{n}}^{\lambda}(x) u_{0, \tilde{n}}(\lambda) d \lambda \tag{25}
\end{equation*}
$$

then we realize that

$$
\Delta_{B G} u_{0}=i(2 \widetilde{n}+1) \partial_{y} u_{0}
$$

- If the initial datum f is supported only on the Hermite mode $n=\widetilde{n}$ and on positive Fourier modes $\lambda \geq 0$

$$
\Delta_{B G} u_{0}=i(2 \widetilde{n}+1) \partial_{y} u_{0},
$$

\rightarrow a transport equation in the vertical direction y with velocity $2 \widetilde{n}+1$. The solution u of (20) associated to such an initial datum $u_{0} \in V_{\widetilde{n},+}$ is thus given by

$$
\begin{equation*}
u(x, y, t)=u_{0}(x, y-(2 \widetilde{n}+1) t), \quad \forall t \in \mathbb{R} \tag{26}
\end{equation*}
$$

- Analogously, if the initial datum u_{0} is supported only on the Hermite mode $n=\widetilde{n}$ and on negative Fourier modes $\lambda \leq 0$
Since $\left\|h_{n}^{\lambda}\right\|_{L^{2}(\mathbb{R}, d x)} \sim \lambda^{-1 / 2}$, equality (24) holds in $L^{2}\left(\mathbb{R}^{2}, d x d y\right)$ iff

$$
\sum_{n \in \mathbb{N}} \int_{\mathbb{R}}\left|\widehat{u}_{n}(\lambda)\right|^{2} \lambda^{-1 / 2} d \lambda<\infty
$$

Baouendi-Grushin with two vertical directions

In $L^{2}=L^{2}\left(\mathbb{R}^{3}, d x d y_{1} d y_{2}\right)$, consider the action of the Baouendi-Grushin operator

$$
\begin{equation*}
\Delta_{B G 2}=\partial_{x}^{2}+x^{2}\left(\partial_{y_{1}}^{2}+\partial_{y_{2}}^{2}\right)=: \partial_{x}^{2}+x^{2} \Delta_{y}, \tag{27}
\end{equation*}
$$

where we have defined the vertical Laplacian

$$
\Delta_{y}=\partial_{y_{1}}^{2}+\partial_{y_{2}}^{2} .
$$

Consider the associated Schrödinger equation

$$
\begin{equation*}
i \partial_{t} u(x, y, t)+\Delta_{B G 2} u(x, y, t)=0, \quad u(t=0)=u_{0} . \tag{28}
\end{equation*}
$$

Arguing as before, for any $u \in L^{2}$, write

$$
u\left(x, y_{1}, y_{2}\right)=\int_{\mathbb{R}_{y}^{2}} e^{i\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right)} \widehat{u}\left(x, \lambda_{1}, \lambda_{2}\right) d \lambda_{1} d \lambda_{2},
$$

where $\widehat{u}\left(x, \lambda_{1}, \lambda_{2}\right)$ is the Fourier transform of u w.r.t. the y_{1} and y_{2} variables. We have that

$$
\begin{aligned}
\Delta_{B G 2} u & =\int_{\mathbb{R}_{y}^{2}} e^{i\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right)}\left(\partial_{x}^{2}-x^{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\right) \widehat{u}\left(x, \lambda_{1}, \lambda_{2}\right) d \lambda_{1} d \lambda_{2} \\
& =: \int_{\mathbb{R}_{y}^{2}} e^{i\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right)} \widehat{\Delta}\left(\lambda_{1}, \lambda_{2}\right) \widehat{u}\left(x, \lambda_{1}, \lambda_{2}\right) d \lambda_{1} d \lambda_{2},
\end{aligned}
$$

where we defined the Hermite operator

$$
\widehat{\Delta}\left(\lambda_{1}, \lambda_{2}\right)=\partial_{x}^{2}-x^{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) .
$$

Let $h_{n}(x)$ be the $n^{\text {th }}$ Hermite function, and define $h_{n}^{\lambda_{1}, \lambda_{2}}(x):=h_{n}\left(\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)^{1 / 4} x\right)$ which satysfies

$$
\frac{d^{2}}{d x^{2}} h_{n}^{\lambda_{1}, \lambda_{2}}(x)-x^{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) h_{n}^{\lambda_{1}, \lambda_{2}}(x)=-(2 n+1) \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}} h_{n}^{\lambda_{1}, \lambda_{2}}(x)
$$

We can then write for any $\lambda_{1} \neq 0, \lambda_{2} \neq 0$,

$$
\begin{equation*}
\widehat{u}\left(x, \lambda_{1}, \lambda_{2}\right)=\sum_{n \in \mathbb{N}} \widehat{u}_{n}\left(\lambda_{1}, \lambda_{2}\right) h_{n}^{\lambda_{1}, \lambda_{2}}(x) \tag{29}
\end{equation*}
$$

and obtain

$$
\widehat{\Delta}\left(\lambda_{1}, \lambda_{2}\right) \widehat{u}\left(x, \lambda_{1}, \lambda_{2}\right)=\sum_{n \in \mathbb{N}}-(2 n+1) \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}} \widehat{u}_{n}(\lambda) h_{n}^{\lambda_{1}, \lambda_{2}}(x) .
$$

Summing up

$$
\begin{equation*}
u\left(x, y_{1}, y_{2}\right)=\int_{\mathbb{R}_{y}^{2}} e^{i\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right)}\left(\sum_{n \in \mathbb{N}} h_{n}^{\lambda_{1}, \lambda_{2}}(x) \widehat{u}_{n}\left(\lambda_{1}, \lambda_{2}\right)\right) d \lambda_{1} d \lambda_{2} \tag{30}
\end{equation*}
$$

We obtain

$$
\begin{align*}
\Delta_{B G 2} u\left(x, y_{1}, y_{2}\right)=\int_{\mathbb{R}_{y}^{2}} & \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}} e^{i\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right)} \times \tag{31}\\
& \times\left(\sum_{n \in \mathbb{N}}-(2 n+1) h_{n}^{\lambda_{1}, \lambda_{2}}(x) \widehat{u}_{n}\left(\lambda_{1}, \lambda_{2}\right)\right) d \lambda_{1} d \lambda_{2} .
\end{align*}
$$

We immediately remark the appearance of $\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}$, which is the symbol associated with the operator $\sqrt{-\Delta_{y}}$.

Suppose now that the initial datum f is supported only on the Hermite mode $n=\tilde{n}$, that is,

$$
\begin{equation*}
f\left(x, y_{1}, y_{2}\right)=\int_{\mathbb{R}_{y}^{2}} e^{i\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right.} h_{\tilde{n}}^{\lambda_{1}, \lambda_{2}}(x) f_{\widetilde{n}}\left(\lambda_{1}, \lambda_{2}\right) d \lambda_{1} d \lambda_{2} \tag{32}
\end{equation*}
$$

then we realize that

- $\Delta_{B G 2} f=(2 \widetilde{n}+1) \sqrt{-\Delta_{y}} f$
- $\left(i \partial_{t}+\Delta_{B G 2}\right) f=0 \Leftrightarrow\left(i \partial_{t}+(2 \widetilde{n}+1) \sqrt{-\Delta_{y}}\right) f=0$.
- By multiplying the last equation with $\left(i \partial_{t}-(2 \tilde{n}+1) \sqrt{-\Delta_{y}}\right)$,

$$
\left(i \partial_{t}+\Delta_{B G 2}\right) f=0 \Rightarrow\left(-\partial_{t}^{2}+(2 \widetilde{n}+1)^{2} \Delta_{y}\right) f=0,
$$

- a solution to (28) with initial datum belonging to the space of functions $V_{\tilde{n}}$ defined by (32) is also a solution to the wave equation in the vertical direction y_{1}, y_{2} with velocity $2 \widetilde{n}+1$.
- Assume now that the Fourier transform in the y_{1}, y_{2} variables of the initial datum $f \in V_{\widetilde{n}} \cap L^{1}\left(\mathbb{R}^{3}\right)$ is supported in an annulus.
- Thanks to the dispersive estimates enjoyed by the wave equation in \mathbb{R}^{d}, we obtain that there exists a constant C such that the solution u to (28) satisfies

$$
\|u(t)\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq \frac{C}{t^{1 / 2}}\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{3}\right)} .
$$

Wave equation

The wave equation on \mathbb{R}^{n}

$$
(W) \quad\left\{\begin{array}{c}
\partial_{t}^{2} u-\Delta u=0 \\
\left(u, \partial_{t} u\right)_{\mid t=0}=\left(u_{0}, u_{1}\right),
\end{array}\right.
$$

The classical dispersive estimate writes (for $t \neq 0$)

$$
\|u(t, \cdot)\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq \frac{C}{|t|^{\frac{n-1}{2}}}\left(\left\|u_{0}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}+\left\|u_{1}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\right) .
$$

\rightarrow oscillatory integrals and stationary phase theorem.

