Strichartz estimates and sub-Riemannian geometry Lecture 2

Davide Barilari,
Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova

Spring School "Modern Aspects of Analysis on Lie groups", Gottinga, April 2-5, 2024

Università degli Studi di Padova

Chapter 3: The Fourier restriction problem

Back to Schrödinger

Given a solution $u(t, x)$ of the classical Schrödinger equation (S) in \mathbb{R}^{n}

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta u=0 \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

the Fourier transform $\widehat{u}(t, \xi)$ with respect to the spatial variable x satisfies

$$
\begin{equation*}
i \partial_{t} \widehat{u}(t, \xi)=-|\xi|^{2} \widehat{u}(t, \xi), \quad \widehat{u}(0, \xi)=\widehat{u}_{0}(\xi) . \tag{1}
\end{equation*}
$$

Solving the corresponding ODE and taking the inverse Fourier transform

$$
\begin{equation*}
u(t, x)=\int_{\widehat{\mathbb{R}}^{n}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{u}_{0}(\xi) d \xi . \tag{2}
\end{equation*}
$$

Another viewpoint

One can also interpreted as the inverse Fourier transform of a data on the paraboloid \widehat{S} in the space of frequencies

$$
u(t, x)=\int_{\mathbb{R}^{n}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{u}_{0}(\xi) d \xi=\int_{\widehat{S}} e^{i y \cdot z} g(z) d \sigma(z)
$$

where $\widehat{\mathbb{R}}^{n+1}=\widehat{\mathbb{R}} \times \widehat{\mathbb{R}}^{n}$, defined as

$$
\widehat{S} \stackrel{\text { def }}{=}\left\{(\alpha, \xi) \in \widehat{\mathbb{R}} \times \widehat{\mathbb{R}}^{n}\left|\alpha=|\xi|^{2}\right\} .\right.
$$

where $y=(t, x)$ and $z=(\alpha, \xi)$

$$
\|u\|_{L \rho^{\prime}\left(\mathbb{R}^{n+1}\right)}=\left\|\mathcal{F}^{-1}(g d \sigma)\right\|_{L \rho^{\prime}\left(\mathbb{R}^{n+1}\right)}
$$

Geometric interpretation

- Let us endow \widehat{S} with the measure $d \sigma=d \xi$.
$\rightarrow d \sigma$ is not the intrinsic surface measure of \widehat{S}, which is $d \mu=\sqrt{1+2|\xi|} d \xi$.

The original approach of Strichartz, 1977

RESTRICTIONS OF FOURIER TRANSFORMS TO QUADRATIC SURFACES AND DECAY OF SOLUTIONS OF WAVE EQUATIONS

ROBERT S. STRICHARTZ

§1. Introduction

Let S be a subset of \mathbb{R}^{n} and $d \mu$ a positive measure supported on S and of temperate growth at infinity. We consider the following two problems:

Problem A. For which values of $p, 1 \leq p<2$, is it true that $f \in L^{p}\left(\mathbb{R}^{n}\right)$ implies \hat{f} has a well-defined restriction to S in $L^{2}(d \mu)$ with

$$
\begin{equation*}
\left(\int \mid \hat{f}^{2} d \mu\right)^{1 / 2} \leq c_{p}\| \| \|_{p} ? \tag{1.1}
\end{equation*}
$$

Problem B. For which values of $q, 2<q \leq \infty$, is it true that the tempered distribution $F d \mu$ for each $F \in L^{2}(d \mu)$ has Fourier transform in $L^{q}\left(\mathbb{R}^{n}\right)$ with

$$
\begin{equation*}
\left\|(F d \mu)^{\wedge}\right\|_{q} \leq c_{q}\left(\int|F|^{2} d \mu\right)^{1 / 2} ? \tag{1.2}
\end{equation*}
$$

Strichartz says

A simple duality argument shows these two problems are completely equivalent if p and q are dual indices, $(1 / p)+(1 / q)=1$. Interest in Problem A when S is a sphere stems from the work of C. Fefferman [3], and in this case the answer is known (see [11]). Interest in Problem B was recently signalled by I. Segal [6] who studied the special case $S=\left\{(x, y) \in \mathbb{R}^{2}: y^{2}-x^{2}=1\right\}$ and gave the interpretation of the answer as a space-time decay for solutions of the Klein-Gordon equation with finite relativistic-invariant norm.

In this paper we give a complete solution when S is a quadratic surface given by

$$
\begin{equation*}
S=\left\{x \in \mathbb{R}^{n}: R(x)=r\right\} \tag{1.3}
\end{equation*}
$$

where $R(x)$ is a polynomial of degree two with real coefficients and r is a real constant. To avoid triviality we assume R is not a function of fewer than n variables, so that aside from isolated points S is a $n-1$-dimensional C^{∞} manifold. There is a canonical measure $d \mu$ associated to the function R (not intrinsic to the surface S, however) given by

$$
\begin{equation*}
d \mu=\frac{d x_{1} \cdots d x_{n-1}}{\left|\partial R / \partial x_{n}\right|} \tag{1.4}
\end{equation*}
$$

Fourier restriction

A lot of contributors: Stein, Fefferman, Tomas, etc.

Problem: Can we restrict Fourier transform of L^{p} functions to subsets?

- f in $L^{1}\left(\mathbb{R}^{n}\right)$ implies $\mathcal{F}(f)$ continuous $\rightarrow \mathrm{OK}$.
- f in $L^{2}\left(\mathbb{R}^{n}\right)$ implies $\mathcal{F}(f)$ in $L^{2}\left(\widehat{\mathbb{R}}^{n}\right) \rightarrow$ arbitrary on a zero meas set \widehat{S} of $\widehat{\mathbb{R}}^{n}$.
- what happens for $1<p<2$?
- it depends on the surface!
- if the surface is "flat" we cannot do a lot

First observation

\rightarrow The Fourier transform of a L^{p} function, for any $p>1$, cannot be restricted to hyperplanes.
■ This f belongs to $L^{p}\left(\mathbb{R}^{n}\right)$, for all $p>1$

$$
\begin{equation*}
f(x)=\frac{e^{-\left|x^{\prime}\right|^{2}}}{1+\left|x_{1}\right|} \quad x=\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

■ its Fourier transform does not admit a restriction on $\widehat{S}=\left\{\xi_{1}=0\right\}$.

$$
\widehat{f}\left(0, \xi^{\prime}\right)=\int_{\mathbb{R}^{n}} e^{-i x^{\prime} \cdot \xi^{\prime}} \frac{e^{-\left|x^{\prime}\right|^{2}}}{1+\left|x_{1}\right|} d x_{1} d x^{\prime}
$$

\rightarrow what happens for different surfaces?

The statement

Tomas and Stein

One can restrict the Fourier transform of $L^{p}\left(\mathbb{R}^{n}\right)$ functions, for $p>1$ (close to 1), to hypersurfaces \widehat{S} that are "sufficiently curved", (main example: the sphere).

Let us state more formally the questions

Problem: given a hypersurface $\widehat{S} \subset \widehat{\mathbb{R}}^{n}$ endowed with a smooth measure $d \sigma$, the restriction problem asks for which pairs (p, q) an inequality of the form

$$
\begin{equation*}
\left\|\left.\mathcal{F}(f)\right|_{\widehat{S}}\right\|_{L^{q}(\widehat{S}, d \sigma)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{4}
\end{equation*}
$$

holds for all f in $\mathcal{S}\left(\mathbb{R}^{n}\right)$.

Dual approach

- The operator R_{S} is continuous from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}(\widehat{S}, d \sigma)$?

$$
R_{S} f=\left.\mathcal{F}(f)\right|_{\widehat{S}}
$$

\rightarrow not completely settled in its general form

from now on

we focus on the case $q=2$

- the adjoint operator R_{S}^{*} is continuous from $L^{2}(\widehat{S}, d \sigma)$ to $L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$?

$$
\begin{gather*}
R_{S}^{*} g=\mathcal{F}^{-1}(g d \sigma) \\
\left\|\mathcal{F}^{-1}(g d \sigma)\right\|_{L^{\prime}\left(\mathbb{R}^{n}\right)} \leq C\|g\|_{L^{2}(\widehat{S}, d \sigma)} \tag{5}
\end{gather*}
$$

the case $q=2$

A basic counterexample shows that the range of p for which the estimate holds cannot be the entire interval $1 \leq p \leq 2$;

Example (Knapp)

Let \widehat{S} be the ($n-1$)-dimensional sphere in $\widehat{\mathbb{R}}^{n}$ endowed with the standard measure $d \mu$. The estimate can hold only if $p \leq \frac{2 n+2}{n+3}=2-\frac{4}{n+3}$.

- Consider the equivalent formulation of the estimate

$$
\begin{equation*}
\|\widehat{g \sigma}\|_{L^{\prime}\left(\mathbb{R}^{n}\right)} \leq C\|g\|_{L^{2}\left(S^{n-1}\right)} \tag{6}
\end{equation*}
$$

- Let $\delta>0$ and let g_{δ} be the characteristic function "spherical cap"

$$
\widehat{C}_{\delta}=\left\{x \in \widehat{S}:\left|x \cdot e_{n}\right|<\delta\right\} .
$$

Proof of Knapp, I

- We consider the equivalent formulation of estimate

$$
\begin{equation*}
\|\widehat{g \sigma}\|_{L^{\prime}\left(\mathbb{R}^{n}\right)} \leq C\|g\|_{L^{2}\left(S^{n-1}\right)} \tag{7}
\end{equation*}
$$

- Let $\delta>0$ be small and let g_{δ} be the characteristic function on C_{δ}.
- $\left|C_{\delta}\right| \sim \delta^{n-1}$. This implies $\left\|g_{\delta}\right\|_{L^{2}\left(S^{n-1}\right)} \sim \delta^{(n-1) / 2}$.
- If $x \in \mathbb{R}^{n}$ is orthogonal to the vertical direction

$$
\begin{gathered}
\left|\widehat{g_{\delta} \sigma}(x)\right|=\left|\int_{S^{n-1}} e^{i x \cdot \xi} g_{\delta}(\xi) d \sigma(\xi)\right|=\left|\int_{C_{\delta}} e^{i x \cdot \xi} d \sigma(\xi)\right| \sim\left|C_{\delta}\right| \sim \delta^{n-1} \\
\left\|\widehat{g_{\delta} \sigma}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}=\left(\int_{\mathbb{R}^{n}}|\widehat{g \sigma}(x)|^{p^{\prime}} d x\right)^{1 / p^{\prime}}
\end{gathered}
$$

Geometric interpretation

■ let T_{δ} be the tube in the x space oriented orthogonally to the sphere

$$
\left[-\delta^{-1}, \delta^{-1}\right] \times \ldots \times\left[-\delta^{-1}, \delta^{-1}\right] \times\left[-\delta^{-2}, \delta^{-2}\right]
$$

- $\left|T_{\delta}\right| \sim \delta^{-n-1}$.

Proof of Knapp, II

- For x in T_{δ} and δ very small the quantity $x \cdot \xi$ is almost zero for $\xi \in C_{\delta}$.

$$
\begin{align*}
\left\|\widehat{g_{\delta} \sigma}\right\|_{L p^{\prime}\left(\mathbb{R}^{n}\right)} & =\left(\int_{\mathbb{R}^{n}}|\widehat{g \sigma}(x)|^{p^{\prime}} d x\right)^{1 / p^{\prime}} \tag{8}\\
& \geq\left(\int_{T_{\delta}}|\widehat{g \sigma}(x)|^{p^{\prime}} d x\right)^{1 / p^{\prime}} \tag{9}\\
& \sim\left(\int_{T_{\delta}} \delta^{(n-1) p^{\prime}} d x\right)^{1 / p^{\prime}} \tag{10}\\
& \sim \delta^{(n-1)}\left|T_{\delta}\right|^{1 / p^{\prime}} \sim \delta^{(n-1)} \delta^{(-n-1) / p^{\prime}} \tag{11}
\end{align*}
$$

The estimate can hence be valid only if (the inequality is \geq since $\delta \rightarrow 0$)

$$
n-1-\frac{n+1}{p^{\prime}} \geq \frac{n-1}{2}
$$

which is the conclusion.

Tomas-Stein

The above range is indeed the correct one for non vanishing curvature.

Theorem (Tomas-Stein, 1975)

Let \widehat{S} be a smooth compact hypersurface in $\widehat{\mathbb{R}}^{n}$ with non vanishing Gaussian curvature at every point, and let $d \sigma$ be a smooth measure on \widehat{S}. Then

$$
\left\|\left.\mathcal{F}(f)\right|_{\hat{S}^{2}} ^{L_{L^{2}}(\widehat{s}, d \sigma)}, \leq C_{p}\right\| f \|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

for every $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and every $p \leq(2 n+2) /(n+3)$,

- A similar result is possible for surfaces with vanishing Gaussian curvature (that are not flat).
- In this case the range of p is smaller depending on the order of tangency of the surface to its tangent space.
- The assumption about compactness of \widehat{S} can be removed by replacing $d \sigma$ with a compactly supported smooth measure.

Equivalent to the continuity from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$ of the operator

$$
\begin{equation*}
R_{S}^{*} R_{S} f=f * \widehat{\sigma} \tag{12}
\end{equation*}
$$

$$
\left\|\left.\mathcal{F}(f)\right|_{\widehat{S}}\right\|_{L^{2}(\widehat{S}, d \sigma)}^{2}=\int(f * \widehat{\sigma}) f d x \leq\|f * \widehat{\sigma}\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

Recall that the Fourier transform of the measure $d \sigma$ is a function given by

$$
\begin{equation*}
\widehat{\sigma}(\xi)=\int_{\mathbb{R}^{n}} e^{i x \cdot \xi} d \sigma(x) \tag{13}
\end{equation*}
$$

Let S be a smooth compact hypersurfaces with non-zero Gaussian curvature at every point. Then

$$
\begin{equation*}
|\widehat{\sigma}(\xi)| \leq C(1+|\xi|)^{-\frac{n-1}{2}} \tag{14}
\end{equation*}
$$

some comments

Let S be a smooth compact hypersurfaces with non-zero Gaussian curvature at every point. Then

$$
\begin{equation*}
|\widehat{\sigma}(\xi)| \leq C(1+|\xi|)^{-\frac{n-1}{2}} \tag{15}
\end{equation*}
$$

- only with decay one only gets $p \leq \frac{4 n}{3 n+1}$ (Fefferman, Stein)

$$
n=3, \quad \widehat{\sigma}(\xi)=2 \frac{\sin (2 \pi|x|)}{|x|}
$$

- using a dyadic decomposition and real interpolation $p<\frac{2(n+1)}{n+3}$ (Tomas)
- with complex interpolation $p=\frac{2(n+1)}{n+3}$ (Stein)

From restriction to Strichartz estimates

The classical Schrödinger equation in \mathbb{R}^{n} : taking the inverse Fourier transform

$$
\begin{equation*}
u(t, x)=\int_{\widehat{\mathbb{R}}^{n}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{u}_{0}(\xi) d \xi \tag{16}
\end{equation*}
$$

Consider the paraboloid \widehat{S} in the space of frequencies $\widehat{\mathbb{R}}^{n+1}=\widehat{\mathbb{R}} \times \widehat{\mathbb{R}}^{n}$

$$
\widehat{S}=\left\{(\alpha, \xi) \in \widehat{\mathbb{R}} \times \widehat{\mathbb{R}}^{n}\left|\alpha=|\xi|^{2}\right\}\right.
$$

■ Given $\widehat{u}_{0}: \widehat{\mathbb{R}}^{n} \rightarrow \mathbb{C}$ define $g: \widehat{S} \rightarrow \mathbb{C}$ as $g\left(|\xi|^{2}, \xi\right)=\widehat{u}_{0}(\xi)$. Then

$$
u(t, x)=\int_{\mathbb{R}^{n}} e^{i\left(x \cdot \xi+t|\xi|^{2}\right)} \widehat{u}_{0}(\xi) d \xi=\int_{\widehat{s}} e^{i y \cdot z} g(z) d \sigma(z)
$$

where $y=(t, x)$ and $z=(\alpha, \xi)$.

Geometric interpretation

- Let us endow \widehat{S} with the measure $d \sigma=d \xi$.
$\rightarrow d \sigma$ is not the intrinsic surface measure of \widehat{S}, which is $d \mu=\sqrt{1+2|\xi|} d \xi$.

The Fourier restriction theorem

$$
\begin{equation*}
\left\|\mathcal{F}^{-1}(g d \sigma)\right\|_{L^{\prime}\left(\widehat{\mathbb{R}^{n+1}}\right)} \leq C_{p}\|g\|_{L^{2}(\widehat{S}, d \mu)}, \tag{17}
\end{equation*}
$$

for all $g \in L^{2}(\widehat{S}, d \mu)$ and all $p^{\prime} \geq 2(n+2) / n$.
By construction $\|g\|_{L^{2}(\widehat{S}, d \mu)}=\left\|\widehat{u}_{0}\right\|_{L^{2}\left(\widehat{\mathbb{R}}^{n}\right)}=\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}$
\rightarrow we stress that we apply the result in dimension $n+1$, i.e., in $\mathbb{R} \times \mathbb{R}^{n}=\mathbb{R}^{n+1}$

Applying the statement to g related to a initial data u_{0} such that \widehat{u}_{0} is supported on a unit ball

$$
\begin{equation*}
\|u\|_{L^{p^{\prime}}\left(\mathbb{R}^{n+1}\right)} \leq C\left\|u_{0}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}, \tag{18}
\end{equation*}
$$

for all $p^{\prime} \geq 2(n+2) / n$.
A scaling argument and the density of spectrally localized functions in $L^{2}\left(\mathbb{R}^{n}\right)$, give the result for $p^{\prime}=2+4$. and_all

Some difficulties

1. Prove a Fourier restriction on the Heisenberg group

- a result of D.Müller \rightarrow specific for the sphere

■ what is the sphere? what about paraboloid?
2. We do not exactly need restriction theorems for \mathbb{H}^{d}

■ we applied the result to a surface in the space $\mathbb{R}^{n+1}=\mathbb{R} \times \mathbb{R}^{n}$
\rightarrow the paraboloid for the Schrödinger eq. (the cone for the wave equation).
■ when dealing with equations defined on the Heisenberg group \mathbb{H}^{d}, one is naturally lead to consider surfaces in the space $\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d}$, which is not related to $\mathbb{H}^{d^{\prime}}$ for some d^{\prime}.

Chapter 4: Strichartz estimates in the Heisenberg group

The result

A function ϕ on \mathbb{H}^{1} is said to be radial if $\phi(x, y, z)=\phi\left(x^{2}+y^{2}, z\right)$.

Theorem (Bahouri, DB, Gallagher, '21)

Given (p, q) belonging to the admissible set

$$
\mathcal{A}=\left\{(p, q) \in[2, \infty]^{2} / p \leq q \quad \text { and } \quad \frac{2}{q}+\frac{2 d}{p}=\frac{Q}{2}\right\},
$$

the solution to the Schrödinger equation $\left(S_{\mathbb{H}}\right)$ with radial data satisfies

$$
\|u\|_{L_{2}^{\infty} L_{t}^{q} L_{x, y}^{L}} \leq C_{p, q, p_{1}, q_{1}}\left(\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)}\right) .
$$

- restrictive due to $p \leq q$. Indeed $p=q=2$.
- we stress that $L_{z}^{\infty} L_{t}^{q} L_{x, y}^{p} \neq L_{t}^{\infty} L_{z}^{q} L_{x, y}^{p}$
- similar for inhomogeneous and wave

The result

A function ϕ on \mathbb{H}^{1} is said to be radial if $\phi(x, y, z)=\phi\left(x^{2}+y^{2}, z\right)$.

Theorem (Bahouri, DB, Gallagher, '21)

Given (p, q) belonging to the admissible set

$$
\mathcal{A}=\left\{(p, q) \in[2, \infty]^{2} / p \leq q \quad \text { and } \quad \frac{2}{q}+\frac{2 d}{p} \leq \frac{Q}{2}\right\}
$$

the solution to the Schrödinger equation $\left(S_{H}\right)$ with radial data satisfies

$$
\|u\|_{L_{z}^{\infty} L_{t}^{q} L_{x, y}^{p}} \leq C_{p, q, p_{1}, q_{1}}\left(\left\|u_{0}\right\|_{H^{\sigma}\left(\mathbb{H}_{1}^{d}\right)}\right) .
$$

- $\sigma=\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{p}$ is the loss of derivatives, $\sigma=0$ forces $p=q$
- we stress that $L_{z}^{\infty} L_{t}^{q} L_{x, y}^{p} \neq L_{t}^{\infty} L_{z}^{q} L_{x, y}^{p}$
- similar for inhomogeneous and wave

The result

A function ϕ on \mathbb{H}^{d} is said to be radial if $\phi(z, s)=f(|z|, s)$.

Theorem (Bahouri, DB, Gallagher, '21)

Given (p, q) and (p_{1}, q_{1}) belonging to the admissible set

$$
\mathcal{A}=\left\{(p, q) \in[2, \infty]^{2} / q \leq p \quad \text { and } \quad \frac{2}{q}+\frac{2 d}{p} \leq \frac{Q}{2}\right\},
$$

the solution to the Schrödinger equation $\left(S_{\mathbb{H}}\right)$ with radial data satisfies

$$
\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{z}^{p}} \leq C_{p, q, p_{1}, q_{1}}\left(\left\|u_{0}\right\|_{H^{\sigma}\left(\mathbb{H}^{d}\right)}+\|f\|_{L_{t}^{1} H^{\sigma}\left(\mathbb{H}^{d}\right)}\right) .
$$

The Fourier transform on \mathbb{H}

It is defined using irreducible unitary representations: for any integrable function u on \mathbb{H} (Kirillov theory)

$$
\forall \lambda \in \mathbb{R}^{*}, \quad \widehat{u}(\lambda):=\int_{\mathbb{H}} u(x) \mathcal{R}_{x}^{\lambda} d x
$$

with \mathcal{R}^{λ} the group homomorphism between \mathbb{H} and the unitary group $\mathcal{U}\left(L^{2}(\mathbb{R})\right)$ of $L^{2}(\mathbb{R})$ given for all x in \mathbb{H} and ϕ in $L^{2}(\mathbb{R})$, by

$$
\mathcal{R}_{x}^{\lambda} \phi(\theta):=\exp \left(i \lambda x_{3}+i \lambda \theta x_{2}\right) \phi\left(\theta+x_{1}\right) .
$$

Then $\widehat{u}(\lambda)$ is a family of bounded operators on $L^{2}(\mathbb{R})$, with many properties similar to $\mathbb{R}^{d}: \underbrace{\text { inversion formula }}_{\text {Trace }}, \underbrace{\text { Fourier-Plancherel identity }}_{\text {Hilbert-Schmidt }}$

The Fourier transform of the sublaplacian on Hinm

The sub-Laplacian

$$
\Delta_{\mathbb{H}}=X_{1}^{2}+X_{2}^{2}
$$

There holds

$$
\widehat{-\Delta_{\mathbb{H}} u}(\lambda)=\widehat{u}(\lambda) \circ P_{\lambda}, \quad \text { with } \quad P_{\lambda}:=-\frac{d^{2}}{d \theta^{2}}+\lambda^{2} \theta^{2} .
$$

The spectrum of the rescaled harmonic oscillator is

$$
\operatorname{Sp}\left(P_{\lambda}\right)=\{|\lambda|(2 m+1), m \in \mathbb{N}\}
$$

and the eigenfunctions are the Hermite functions ψ_{m}^{λ}. So for all $m \in \mathbb{N}$,

$$
\widehat{-\Delta_{\mathbb{H}} u}(\lambda) \psi_{m}^{\lambda}=E_{m}(\lambda) \widehat{u}(\lambda) \psi_{m}^{\lambda} .
$$

The frequency space on \mathbb{H}

Set $\widehat{x}:=(n, m, \lambda) \in \widehat{\mathbb{H}}=\mathbb{N}^{2} \times \mathbb{R}^{*}$, and

$$
\begin{aligned}
\mathcal{F}_{\mathbb{H}}(u)(n, m, \lambda) & :=\left(\widehat{u}(\lambda) \psi_{m}^{\lambda} \mid \psi_{n}^{\lambda}\right)_{L^{2}(\mathbb{R})} \\
& =\int_{\mathbb{H}} \mathcal{W}(\widehat{x}, x) u(x) d x
\end{aligned}
$$

where $\mathcal{W}(\hat{x}, x):=e^{i \lambda x_{3}} e^{-|\lambda|\left(x_{1}^{2}+x_{2}^{2}\right)} \underbrace{L_{m}\left(2|\lambda|\left(x_{1}^{2}+x_{2}^{2}\right)\right)}_{\text {Laguerre polynomial }}$.
Then

$$
\mathcal{F}_{\mathbb{H}}\left(-\Delta_{\mathbb{H}} u\right)(n, m, \lambda)=\underbrace{E_{m}(\lambda)}_{\text {frequency }} \mathcal{F}_{\mathbb{H}}(u)(n, m, \lambda) .
$$

Bahouri, Chemin, Danchin

Some formulas

Inversion and Fourier-Plancherel formulae

$$
f(\widehat{x})=\frac{2^{d-1}}{\pi^{d+1}} \int_{\tilde{\mathbb{H}}^{d}} \mathcal{W}(\widehat{x}, x) \mathcal{F}_{\mathbb{H}} f(\widehat{x}) d \widehat{x}
$$

and

$$
\left(\mathcal{F}_{\mathbb{H}} f \mid \mathcal{F}_{\mathbb{H}} g\right)_{L^{2}\left(\widetilde{\mathbb{H}}^{d}\right)}=\frac{\pi^{d+1}}{2^{d-1}}(f \mid g)_{L^{2}\left(\mathbb{H}^{d}\right)},
$$

Action of the Laplacian

$$
\mathcal{F}_{\mathbb{H}}\left(\Delta_{\mathbb{H}} f\right)(\widehat{x})=-4|\lambda|(2|m|+d) \mathcal{F}_{\mathbb{H}}(f)(\widehat{x}) .
$$

Radial functions $f(z, s)=f(|z|, s)$

$$
\mathcal{F}_{\mathbb{H}}(f)(n, m, \lambda)=\mathcal{F}_{\mathbb{H}}(f)(n, m, \lambda) \delta_{n, m}=\mathcal{F}_{\mathbb{H}}(f)(|n|,|n|, \lambda) \delta_{n, m} .
$$

Convolution for radial functions

$$
\mathcal{F}_{\mathbb{H}}(f \star g)(\ell, \ell, \lambda)=\mathcal{F}_{\mathbb{H}} f(\ell, \ell, \lambda) \mathcal{F}_{\mathbb{H}} g(\ell, \ell, \lambda)
$$

Strichartz estimate in the Heisenberg group

Let u_{0} in $S\left(\mathbb{H}^{d}\right)$ be radial and consider the Cauchy problem

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta_{\mathbb{H}} u=0 \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

Taking the partial Fourier transform with respect to the variable w

$$
\left\{\begin{array}{l}
i \frac{d}{d t} \mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda)=-4|\lambda|(2|m|+d) \mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda) \\
\mathcal{F}_{\mathbb{H}}(u)_{\mid t=0}=\mathcal{F}_{\mathbb{H}} u_{0}
\end{array}\right.
$$

$$
\mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda)=e^{4 i t|\lambda|(2|m|+d)} \mathcal{F}_{\mathbb{H}}\left(u_{0}\right)(|n|,|n|, \lambda) \delta_{n, m}
$$

\rightarrow Notice that if we set $|m|=0$ we see the "transport" part

$$
\mathcal{F}_{\mathbb{H}}(u)(t, 0,0, \lambda)=e^{4 i t|\lambda| d} \mathcal{F}_{\mathbb{H}}\left(u_{0}\right)(0,0, \lambda) .
$$

Applying the inverse Fourier formula

$$
u(t, z, s)=\frac{2^{d-1}}{\pi^{d+1}} \int_{\widehat{\mathbb{H}}^{d}} \mathcal{W}(\widehat{x}, z, s) e^{4 i t|\lambda|(2|m|+d)} \mathcal{F}_{\mathbb{H}}\left(u_{0}\right)(|n|,|n|, \lambda) \delta_{n, m} d \widehat{x} .
$$

Re-expressed as the inverse Fourier transform in $\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d}$ of $\mathcal{F}_{\mathbb{H}}\left(u_{0}\right) d \Sigma$,

$$
\Sigma \stackrel{\text { def }}{=}\left\{(\alpha, \widehat{x})=(\alpha,(n, n, \lambda)) \in \widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d} / \alpha=4|\lambda|(2|n|+d)\right\} .
$$

endow Σ with the measure $d \Sigma$ induced by the projection $\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d} \rightarrow \widehat{\mathbb{H}}^{d}$

$$
\int_{\widehat{\mathbb{D}}} \Phi(\alpha, \widehat{x}) d \Sigma(\alpha, \widehat{x})=\int_{\widehat{\mathbb{H}}^{d}} \Phi(4|\lambda|(2|m|+d), \widehat{x}) d \widehat{x},
$$

Theorem (Bahouri, DB, Gallagher, '19)
If $1 \leq q \leq p \leq 2$, then for f radial

$$
\begin{equation*}
\left\|\left.\mathcal{F}_{\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d}}(f)\right|_{\Sigma}\right\|_{L^{2}(d \Sigma)} \leq C_{p, q}\|f\|_{L_{s}^{1} L_{t}^{q} L_{\Sigma}^{p}}, \tag{19}
\end{equation*}
$$

Using dual inequality, assuming that $F_{\mathbb{H}} u_{0}$ is localized in the unit ball

For any $2 \leq p \leq q \leq \infty$

$$
\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{2}^{0}} \leq C\left\|\mathcal{F}_{\mathbb{H}} u_{0}\right\|_{L^{2}\left(\widehat{\mathbb{H}}^{d}\right)}=C\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)},
$$

- If u_{0} is frequency localized in the ball \mathcal{B}_{Λ},

$$
u_{\wedge}(t, z, s)=u\left(\Lambda^{-2} t, \Lambda^{-1} z, \Lambda^{-2} s\right), \quad u_{0, \Lambda}(z, s)=u_{0}\left(\Lambda^{-1} z, \Lambda^{-2} s\right)
$$

■ we have

$$
\left\|u_{\Lambda}\right\|_{L_{s}^{\infty} L_{t}^{q} L_{z}^{p}}=\Lambda^{\frac{2}{q}+\frac{2 d}{p}}\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{z}^{p}}, \quad\left\|u_{0, \Lambda}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)}=\Lambda^{\frac{Q}{2}}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)},
$$

- we infer

$$
\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{2}^{p}} \leq C \Lambda^{\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{p}}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)} .
$$

