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Strichartz estimate in the Heisenberg group

Let u0 in S(Hd) be radial and consider the Cauchy problem{
i∂tu −∆Hu = 0

u|t=0 = u0 .

Taking the partial Fourier transform with respect to the variable w{
i d
dtFH(u)(t, n,m, λ) = −4|λ|(2|m|+ d)FH(u)(t, n,m, λ)

FH(u)|t=0 = FHu0 .

FH(u)(t, n,m, λ) = e4it|λ|(2|m|+d)FH(u0)(|n|, |n|, λ)δn,m .

→ Notice that if we set |m| = 0 we see the “transport” part

FH(u)(t, 0, 0, λ) = e4it|λ|dFH(u0)(0, 0, λ) .
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Applying the inverse Fourier formula

u(t, z , s) =
2d−1

πd+1

∫
Ĥd

W(x̂ , z , s) e4it|λ|(2|m|+d) FH(u0)(|n|, |n|, λ)δn,m dx̂ .

Re-expressed as the inverse Fourier transform in R̂× Ĥd of FH(u0) dΣ,

Σ
def
=
{
(α, x̂) =

(
α, (n, n, λ)

)
∈ R̂× Ĥd /α = 4|λ|(2|n|+ d)

}
.

endow Σ with the measure dΣ induced by the projection R̂× Ĥd → Ĥd∫
D̂
Φ(α, x̂) dΣ(α, x̂) =

∫
Ĥd

Φ(4|λ|(2|m|+ d), x̂) dx̂ ,

Theorem (Bahouri, DB, Gallagher, ’21)

If 1 ≤ q ≤ p ≤ 2, then for f radial

∥FR×Hd (f )|Σ∥L2(dΣ) ≤ Cp,q∥f ∥L1
sL

q
t L

p
z
, (1)
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Using dual inequality, assuming that FHu0 is localized in the unit ball

For any 2 ≤ p ≤ q ≤ ∞

∥u∥L∞
s Lq

t L
p
z
≤ C∥FHu0∥L2(Ĥd ) = C∥u0∥L2(Hd ) ,

If u0 is frequency localized in the ball BΛ,

uΛ(t, z , s) = u(Λ−2t,Λ−1z ,Λ−2s), u0,Λ(z , s) = u0(Λ
−1z ,Λ−2s)

we have

∥uΛ∥L∞
s Lq

t L
p
z
= Λ

2
q+

2d
p ∥u∥L∞

s Lq
t L

p
z
, ∥u0,Λ∥L2(Hd ) = Λ

Q
2 ∥u0∥L2(Hd ) ,

we infer for σ = Q
2 − 2

q − 2d
p

∥u∥L∞
s Lq

t L
p
z
≤ CΛ

Q
2 −

2
q−

2d
p ∥u0∥L2(Hd ) ≤ C∥u0∥Hσ(Hd ) .
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The inhomogeneous case

Denoting by (U(t))t∈R the solution operator of the Schrödinger
equation on the Heisenberg group,

(U(t))t∈R is a one-parameter group of unitary operators on L2(Hd).

the solution to the inhomogeneous equation{
i∂tu −∆Hu = f

u|t=0 = 0 ,

writes

u(t, ·) = −i

∫ t

0

U(t − t ′)f (t ′, ·)dt ′, (2)

It is enough to check that it satisfies, for all admissible pairs (p, q) ,

∥u∥L∞
s Lq

t L
p
z
≲ ∥f ∥L1

tH
σ(Hd ) (3)

with σ =
Q

2
− 2

q
− 2d

p
·

5 of 46



By formula of the solution, we have for all s ∈ R,

∥u(t, ·, s)∥Lp
z
≤
∫
R
∥U(t)U(−t ′)f (t ′, ·, s)∥Lp

z
dt ′.

Therefore, still for all s,

∥u(·, ·, s)∥Lq
t L

p
z
≤
∫
R
∥U(·)U(−t ′)f (t ′, ·, s)∥Lq

t L
p
z
dt ′.

Let us first assume that, for all t, the source term f (t, ·) is frequency
localized in in the unit ball B1

if g is frequency localized in a unit ball, then for all 2 ≤ p ≤ q ≤ ∞

∥U(t)g∥L∞
s Lq

t L
p
z
≲ ∥g∥L2(Hd ) . (4)
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By formula of the solution, we have for all s ∈ R,

∥u(t, ·, s)∥Lp
z
≤
∫
R
∥U(t)U(−t ′)f (t ′, ·, s)∥Lp

z
dt ′.

Therefore, still for all s,

∥u(·, ·, s)∥Lq
t L

p
z
≤
∫
R
∥U(·)U(−t ′)f (t ′, ·, s)∥Lq

t L
p
z
dt ′.

Let us first assume that, for all t, the source term f (t, ·) is frequency
localized in in the unit ball B1

if g is frequency localized in a unit ball, then for all 2 ≤ p ≤ q ≤ ∞

∥U(t)g∥L∞
s Lq

t L
p
z
≲ ∥g∥L2(Hd ) . (5)
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Using homog Strichartz, we deduce that

∥u∥L∞
s Lq

t L
p
Y
≤
∫
R
∥U(−t ′)f (t ′, ·)∥L2(Hd )dt

′.

Since U(−t ′) is unitary on L2(Hd), we readily gather that

∥u∥L∞
s Lq

t L
p
Y
≤
∫
R
∥f (t ′, ·)∥L2(Hd )dt

′. (6)

Now if for all t, f (t, ·) is frequency localized in a ball of size Λ, then
setting

fΛ(t, ·)
def
= Λ−2f (Λ−2t, ·) ◦ δΛ−1

we find that on the one hand, fΛ(t, ·) is frequency localized in a unit
ball for all t, and on the other hand that the solution to the Cauchy
problem {

i∂tuΛ −∆HuΛ = fΛ
u|t=0 = 0 ,

writes uΛ(t,w) = u(Λ−2t, ·) ◦ δΛ−1 .
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Now by scale invariance, we have∫
R
∥fΛ(t ′, ·)∥L2(Hd )dt

′ = Λ
Q
2

∫
R
∥f (t ′, ·)∥L2(Hd )dt

′

and
∥uΛ∥L∞

s Lq
t L

p
Y
= Λ

2
q+

2d
p ∥u∥L∞

s Lq
t L

p
Y
.

Consequently, we get

∥u∥L∞
s Lq

t L
p
Y
≤ C

∫
R
Λ

Q
2 −

2
q−

2d
p ∥f (t ′, ·)∥L2(Hd )dt

′ .

Since
Q

2
− 2

q
− 2d

p
≥ 0, we have

Λ
Q
2 −

2
q−

2d
p ∥f (t ′, ·)∥L2(Hd ) ≲ ∥f (t ′, ·)∥

H
Q
2
− 2

q
− 2d

p (Hd )
,

and then integrate in t to conclude

9 of 46



Fourier restriction

The statement

Theorem (Bahouri, DB, Gallagher, ’21)

If 1 ≤ q ≤ p ≤ 2, then for f radial

∥FR×Hd (f )|Σ∥L2(dΣ) ≤ Cp,q∥f ∥L1
sL

q
t L

p
z
, (7)

and its dual version

Example

for any 2 ≤ p′ ≤ q′ ≤ ∞, there holds

∥F−1

R̂×Ĥd
(θ|Σloc

)∥
L∞
s Lq′

t Lp′
Y

≤ ∥θ|Σloc
∥L2(dΣloc) , (8)
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The completion of the frequency set

The frequency set H̃d comes with a measure∫
H̃d

θ(x̂) dx̂
def
=

∫
R

∑
(n,m)∈N2d

θ(n,m, λ)|λ|d dλ .

endowed with a distance

d(x̂ , x̂ ′)
def
=
∣∣λ(n+m)−λ′(n′+m′)

∣∣
ℓ1
+
∣∣(n−m)−(n′−m′)|ℓ1+d |λ−λ′| ,

(H̃d , d) it is not complete [→] build the metric completion Ĥd

Some advantages of [Bahouri, Chemin, Danchin]

definition of S(Ĥd),

interpretation smoothness ↔ decay

→ give a meaning to the unit sphere SĤd of Ĥd .
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On the surface measure

Recall that for θ being the Fourier transform of a radial function∫
Ĥd

θ(x̂)dx̂ =

∫
R

∑
n∈Nd

θ(n, n, λ)|λ|d dλ .

For spherical measures (on sphere of radius R) we want∫
Ĥd

θ(x̂)dx̂ =

∫ ∞

0

(∫
SR
Ĥd

θ(x̂)dσR(x̂)

)
dR

So we have (change of variable R2 = (2|n|+ d)|λ|)∫
SR
Ĥd

θ(x̂)dσR(x̂) =
∑
n∈Nd

2R2d+1

(2|n|+ d)d+1

(∑
±
θ(n, n,

±R2

2|n|+ d
)
)
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On the surface measure, R = 1

Recall that for θ Fourier transform of radial function∫
Ĥd

θ(x̂)dx̂ =

∫
R

∑
n∈Nd

θ(n, n, λ)|λ|d dλ .

For spherical measures (on sphere of radius R) we want∫
Ĥd

θ(x̂)dx̂ =

∫ ∞

0

(∫
SĤd

θ(x̂)dσR(x̂)

)
dR

So we have (change of variable R2 = (2|n|+ d)|λ|)∫
SĤd

θ(x̂)dσ1(x̂) =
∑
n∈Nd

2

(2|n|+ d)d+1

(∑
±
θ(n, n,

±1

2|n|+ d
)
)
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The result of Müller

D.Müller [Annals of Math, 1990]: works in terms of spectral
decomposition

L =

∫ ∞

0

λdE (λ), Pf = f ∗ G

proves the estimate (“restriction for the sphere”): if 1 ≤ p ≤ 2[ ∑
n∈Nd

1

(2|n|+ d)d+1

(∑
±

∣∣∣FH(f )(n, n,
±1

2|n|+ d
)
∣∣∣2)] 1

2 ≤ Cp∥f ∥L1s Lpz

can be reinterpreted as follows: If 1 ≤ p ≤ 2, then for radial f

∥FH(f )|SĤd
∥L2(SĤd ) ≤ Cp∥f ∥L1

sL
p
z
, (9)

→ valid on the full interval: for p ∈ [1, 2]

→ crucial: the anisotropic norm L1sL
p
z (r = 1 is necessary in vertical)

false for p > 2
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Fourier transform of the surface measure

Up to a measure zero set on Ĥd

SĤd =
{
(n, n, λ) ∈ Ĥd / (2|n|+ d)|λ| = 1

}
By definition, the tempered distribution G = F−1

H (dσSĤd
)

Lemma

G is the bounded function on Hd defined by

G (z , s) =
2d

πd+1

∑
n∈Nd

1

(2|n|+ d)d+1
cos
( s

2|n|+ d

)
W
(
n, n, 1,

z√
2|n|+ d

)
(10)

For the sphere of radius R1/2 we have the homogeneity property:

GR(z , s)
def
= Rd(G ◦ δ√R)(z , s) . (11)
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Measure on the paraboloid

Proceeding as for the restriction theorem on the sphere of Ĥd , let us first
compute

GΣloc

def
= F−1

R̂×Ĥd
(dΣloc) .

Lemma

With the above notation, GΣloc
is the bounded function on R× Ĥd

defined by

GΣloc
(t,w) = 2π

∫ ∞

0

Gα(w) e−it αψ(α) dα , (12)

where GR is the inverse Fourier of the measure of sphere of radius R1/2.

This gives for all f in Srad(D)

(R∗
Σloc

RΣloc
f )(t, z , s) =

(π
2

)d
(GΣloc

⋆ f̌ )(−t,−z , s) , (13)

16 of 46



Reduction to the estimate on convolution

Consider the restriction operator

RΣloc
f = FR×Hd (f )|Σloc

Indeed applying the Hölder inequality, we deduce that

∥RΣloc
f ∥2L2(Σloc)

≤ ∥R∗
Σloc

RΣloc
f ∥

L∞
s Lq′

t Lp′
Y

∥f ∥L1
sL

q
t L

p
Y

≤ ∥f̌ ⋆D GΣloc
∥
L∞
s Lq′

t Lp′
Y

∥f ∥L1
sL

q
t L

p
Y
,

Then as in the Euclidean case, we are reduced to proving that

R∗
Σloc

RΣloc
is bounded from L1sL

q
t L

p
z into L∞s Lq

′

t Lp
′

z .
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Proof for 1 ≤ p < 2 (non endpoint)

Main lemma

∥f ⋆ GΣloc
∥
L∞
s Lq′

t Lp′
z
≲
∥∥∥∥FR(f )(−α, ·)∥Lp

zL1
s
α
d(1− 2

p′ ) ψ(α)
∥∥∥
Lq
α

Hölder estimate in α + Hausdorff-Young inequality: for any a ≥ 2

∥f ⋆ GΣloc
∥
L∞
s Lq′

t Lp′
z
≲ ∥FR(f )∥La

αLp
zL1

s
∥αd(1− 2

p′ ) ψ(α)∥Lb
α

≲ ∥f ∥La′
t Lp

zL1
s
∥αd(1− 2

p′ ) ψ(α)∥Lb
α(R) ,

where a′ is the conjugate exponent of a and 1
a +

1
b = 1

q ·
Finally for a′ = q and Minkowski’s inequality, we get for q′ ≥ p′ > 2

∥f ⋆ GΣloc
∥
L∞
s Lq′

t Lp′
z
≲ ∥f ∥L1

sL
q
t L

p
z

→ endpoint p = 2: ad hoc argument
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Chapter 5: Kirillov Theory for Nilpotent groups
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Representations and basic tools

Here V is a vector space finite or infinite dimensional.

Given a Lie group G a representation of G is a smooth
homomorphism

R : G → GL(V ), R(g1g2) = R(g1)R(g2)

where in the left hand side we have the product in G while in the
right hand side the composition in GL(V ).

A subspace W of V is an invariant subspace if R(g)w ∈ W for all
g ∈ G and w ∈ W .

The representation is said to be irreducible if the only invariant
subspaces of V are the zero space and V itself.
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Important 1D unitary representations

if R map into the group of unitary operators, we say unitary
representation .

The representation is said one-dimensional if V has dimension 1.

For V = C, a 1-dim representation of G will be a smooth
homomorphism

X : G → U(C) = S1

Let G nilpotent, η ∈ g∗ and H ⊂ G be such that η([h, h]) = 0 :
we can define the one-dimensional representation

Xη : H → S1 = U(C)

Xη(e
X ) = e i⟨η,X⟩, X ∈ h.

where as usual ⟨η,X ⟩ denotes the duality product g∗ and g.
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Kirillov theory

The Kirillov theory gives a way to describe all possible irreducible unitary
representations of G in terms of coadjoint orbits of the group.

An algorithm in four steps:

1 Fix an element η ∈ g∗.

2 Fix any maximal Lie subalgebra h of g s.t. η([h, h]) = 0.

3 Consider the one-dimensional representation

Xη,h : H → S1 = U(C)

Xη,h(e
X ) = e i⟨η,X⟩, X ∈ h.

where as usual ⟨η,X ⟩ denotes the duality product g∗ and g.

4 Compute the induced representation Rη,h : G → U(W ).

→ a way to lift a representation to the group G
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Coadjoint orbits

Given a Lie group G

the conjugation map Cg : G → G given by Cg (h) = ghg−1.

the adjoint action of G onto its Lie algebra

Adg : g → g, Adg = (Cg )∗

Notice that Ad : G → GL(g) given by g 7→ Adg is a finite
dimensional representation of G .

This induces the so called coadjoint action dual of the above

Ad∗g : g∗ → g∗, ⟨Ad∗gη, v⟩ := ⟨η, (Adg−1)∗v⟩

Notice that Ad∗ is indeed an action of G on g∗. Given η ∈ g∗ the
coadjoint orbit of η is by definition the set

Oη = {Ad∗gη | g ∈ G}.
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Kirillov theorem

The Kirillov theorem states the following:

Theorem

The map which assigns to η ∈ g∗/G to Rη,h in Ĝ (where h is some
maximal Lie subalgebra) is a bijection. More precisely:

(a) every irreducible unitary representation of a nilpotent Lie group G is
of the form Rη,h for some η and H

(b) two representations Rη,h and Rη′,h′ are equivalent if and only if η
and η′ belong to the same orbit.

Here two irreducible unitary representations R1 : G → U(W1) and
R2 : G → U(W2) are equivalent if there exists an isometry between the
Hilbert spaces T : W1 → W2 such that

T ◦ R1(g) ◦ T−1 = R2(g), ∀g ∈ G
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Kirillov theory

The Kirillov theory gives a way to describe all possible irreducible unitary
representations of G in terms of coadjoint orbits of the group.

An algorithm in four steps:

1 Fix an element η ∈ g∗ in every leaf

2 Fix any maximal Lie subalgebra h of g s.t. η([h, h]) = 0.

3 Consider the one-dimensional representation

Xη,h : H → S1 = U(C)

Xη,h(e
X ) = e i⟨η,X⟩, X ∈ h.

where as usual ⟨η,X ⟩ denotes the duality product g∗ and g.

4 Compute the induced representation Rη,h : G → U(W ).

→ a way to lift a representation to the group G
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Poisson structure on the dual g∗

Let a, b : g∗ → R be smooth functions.

Poisson manifold with the bracket

{a, b}(η) = ⟨η, [da, db]⟩

Given a smooth a : g∗ → R we can define its Poisson vector field by
setting for every smooth b : g∗ → R

a⃗(b) = {a, b}

The set of all Poisson vector at a point defines a distribution

Dη = {a⃗(η) | a ∈ C∞(g∗)}

which has no constant rank (notice D0 = {0}).
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Poisson orbit

We can define also the Poisson orbit of η ∈ g∗ in the sense of dynamical
systems as follows

OP
η = {et1a⃗1 ◦ . . . ◦ etℓa⃗ℓ(η) | ℓ ∈ N, ti ∈ R, ai ∈ C∞(g∗)}.

Notice that both OP
η and Oη are subsets of g∗ containing η.

Proposition

For every η ∈ g∗ we have the equality OP
η = Oη. Each orbit is an even

dimensional symplectic manifold.

It is enough to use as ai the linear on fibers function associated to a basis

hi (p, x) = p · Xi (x)
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Computation of coadjoint orbits

Fix a basis of the Lie algebra X1, . . . ,Xn such that

[Xi ,Xj ] = ckijXk

for some constants ckij . Define the corresponding coordinates on the
fibers of T ∗G given by

hi (p, x) = p · Xi (x)

These can be thought as smooth functions on g∗ and satisfy

{hi , hj} = ckij hk .

We recall that a casimir is a smooth function f ∈ C∞(g∗) such that

{a, f } = 0, ∀ a ∈ C∞(g∗)
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Casimir

If we write f = f (h1, . . . , hn) to check that f is a casimir it is enough to
check that

{f , hj} =
n∑

i=1

∂f

∂hi
{hi , hj} =

n∑
i,k=1

∂f

∂hi
ckij hk = 0, j = 1, . . . , n

that means
n∑

i=1

∂f

∂hi
ckij = 0, j , k = 1, . . . , n

The Poisson vector field associated to a function f is

f⃗ =
n∑

i,j,k=1

∂f

∂hi
ckij hk

∂

∂hj

The Poisson vector field associated to a casimir is the zero vector field.
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Casimir

If we write f = f (h1, . . . , hn) to check that f is a casimir it is enough to
check that

{f , hj} =
n∑

i=1

∂f

∂hi
{hi , hj} =

n∑
i,k=1

∂f

∂hi
ckij hk = 0, j = 1, . . . , n

that means
n∑

i=1

∂f

∂hi
ckij = 0, j , k = 1, . . . , n

The Poisson vector field associated to a function f is

h⃗i =
n∑

i,j,k=1

ckij hk
∂

∂hj

The Poisson vector field associated to a casimir is the zero vector field.
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The Heisenberg group

Let us go back to the main example, the Heisenberg group.

[X ,Y ] = Z

relabel (X ,Y ,Z ) = (X1,X2,X0)

Consider h1, h2, h0 : g
∗ → R

write down h⃗i for every i = 1, 2, 0.

h⃗1 = h0∂h2 , h⃗2 = −h0∂h1

h0 is a casimir: the corresponding vector field X0 is in the center.

Hence we have the coadjoint orbits.

if h0 = 0 then every point (h1, h2, 0) is an orbit

if h0 ̸= 0 then every plane h0 = λ is an orbit
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To compute the representations.

If we take η = (h1, h2, 0) ∈ g∗ then we can take h = g since
[g, g] = RX0 and the corresponding character

Xη(g) = e i(h1x+h2y)

where g = exX+yY+zZ . Notice that since we can take h = g there is
“nothing to induce”, so these are representation of the abelian R2.

If we take η = (0, 0, h0) ∈ g∗ with λ ̸= 0 as representative of the
orbit. We can take h = span{Y ,Z} since [h, h] = 0 and it is
maximal

Xη(g) = e iλz

what to do then?

we have to understand the induced representations!
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Induced representations

Let G be a nilpotent Lie group and H be a subgroup.

Given a representation X : H → U(V ) we want to build a
representation R : G → U(W ) that is induced by X.

We first build the Hilbert space W . Consider the set of functions
f : G → V such that

f (hg) = X(h)f (g) (14)

Notice that this means that

X(h)f = f ◦ Lh

For such a function, since X is unitary, we have that ∥f (hg)∥ is
independent on h and hence the norm of ∥f (Hg)∥ is well-defined,
where Hg denotes the left coset of g in H\G .
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Very abstract!

We require that ∫
H\G

∥f (Hg)∥2dµ <∞ (15)

where dµ is a right invariant measure on H\G .

Then we set

W = {f : G → V | f satisfies (14)-(15)}

Once we have set the space W we can define R : G → U(W ) as
follows

R(g)f = f ◦ Rg , i.e., (R(g)f )(g ′) = f (g ′g)

where the Rg is the right translation.

One can check that R is unitary and strongly continuous.
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Crucial for computations!

We have a natural projection π : G → H\G .

Given any section s : H\G → G (this means that π ◦ s = id on
H\G ) we can consider the image of the section K = s(H\G ) and
try to write elements of G as products H · K .

Write g ′g = hk we can split

(R(g)f )(g ′) = f (g ′g) = f (hk) = X(h)f (k) (16)

Crucial step: solve the Master equation

g ′g = h · k

it is enough to solve the Master equation for g ′ ∈ K (use the last
equality in (16) and f is a equivariant function)

K · G = H · K
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Back to Heisenberg

To compute the representations.

If we take η = (h1, h2, 0) ∈ g∗ then we can take h = g since
[g, g] = RX0 and the corresponding character

Xη(g) = e i(h1x+h2y)

where g = exX+yY+zZ . Notice that since we can take h = g there is
“nothing to induce”, so these are representation of the abelian R2.

If we take η = (0, 0, h0) ∈ g∗ with λ ̸= 0 as representative of the
orbit. We can take h = span{Y ,Z} since [h, h] = 0 and it is
maximal

Xη(g) = e iλz

what to do then?
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The induced representation in this case works as follows: we can take as
complement K = eRX and then try to write the elements as product
H · K as follows. Let us take k = eθX in K and g = eyY+zZexX general
element (it is convient to use these coordinates). We have

(Xη(g)f )(k) = f (kg)

and we have to write
eθX eyY+zZexX

as an element of H times an element of K . We have

eθX eyY+zZexX = eyY+(z+θy)Ze(θ+x)X

so that

(Rη(g)f )(k) = f (eyY+(z+θy)Ze(θ+x)X ) (17)

= Xη(e
yY+(z+θy)Z )f (e(θ+x)X ) (18)
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Last step

Writing explicitly the character and f̃ (θ) = f (eθX ) as a function on
L2(R) instead of L2(K ) we have

(Rη(g)f̃ )(θ) = e iλ(z+θy) f̃ (θ + x) (19)

One can recognise the representation of the Lie algebra which are
skew-adjoint operators on the same space of functions

X1 f̃ =
d

dt
f̃ , X2 f̃ = iλθf̃ , X0 f̃ = iλf̃

which indeed satisfy [X1,X2] = X0.

∆ = X 2
1 + X 2

2 =
d2

dθ2
− λ2θ2
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The trick for the Master equation

This is related to CHB formula

Lemma

Assume that the Lie algebra generated by A,B is nipotent. Then we
have that eAeBe−A = eC(A,B) where

C (A,B) = ead(A)B =
∞∑
k=0

adk(A)

k!
B = B + [A,B] +

1

2
[A, [A,B]] + . . .

Notice that the sum is finite due to nilpotency assumption.

In Heisenberg

eθX eyY+zZexX = eyY+zZ+[θX ,yY+zZ ]e(θ+x)X

since
eθX eyY+zZexX = eyY+(z+θy)Ze(θ+x)X
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An observation on the coordinates

The Heisenberg group g = span{X ,Y ,Z} with the only non trivial
commutator

[X ,Y ] = Z

Elements of G = exp(g) can be also written as follows
g = eyY ezZexX = eyY+zZexX . This means that we identify

(x , y , z) = eyY+zZexX

With this coordinate representation of G we have the group law

(x , y , z) · (x ′, y ′, z ′) = eyY+zZexX ey
′Y+z′Zex

′X

= e(y+y ′)Y+(z+z′+xy ′)Ze(x+x′)X

= (x + x ′, y + y ′, z + z ′ + xy ′)

using the same trick
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The Engel group

This is the nilpotent Lie group of dimension 4 with a basis of the Lie
algebra satisfying

[X1,X2] = X3, [X1,X3] = X4

In particular we can consider the smooth functions
h1, h2, h3, h4 : g

∗ → R. To find a basis of the Poisson vector fields it is
enough to write down h⃗i for every i = 1, 2, . . . , 5. Using our formulas

h⃗1 = h3∂h2 + h4∂h3 , h⃗2 = −h3∂h1

h⃗3 = −h4∂h1

while h4 is a casimir since the corresponding vector field X0 is in the
center. There is a second casimir.

f =
1

2
h23 − h2h4
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Coadjoint orbits

All coadjoint orbits are contained in the level sets{
h4 = λ,
1
2h

2
3 − λh2 = ν

(20)

Note that {f , hj} = 0 for j ≥ 2 (the only non zero commutators must
contain X1) and

{f , h1} = {h3, h1}h3 − {h2, h1}h4 = −h4h3 + h3h4 = 0

Combining this and the Poisson vector fields we have the orbits

(i) if λ = ν = 0 then every point (h1, h2, 0, 0) is an orbit

(ii) if λ = 0 and ν ̸= 0 then orbits are planes h4 = 0, h3 = ±
√
2ν

(iii) if λ ̸= 0 then the orbit coincides with the set defined by the
equations above
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New representations

Fix η = (0,−ν/λ, 0, λ) then we have a choice of maximal subalgebra

h = span{X2,X3,X4}, [h, h] = 0.

and the corresponding 1-dim representation

Xν,λ(e
x2X2+x3X3+x4X4) = e i(−

ν
λ x2+λx4).

We write points on G as

g = ex2X2+x3X3+x4X4ex1X1 .

We take a complement K = exp(RX1) and we solve the Master equation

eθX1ex2X2+x3X3+x4X4ex1X1 = (21)

= ex2X2+(x3+θx2)X3+(x4+θx3+
θ2

2 x2)X4e(θ+x1)X1 (22)
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We deduce that

Rν,λf (e
θX1) = Xν,λ(e

x2X2+(x3+θx2)X3+(x4+θx3+
θ2

2 x2)X4)f (e(θ+x1)X1)

that is in the notation f̃ (θ) = f (eθX1)

Rν,λ f̃ (θ) = exp

[
i

(
−ν
λ
x2 + λ(x4 + θx3 +

θ2

2
x2)

)]
f̃ (θ + x1)

Differentiating with respect to the xi at zero we get also the
representation of the Lie algebra

X1 f̃ =
d

dt
f̃ ,

X2 f̃ = i

(
λ

2
θ2 − ν

λ

)
f̃ ,

X3 f̃ = iλθf̃ ,

X4 f̃ = iλf̃

notice [X1,X2] = X3 and [X1,X3] = X4.
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The Laplacian

In particular notice that

X1 f̃ =
d

dt
f̃ ,

X2 f̃ = i

(
λ

2
θ2 − ν

λ

)
f̃ ,

Notice that the Laplacian is

X 2
1 + X 2

2 =
d2

dθ2
−
(
λ

2
θ2 − ν

λ

)2

This gives the basis of left-invariant vector fields

X1 = ∂x1 , X2 = ∂x2 + x1∂x3 +
x21
2
∂x4

X3 = ∂x3 + x1∂x4 , X4 = ∂x4
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Final comments for today?

Observation

Notice that the Laplacian is

X 2
1 + X 2

2 =
d2

dθ2
−
(
λ

2
θ2 − ν

λ

)2

it is the square of a polynomial of degree = 2(step-1)

polynomial which does not has term on degree step-2

it is arbitrary!

oscillator with polynomial potential!

what is the spectrum?

summability property and relation with the Plancherel formula

proof in the case of the Engel group, remark in higher steps
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