Strichartz estimates and sub-Riemannian geometry Lecture 3

Davide Barilari,

Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova

Spring School "Modern Aspects of Analysis on Lie groups", Gottinga, April 2-5, 2024

Università degli Studi di Padova

Strichartz estimate in the Heisenberg group

Let u_{0} in $\mathcal{S}\left(\mathbb{H}^{d}\right)$ be radial and consider the Cauchy problem

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta_{\mathbb{H}} u=0 \\
u_{\mid t=0}=u_{0}
\end{array}\right.
$$

Taking the partial Fourier transform with respect to the variable w

$$
\left\{\begin{array}{l}
i \frac{d}{d t} \mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda)=-4|\lambda|(2|m|+d) \mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda) \\
\mathcal{F}_{\mathbb{H}}(u)_{\mid t=0}=\mathcal{F}_{\mathbb{H}} u_{0}
\end{array}\right.
$$

$$
\mathcal{F}_{\mathbb{H}}(u)(t, n, m, \lambda)=e^{4 i t|\lambda|(2|m|+d)} \mathcal{F}_{\mathbb{H}}\left(u_{0}\right)(|n|,|n|, \lambda) \delta_{n, m}
$$

\rightarrow Notice that if we set $|m|=0$ we see the "transport" part

$$
\mathcal{F}_{\mathbb{H}}(u)(t, 0,0, \lambda)=e^{4 i t|\lambda| d} \mathcal{F}_{\mathbb{H}}\left(u_{0}\right)(0,0, \lambda) .
$$

Applying the inverse Fourier formula

$$
u(t, z, s)=\frac{2^{d-1}}{\pi^{d+1}} \int_{\widehat{\mathbb{H}}^{d}} \mathcal{W}(\widehat{x}, z, s) e^{4 i t|\lambda|(2|m|+d)} \mathcal{F}_{\mathbb{H}}\left(u_{0}\right)(|n|,|n|, \lambda) \delta_{n, m} d \widehat{x} .
$$

Re-expressed as the inverse Fourier transform in $\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d}$ of $\mathcal{F}_{\mathbb{H}}\left(u_{0}\right) d \Sigma$,

$$
\Sigma \stackrel{\text { def }}{=}\left\{(\alpha, \widehat{x})=(\alpha,(n, n, \lambda)) \in \widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d} / \alpha=4|\lambda|(2|n|+d)\right\} .
$$

endow Σ with the measure $d \Sigma$ induced by the projection $\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d} \rightarrow \widehat{\mathbb{H}}^{d}$

$$
\int_{\widehat{\mathbb{D}}} \Phi(\alpha, \widehat{x}) d \Sigma(\alpha, \widehat{x})=\int_{\widehat{\mathbb{H}}^{d}} \Phi(4|\lambda|(2|m|+d), \widehat{x}) d \widehat{x},
$$

Theorem (Bahouri, DB, Gallagher, '21)
If $1 \leq q \leq p \leq 2$, then for f radial

$$
\begin{equation*}
\left\|\left.\mathcal{F}_{\mathbb{R} \times \mathbb{H}^{d}}(f)\right|_{\Sigma}\right\|_{L^{2}(d \Sigma)} \leq C_{p, q}\|f\|_{L_{s}^{1} L_{t}^{q} L_{\Sigma}^{p}}, \tag{1}
\end{equation*}
$$

Using dual inequality, assuming that $\mathcal{F}_{\mathbb{H}} u_{0}$ is localized in the unit ball

For any $2 \leq p \leq q \leq \infty$

$$
\|u\|_{L_{s}^{\infty} L_{L}^{q} L_{z}^{p}} \leq C\left\|\mathcal{F}_{\mathbb{H}} u_{0}\right\|_{L^{2}\left(\widehat{\mathbb{H}}^{d}\right)}=C\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)},
$$

- If u_{0} is frequency localized in the ball \mathcal{B}_{Λ},

$$
u_{\Lambda}(t, z, s)=u\left(\Lambda^{-2} t, \Lambda^{-1} z, \Lambda^{-2} s\right), \quad u_{0, \Lambda}(z, s)=u_{0}\left(\Lambda^{-1} z, \Lambda^{-2} s\right)
$$

- we have

$$
\left\|u_{\Lambda}\right\|_{L_{s}^{\infty} L_{L}^{q} L_{z}^{p}}=\Lambda^{\frac{2}{q}+\frac{2 d}{p}}\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{z}^{p}}, \quad\left\|u_{0, \Lambda}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)}=\Lambda^{\frac{Q}{2}}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)},
$$

- we infer for $\sigma=\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{p}$

$$
\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{z}^{\rho}} \leq C \Lambda^{\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{p}}\left\|u_{0}\right\|_{L^{2}\left(\mathbb{H}^{d}\right)} \leq C\left\|u_{0}\right\|_{H^{\sigma}\left(\mathbb{H}^{d}\right)} .
$$

The inhomogeneous case

- Denoting by $(\mathcal{U}(t))_{t \in \mathbb{R}}$ the solution operator of the Schrödinger equation on the Heisenberg group,
- $(\mathcal{U}(t))_{t \in \mathbb{R}}$ is a one-parameter group of unitary operators on $L^{2}\left(\mathbb{H}^{d}\right)$.
- the solution to the inhomogeneous equation

$$
\left\{\begin{array}{c}
i \partial_{t} u-\Delta_{\mathbb{H}} u=f \\
u_{\mid t=0}=0,
\end{array}\right.
$$

writes

$$
\begin{equation*}
u(t, \cdot)=-i \int_{0}^{t} u\left(t-t^{\prime}\right) f\left(t^{\prime}, \cdot\right) d t^{\prime} \tag{2}
\end{equation*}
$$

It is enough to check that it satisfies, for all admissible pairs (p, q),

$$
\begin{equation*}
\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{\Sigma}^{p}} \lesssim\|f\|_{L_{t}^{1} H^{\sigma}\left(\mathbb{H}^{d}\right)} \tag{3}
\end{equation*}
$$

with $\sigma=\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{p}$.

- By formula of the solution, we have for all $s \in \mathbb{R}$,

$$
\|u(t, \cdot, s)\|_{L_{z}^{p}} \leq \int_{\mathbb{R}}\left\|U(t) U\left(-t^{\prime}\right) f\left(t^{\prime}, \cdot, s\right)\right\|_{L_{z}^{p}} d t^{\prime}
$$

- Therefore, still for all s,

$$
\|u(\cdot, \cdot, s)\|_{L_{L^{q}}^{p} L_{z}^{p}} \leq \int_{\mathbb{R}}\left\|U(\cdot) U\left(-t^{\prime}\right) f\left(t^{\prime}, \cdot, s\right)\right\|_{L_{t}^{q} L_{2}^{p}} d t^{\prime}
$$

- Let us first assume that, for all t, the source term $f(t, \cdot)$ is frequency localized in in the unit ball \mathcal{B}_{1}
- if g is frequency localized in a unit ball, then for all $2 \leq p \leq q \leq \infty$

$$
\begin{equation*}
\|U(t) g\|_{L_{s}^{\infty} L_{t}^{q} L_{z}^{p}} \lesssim\|g\|_{L^{2}\left(\mathbb{H}^{d}\right)} . \tag{4}
\end{equation*}
$$

- By formula of the solution, we have for all $s \in \mathbb{R}$,

$$
\|u(t, \cdot, s)\|_{L_{z}^{p}} \leq \int_{\mathbb{R}}\left\|U(t) U\left(-t^{\prime}\right) f\left(t^{\prime}, \cdot, s\right)\right\|_{L_{z}^{p}} d t^{\prime}
$$

- Therefore, still for all s,

$$
\|u(\cdot, \cdot, s)\|_{L_{L^{q}}^{p} L_{z}^{p}} \leq \int_{\mathbb{R}}\left\|U(\cdot) U\left(-t^{\prime}\right) f\left(t^{\prime}, \cdot, s\right)\right\|_{L_{t}^{q} L_{2}^{p}} d t^{\prime}
$$

- Let us first assume that, for all t, the source term $f(t, \cdot)$ is frequency localized in in the unit ball \mathcal{B}_{1}
- if g is frequency localized in a unit ball, then for all $2 \leq p \leq q \leq \infty$

$$
\begin{equation*}
\|U(t) g\|_{L_{s}^{\infty} L_{t}^{q} L_{2}^{p}} \lesssim\|g\|_{L^{2}\left(\mathbb{H}^{d}\right)} . \tag{5}
\end{equation*}
$$

- Using homog Strichartz, we deduce that

$$
\|u\|_{L_{s}^{\infty} L_{L^{q}} L_{r}^{p}} \leq \int_{\mathbb{R}}\left\|\chi\left(-t^{\prime}\right) f\left(t^{\prime}, \cdot\right)\right\|_{L^{2}\left(\mathbb{H}^{d}\right)} d t^{\prime} .
$$

- Since $\mathcal{U}\left(-t^{\prime}\right)$ is unitary on $L^{2}\left(\mathbb{H}^{d}\right)$, we readily gather that

$$
\begin{equation*}
\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{r}^{p}} \leq \int_{\mathbb{R}}\left\|f\left(t^{\prime}, \cdot\right)\right\|_{L^{2}\left(\mathbb{H}^{d}\right)} d t^{\prime} \tag{6}
\end{equation*}
$$

- Now if for all $t, f(t, \cdot)$ is frequency localized in a ball of size Λ, then setting

$$
f_{\Lambda}(t, \cdot) \stackrel{\text { def }}{=} \Lambda^{-2} f\left(\Lambda^{-2} t, \cdot\right) \circ \delta_{\Lambda^{-1}}
$$

- we find that on the one hand, $f_{\Lambda}(t, \cdot)$ is frequency localized in a unit ball for all t, and on the other hand that the solution to the Cauchy problem

$$
\left\{\begin{array}{c}
i \partial_{t} u_{\Lambda}-\Delta_{\mathbb{H}} u_{\Lambda}=f_{\Lambda} \\
u_{\mid t=0}=0,
\end{array}\right.
$$

writes $u_{\Lambda}(t, w)=u\left(\Lambda^{-2} t, \cdot\right) \circ \delta_{\Lambda^{-1}}$.

Now by scale invariance, we have

$$
\int_{\mathbb{R}}\left\|f_{\Lambda}\left(t^{\prime}, \cdot\right)\right\|_{L^{2}\left(\mathbb{H}^{d}\right)} d t^{\prime}=\Lambda^{\frac{Q}{2}} \int_{\mathbb{R}}\left\|f\left(t^{\prime}, \cdot\right)\right\|_{L^{2}\left(\mathbb{H}^{d}\right)} d t^{\prime}
$$

and

$$
\left\|u_{\Lambda}\right\|_{L_{s}^{\infty} L_{t}^{q} L_{Y}^{p}}=\Lambda^{\frac{2}{q}+\frac{2 d}{p}}\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{Y}^{p}} .
$$

Consequently, we get

$$
\|u\|_{L_{s}^{\infty} L_{t}^{q} L_{r}^{p}} \leq C \int_{\mathbb{R}} \Lambda^{\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{P}}\left\|f\left(t^{\prime}, \cdot\right)\right\|_{L^{2}\left(\mathbb{H}^{d}\right)} d t^{\prime} .
$$

Since $\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{p} \geq 0$, we have

$$
\Lambda^{\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{\rho}}\left\|f\left(t^{\prime}, \cdot\right)\right\|_{L^{2}\left(\mathbb{H}^{d}\right)} \lesssim\left\|f\left(t^{\prime}, \cdot\right)\right\|_{H^{\frac{Q}{2}-\frac{2}{q}-\frac{2 d}{P}}\left(\mathbb{H}^{d}\right)},
$$

and then integrate in t to conclude

Fourier restriction

The statement

Theorem (Bahouri, DB, Gallagher, '21)

If $1 \leq q \leq p \leq 2$, then for f radial

$$
\begin{equation*}
\left\|\left.\mathcal{F}_{\mathbb{R} \times \mathbb{H}^{d}}(f)\right|_{\Sigma}\right\|_{L^{2}(d \Sigma)} \leq C_{p, q}\|f\|_{L_{s}^{L} L_{t}^{q} L_{z}^{\rho}}, \tag{7}
\end{equation*}
$$

and its dual version

Example

for any $2 \leq p^{\prime} \leq q^{\prime} \leq \infty$, there holds

$$
\begin{equation*}
\left\|\mathcal{F}_{\widehat{\mathbb{R}} \times \widehat{\mathbb{H}}^{d}}^{-1}\left(\theta_{\left.\mid \Sigma_{\mathrm{loc}}\right)}\right)\right\|_{L_{s}^{\infty} L_{t}^{L^{\prime}} L_{r}^{p^{\prime}}} \leq\left\|\theta_{\mid \Sigma_{\text {loc }}}\right\|_{L^{2}\left(d \Sigma_{\text {loc }}\right)}, \tag{8}
\end{equation*}
$$

The completion of the frequency set

- The frequency set $\widetilde{\mathbb{H}}^{d}$ comes with a measure

$$
\int_{\widetilde{\mathbb{H}} \mathbb{N}^{d}} \theta(\widehat{x}) d \widehat{x} \stackrel{\text { def }}{=} \int_{\mathbb{R}} \sum_{(n, m) \in \mathbb{N}^{2 d}} \theta(n, m, \lambda)|\lambda|^{d} d \lambda
$$

- endowed with a distance

$$
d\left(\widehat{x}, \widehat{x}^{\prime}\right) \stackrel{\text { def }}{=}\left|\lambda(n+m)-\lambda^{\prime}\left(n^{\prime}+m^{\prime}\right)\right|_{\ell^{1}}+\left|(n-m)-\left(n^{\prime}-m^{\prime}\right)\right|_{\ell^{1}}+d\left|\lambda-\lambda^{\prime}\right|,
$$

- $\left(\widetilde{\mathbb{H}}^{d}, d\right)$ it is not complete $[\rightarrow]$ build the metric completion $\widehat{\mathbb{H}}^{d}$

Some advantages of [Bahouri, Chemin, Danchin]

- definition of $\mathcal{S}\left(\widehat{\mathbb{H}}^{d}\right)$,
- interpretation smoothness \leftrightarrow decay
\rightarrow give a meaning to the unit sphere $\mathbb{S}_{\widehat{\mathbb{H}}^{d}}$ of $\widehat{\mathbb{H}}^{d}$.

On the surface measure

Recall that for θ being the Fourier transform of a radial function

$$
\int_{\widehat{\mathbb{H}^{d}}} \theta(\widehat{x}) d \widehat{x}=\int_{\mathbb{R}} \sum_{n \in \mathbb{N}^{d}} \theta(n, n, \lambda)|\lambda|^{d} d \lambda .
$$

For spherical measures (on sphere of radius R) we want

$$
\int_{\widehat{\mathbb{H}}^{d}} \theta(\widehat{x}) d \widehat{x}=\int_{0}^{\infty}\left(\int_{\mathbb{S}_{\mathbb{R}^{d}} d} \theta(\widehat{x}) d \sigma_{R}(\widehat{x})\right) d R
$$

So we have (change of variable $R^{2}=(2|n|+d)|\lambda|$)

$$
\int_{\mathbb{S}_{\mathbb{R}^{R} d}} \theta(\widehat{x}) d \sigma_{R}(\widehat{x})=\sum_{n \in \mathbb{N}^{d}} \frac{2 R^{2 d+1}}{(2|n|+d)^{d+1}}\left(\sum_{ \pm} \theta\left(n, n, \frac{ \pm R^{2}}{2|n|+d}\right)\right)
$$

On the surface measure, $R=1$

Recall that for θ Fourier transform of radial function

$$
\int_{\widehat{\mathbb{H}}^{d}} \theta(\widehat{x}) d \widehat{x}=\int_{\mathbb{R}} \sum_{n \in \mathbb{N}^{d}} \theta(n, n, \lambda)|\lambda|^{d} d \lambda
$$

For spherical measures (on sphere of radius R) we want

$$
\int_{\widehat{\mathbb{H}}^{d}} \theta(\widehat{x}) d \widehat{x}=\int_{0}^{\infty}\left(\int_{\mathbb{S}_{\mathbb{H}^{d}}} \theta(\widehat{x}) d \sigma_{R}(\widehat{x})\right) d R
$$

So we have (change of variable $R^{2}=(2|n|+d)|\lambda|$)

$$
\int_{\mathbb{S}_{\mathbb{H}^{d}}} \theta(\widehat{x}) d \sigma_{1}(\widehat{x})=\sum_{n \in \mathbb{N}^{d}} \frac{2}{(2|n|+d)^{d+1}}\left(\sum_{ \pm} \theta\left(n, n, \frac{ \pm 1}{2|n|+d}\right)\right)
$$

The result of Müller

- D.Müller [Annals of Math, 1990]: works in terms of spectral decomposition

$$
L=\int_{0}^{\infty} \lambda d E(\lambda), \quad \mathcal{P} f=f * G
$$

- proves the estimate ("restriction for the sphere"): if $1 \leq p \leq 2$

$$
\left[\sum_{n \in \mathbb{N}^{d}} \frac{1}{(2|n|+d)^{d+1}}\left(\sum_{ \pm}\left|\mathscr{F}_{\mathbb{H}}(f)\left(n, n, \frac{ \pm 1}{2|n|+d}\right)\right|^{2}\right)\right]^{\frac{1}{2}} \leq C_{p}\|f\|_{L_{s}^{L} L_{2}^{p}}
$$

- can be reinterpreted as follows: If $1 \leq p \leq 2$, then for radial f

$$
\begin{equation*}
\left\|\mathcal{F}_{\mathbb{H}}(f)_{\mathbb{S}_{\mathbb{H} d}^{d}}\right\|_{L^{2}\left(\mathbb{S}_{\mathbb{H} d}\right)} \leq C_{p}\|f\|_{L_{s}^{1} L_{z}^{L}}, \tag{9}
\end{equation*}
$$

\rightarrow valid on the full interval: for $p \in[1,2]$
\rightarrow crucial: the anisotropic norm $L_{s}^{1} L_{z}^{p}(r=1$ is necessary in vertical)

- false for $p>2$

Fourier transform of the surface measure

Up to a measure zero set on $\hat{\mathbb{H}}^{d}$

$$
\mathbb{S}_{\widehat{\mathbb{H}}^{d}}=\left\{(n, n, \lambda) \in \widehat{\mathbb{H}}^{d} /(2|n|+d)|\lambda|=1\right\}
$$

By definition, the tempered distribution $G=\mathcal{F}_{\mathbb{H}}^{-1}\left(d \sigma_{\mathbb{S}_{\widehat{\mathbb{H}}}}\right)$

Lemma

G is the bounded function on \mathbb{H}^{d} defined by

$$
\begin{equation*}
G(z, s)=\frac{2^{d}}{\pi^{d+1}} \sum_{n \in \mathbb{N}^{d}} \frac{1}{(2|n|+d)^{d+1}} \cos \left(\frac{s}{2|n|+d}\right) \mathcal{W}\left(n, n, 1, \frac{z}{\sqrt{2|n|+d}}\right) \tag{10}
\end{equation*}
$$

For the sphere of radius $R^{1 / 2}$ we have the homogeneity property:

$$
\begin{equation*}
G_{R}(z, s) \stackrel{\text { def }}{=} R^{d}\left(G \circ \delta_{\sqrt{R}}\right)(z, s) \tag{11}
\end{equation*}
$$

Measure on the paraboloid

Proceeding as for the restriction theorem on the sphere of $\widehat{\mathbb{H}}^{d}$, let us first compute

$$
G_{\Sigma_{\mathrm{loc}}} \stackrel{\text { def }}{=} \mathcal{F}_{\hat{\mathbb{R}} \times \hat{\mathbb{H}}^{d}}^{-1}\left(d \Sigma_{\mathrm{loc}}\right)
$$

Lemma

With the above notation, $G_{\Sigma_{\text {loc }}}$ is the bounded function on $\mathbb{R} \times \hat{\mathbb{H}}^{d}$ defined by

$$
\begin{equation*}
G_{\Sigma_{\mathrm{loc}}}(t, w)=2 \pi \int_{0}^{\infty} G_{\alpha}(w) e^{-i t \alpha} \psi(\alpha) d \alpha, \tag{12}
\end{equation*}
$$

where G_{R} is the inverse Fourier of the measure of sphere of radius $R^{1 / 2}$.
This gives for all f in $\mathcal{S}_{\text {rad }}(\mathcal{D})$

$$
\begin{equation*}
\left(R_{\Sigma_{\mathrm{loc}}^{*}}^{*} R_{\Sigma_{\mathrm{loc}}} f\right)(t, z, s)=\left(\frac{\pi}{2}\right)^{d}\left(G_{\Sigma_{\mathrm{loc}} \star} \star \check{f}\right)(-t,-z, s), \tag{13}
\end{equation*}
$$

Reduction to the estimate on convolution

Consider the restriction operator

$$
R_{\Sigma_{\mathrm{loc}}} f=\mathcal{F}_{\mathbb{R} \times \mathbb{H}^{d}}(f)_{\mid \Sigma_{\mathrm{loc}}}
$$

Indeed applying the Hölder inequality, we deduce that

$$
\begin{aligned}
& \left\|R_{\Sigma_{\text {loc }}} f\right\|_{L^{2}\left(\Sigma_{\text {loc }}\right)}^{2} \leq\left\|R_{\Sigma_{\text {loc }}^{*}}^{*} R \Sigma_{\Sigma_{\text {loc }}} f\right\|_{L_{s}^{\infty} L_{t}^{q^{\prime}} L_{r}^{\rho_{r}^{\prime}}}\|f\|_{L_{s}^{L} L_{t}^{q} L_{Y}^{p}} \\
& \leq\left\|\check{f} *_{\mathcal{D}} G_{\Sigma_{\text {loc }}}\right\|_{L_{s}^{\infty} L_{t}^{q^{\prime} L_{\gamma}^{\prime}}}\|f\|_{L_{s}^{1} L_{t}^{q} L_{Y}^{p}},
\end{aligned}
$$

Then as in the Euclidean case, we are reduced to proving that $R_{\Sigma_{\text {loc }}^{*}}^{*} R_{\Sigma_{\text {loc }}}$ is bounded from $L_{s}^{1} L_{t}^{q} L_{z}^{p}$ into $L_{s}^{\infty} L_{t}^{q^{\prime}} L_{z}^{p^{\prime}}$.

Proof for $1 \leq p<2$ (non endpoint)

Main lemma

$$
\left\|f \star G_{\Sigma_{\text {loc }}}\right\|_{L_{s}^{\infty} L_{t}^{q^{\prime}} L_{z}^{\prime^{\prime}}} \lesssim\| \| \mathcal{F}_{\mathbb{R}}(f)(-\alpha, \cdot)\left\|_{L_{z}^{p} L_{s}^{L}} \alpha^{d\left(1-\frac{2}{p^{\prime}}\right)} \psi(\alpha)\right\|_{L_{\alpha}^{q}}
$$

- Hölder estimate in $\alpha+$ Hausdorff-Young inequality: for any $a \geq 2$

$$
\begin{aligned}
\left\|f \star G_{\Sigma_{\text {loc }}}\right\|_{L_{s}^{\infty} L_{t}^{q^{\prime}} L_{z}^{p^{\prime}}} & \lesssim\left\|\mathcal{F}_{\mathbb{R}}(f)\right\|_{L_{\alpha}^{a} L_{z}^{L} L_{s}^{1}}\left\|\alpha^{d\left(1-\frac{2}{\left.p^{\prime}\right)}\right.} \psi(\alpha)\right\|_{L_{\alpha}^{b}} \\
& \lesssim\|f\|_{L_{t}^{L_{t}^{\prime}} L_{L}^{p} L_{s}^{L}}\left\|\alpha^{d\left(1-\frac{2}{\left.p^{\prime}\right)}\right.} \psi(\alpha)\right\|_{L_{\alpha}^{b}(\mathbb{R})},
\end{aligned}
$$

where a^{\prime} is the conjugate exponent of a and $\frac{1}{a}+\frac{1}{b}=\frac{1}{q}$.

- Finally for $a^{\prime}=q$ and Minkowski's inequality, we get for $q^{\prime} \geq p^{\prime}>2$

$$
\left\|f \star G_{\Sigma_{\text {loc }}}\right\|_{L_{s}^{\infty} L_{t}^{q^{\prime}} L_{z}^{p^{\prime}}} \lesssim\|f\|_{L_{s}^{1}}^{1 q L_{t}^{q} L_{2}^{p}}
$$

\rightarrow endpoint $p=2$: ad hoc argument

Chapter 5: Kirillov Theory for Nilpotent groups

Representations and basic tools

Here V is a vector space finite or infinite dimensional.

- Given a Lie group G a representation of G is a smooth homomorphism

$$
\mathcal{R}: G \rightarrow G L(V), \quad \mathcal{R}\left(g_{1} g_{2}\right)=\mathcal{R}\left(g_{1}\right) \mathcal{R}\left(g_{2}\right)
$$

where in the left hand side we have the product in G while in the right hand side the composition in $G L(V)$.

- A subspace W of V is an invariant subspace if $\mathcal{R}(g) w \in W$ for all $g \in G$ and $w \in W$.
- The representation is said to be irreducible if the only invariant subspaces of V are the zero space and V itself.

Important 1D unitary representations

- if \mathcal{R} map into the group of unitary operators, we say unitary representation.
- The representation is said one-dimensional if V has dimension 1.
- For $V=\mathbb{C}$, a 1-dim representation of G will be a smooth homomorphism

$$
X: G \rightarrow U(\mathbb{C})=S^{1}
$$

■ Let G nilpotent, $\eta \in \mathfrak{g}^{*}$ and $H \subset G$ be such that $\eta([\mathfrak{h}, \mathfrak{h}])=0$: we can define the one-dimensional representation

$$
\begin{gathered}
X_{\eta}: H \rightarrow S^{1}=U(\mathbb{C}) \\
X_{\eta}\left(e^{X}\right)=e^{i\langle\eta, X\rangle}, \quad X \in \mathfrak{h} .
\end{gathered}
$$

where as usual $\langle\eta, X\rangle$ denotes the duality product \mathfrak{g}^{*} and \mathfrak{g}.

Kirillov theory

The Kirillov theory gives a way to describe all possible irreducible unitary representations of G in terms of coadjoint orbits of the group.

An algorithm in four steps:
1 Fix an element $\eta \in \mathfrak{g}^{*}$.
2 Fix any maximal Lie subalgebra \mathfrak{h} of \mathfrak{g} s.t. $\eta([\mathfrak{h}, \mathfrak{h}])=0$.
3 Consider the one-dimensional representation

$$
\begin{gathered}
X_{\eta, \mathfrak{h}}: H \rightarrow S^{1}=U(\mathbb{C}) \\
X_{\eta, \mathfrak{h}}\left(e^{x}\right)=e^{i\langle\eta, X\rangle}, \quad X \in \mathfrak{h} .
\end{gathered}
$$

where as usual $\langle\eta, X\rangle$ denotes the duality product \mathfrak{g}^{*} and \mathfrak{g}.
4 Compute the induced representation $\mathcal{R}_{\eta, \mathfrak{h}}: G \rightarrow U(W)$. \rightarrow a way to lift a representation to the group G

Coadjoint orbits

Given a Lie group G

- the conjugation map $C_{g}: G \rightarrow G$ given by $C_{g}(h)=g h g^{-1}$.
- the adjoint action of G onto its Lie algebra

$$
\operatorname{Ad}_{\mathfrak{g}}: \mathfrak{g} \rightarrow \mathfrak{g}, \quad \operatorname{Ad}_{g}=\left(C_{g}\right)_{*}
$$

■ Notice that $\operatorname{Ad}: G \rightarrow G L(\mathfrak{g})$ given by $g \mapsto \operatorname{Ad}_{g}$ is a finite dimensional representation of G.

- This induces the so called coadjoint action dual of the above

$$
\operatorname{Ad}_{g}^{*}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}, \quad\left\langle\operatorname{Ad}_{g}^{*} \eta, v\right\rangle:=\left\langle\eta,\left(\operatorname{Ad}_{g^{-1}}\right)_{*} v\right\rangle
$$

■ Notice that Ad^{*} is indeed an action of G on \mathfrak{g}^{*}. Given $\eta \in \mathfrak{g}^{*}$ the coadjoint orbit of η is by definition the set

$$
\mathcal{O}_{\eta}=\left\{\operatorname{Ad}_{g}^{*} \eta \mid g \in G\right\}
$$

Kirillov theorem

The Kirillov theorem states the following:

Theorem

The map which assigns to $\eta \in \mathfrak{g}^{*} / G$ to $\mathcal{R}_{\eta, \mathfrak{h}}$ in \widehat{G} (where \mathfrak{h} is some maximal Lie subalgebra) is a bijection. More precisely:
(a) every irreducible unitary representation of a nilpotent Lie group G is of the form $\mathcal{R}_{\eta, \mathfrak{h}}$ for some η and H
(b) two representations $\mathcal{R}_{\eta, \mathfrak{h}}$ and $\mathcal{R}_{\eta^{\prime}, \mathfrak{h}}$ are equivalent if and only if η and η^{\prime} belong to the same orbit.

Here two irreducible unitary representations $R_{1}: G \rightarrow U\left(W_{1}\right)$ and $R_{2}: G \rightarrow U\left(W_{2}\right)$ are equivalent if there exists an isometry between the Hilbert spaces $T: W_{1} \rightarrow W_{2}$ such that

$$
T \circ R_{1}(g) \circ T^{-1}=R_{2}(g), \quad \forall g \in G
$$

Kirillov theory

The Kirillov theory gives a way to describe all possible irreducible unitary representations of G in terms of coadjoint orbits of the group.

An algorithm in four steps:
1 Fix an element $\eta \in \mathfrak{g}^{*}$ in every leaf
2 Fix any maximal Lie subalgebra \mathfrak{h} of \mathfrak{g} s.t. $\eta([\mathfrak{h}, \mathfrak{h}])=0$.
3 Consider the one-dimensional representation

$$
\begin{gathered}
X_{\eta, \mathfrak{h}}: H \rightarrow S^{1}=U(\mathbb{C}) \\
X_{\eta, \mathfrak{h}}\left(e^{x}\right)=e^{i\langle\eta, X\rangle}, \quad X \in \mathfrak{h} .
\end{gathered}
$$

where as usual $\langle\eta, X\rangle$ denotes the duality product \mathfrak{g}^{*} and \mathfrak{g}.
4 Compute the induced representation $\mathcal{R}_{\eta, \mathfrak{h}}: G \rightarrow U(W)$. \rightarrow a way to lift a representation to the group G

Poisson structure on the dual \mathfrak{g}^{*}

Let $a, b: \mathfrak{g}^{*} \rightarrow \mathbb{R}$ be smooth functions.
■ Poisson manifold with the bracket

$$
\{a, b\}(\eta)=\langle\eta,[d a, d b]\rangle
$$

■ Given a smooth $a: \mathfrak{g}^{*} \rightarrow \mathbb{R}$ we can define its Poisson vector field by setting for every smooth $b: \mathfrak{g}^{*} \rightarrow \mathbb{R}$

$$
\vec{a}(b)=\{a, b\}
$$

■ The set of all Poisson vector at a point defines a distribution

$$
D_{\eta}=\left\{\vec{a}(\eta) \mid a \in C^{\infty}\left(\mathfrak{g}^{*}\right)\right\}
$$

which has no constant rank (notice $D_{0}=\{0\}$).

Poisson orbit

We can define also the Poisson orbit of $\eta \in \mathfrak{g}^{*}$ in the sense of dynamical systems as follows

$$
\mathcal{O}_{\eta}^{P}=\left\{e^{t_{1} \vec{a}_{1}} \circ \ldots \circ e^{t_{\ell} \overrightarrow{a_{\ell}}}(\eta) \mid \ell \in \mathbb{N}, t_{i} \in \mathbb{R}, a_{i} \in C^{\infty}\left(\mathfrak{g}^{*}\right)\right\}
$$

Notice that both \mathcal{O}_{η}^{P} and \mathcal{O}_{η} are subsets of \mathfrak{g}^{*} containing η.

Proposition

For every $\eta \in \mathfrak{g}^{*}$ we have the equality $\mathcal{O}_{\eta}^{P}=\mathcal{O}_{\eta}$. Each orbit is an even dimensional symplectic manifold.

It is enough to use as a_{i} the linear on fibers function associated to a basis

$$
h_{i}(p, x)=p \cdot X_{i}(x)
$$

Computation of coadjoint orbits

Fix a basis of the Lie algebra X_{1}, \ldots, X_{n} such that

$$
\left[X_{i}, X_{j}\right]=c_{i j}^{k} X_{k}
$$

for some constants $c_{i j}^{k}$. Define the corresponding coordinates on the fibers of $T^{*} G$ given by

$$
h_{i}(p, x)=p \cdot X_{i}(x)
$$

These can be thought as smooth functions on \mathfrak{g}^{*} and satisfy

$$
\left\{h_{i}, h_{j}\right\}=c_{i j}^{k} h_{k} .
$$

We recall that a casimir is a smooth function $f \in C^{\infty}\left(\mathfrak{g}^{*}\right)$ such that

$$
\{a, f\}=0, \quad \forall a \in C^{\infty}\left(\mathfrak{g}^{*}\right)
$$

Casimir

If we write $f=f\left(h_{1}, \ldots, h_{n}\right)$ to check that f is a casimir it is enough to check that

$$
\left\{f, h_{j}\right\}=\sum_{i=1}^{n} \frac{\partial f}{\partial h_{i}}\left\{h_{i}, h_{j}\right\}=\sum_{i, k=1}^{n} \frac{\partial f}{\partial h_{i}} c_{i j}^{k} h_{k}=0, \quad j=1, \ldots, n
$$

that means

$$
\sum_{i=1}^{n} \frac{\partial f}{\partial h_{i}} c_{i j}^{k}=0, \quad j, k=1, \ldots, n
$$

The Poisson vector field associated to a function f is

$$
\vec{f}=\sum_{i, j, k=1}^{n} \frac{\partial f}{\partial h_{i}} c_{i j}^{k} h_{k} \frac{\partial}{\partial h_{j}}
$$

The Poisson vector field associated to a casimir is the zero vector field.

Casimir

If we write $f=f\left(h_{1}, \ldots, h_{n}\right)$ to check that f is a casimir it is enough to check that

$$
\left\{f, h_{j}\right\}=\sum_{i=1}^{n} \frac{\partial f}{\partial h_{i}}\left\{h_{i}, h_{j}\right\}=\sum_{i, k=1}^{n} \frac{\partial f}{\partial h_{i}} c_{i j}^{k} h_{k}=0, \quad j=1, \ldots, n
$$

that means

$$
\sum_{i=1}^{n} \frac{\partial f}{\partial h_{i}} c_{i j}^{k}=0, \quad j, k=1, \ldots, n
$$

The Poisson vector field associated to a function f is

$$
\vec{h}_{i}=\sum_{i, j, k=1}^{n} c_{i j}^{k} h_{k} \frac{\partial}{\partial h_{j}}
$$

The Poisson vector field associated to a casimir is the zero vector field.

The Heisenberg group

Let us go back to the main example, the Heisenberg group.

$$
[X, Y]=Z
$$

- relabel $(X, Y, Z)=\left(X_{1}, X_{2}, X_{0}\right)$
- Consider $h_{1}, h_{2}, h_{0}: \mathfrak{g}^{*} \rightarrow \mathbb{R}$
- write down \vec{h}_{i} for every $i=1,2,0$.

$$
\vec{h}_{1}=h_{0} \partial_{h_{2}}, \quad \vec{h}_{2}=-h_{0} \partial_{h_{1}}
$$

- h_{0} is a casimir: the corresponding vector field X_{0} is in the center. Hence we have the coadjoint orbits.
- if $h_{0}=0$ then every point $\left(h_{1}, h_{2}, 0\right)$ is an orbit
- if $h_{0} \neq 0$ then every plane $h_{0}=\lambda$ is an orbit

To compute the representations.

- If we take $\eta=\left(h_{1}, h_{2}, 0\right) \in \mathfrak{g}^{*}$ then we can take $\mathfrak{h}=\mathfrak{g}$ since $[\mathfrak{g}, \mathfrak{g}]=\mathbb{R} X_{0}$ and the corresponding character

$$
X_{\eta}(g)=e^{i\left(h_{1} x+h_{2} y\right)}
$$

where $g=e^{x X+y Y+z Z}$. Notice that since we can take $\mathfrak{h}=\mathfrak{g}$ there is "nothing to induce", so these are representation of the abelian \mathbb{R}^{2}.

- If we take $\eta=\left(0,0, h_{0}\right) \in \mathfrak{g}^{*}$ with $\lambda \neq 0$ as representative of the orbit. We can take $\mathfrak{h}=\operatorname{span}\{Y, Z\}$ since $[\mathfrak{h}, \mathfrak{h}]=0$ and it is maximal

$$
X_{\eta}(g)=e^{i \lambda z}
$$

what to do then?

> we have to understand the induced representations!

Induced representations

Let G be a nilpotent Lie group and H be a subgroup.
■ Given a representation $X: H \rightarrow U(V)$ we want to build a representation $\mathcal{R}: G \rightarrow U(W)$ that is induced by \mathcal{X}.
■ We first build the Hilbert space W. Consider the set of functions $f: G \rightarrow V$ such that

$$
\begin{equation*}
f(h g)=X(h) f(g) \tag{14}
\end{equation*}
$$

- Notice that this means that

$$
X(h) f=f \circ L_{h}
$$

- For such a function, since X is unitary, we have that $\|f(h g)\|$ is independent on h and hence the norm of $\|f(H g)\|$ is well-defined, where $H g$ denotes the left coset of g in $H \backslash G$.

Very abstract!

- We require that

$$
\begin{equation*}
\int_{H \backslash G}\|f(H g)\|^{2} d \mu<\infty \tag{15}
\end{equation*}
$$

where $d \mu$ is a right invariant measure on $H \backslash G$.

- Then we set

$$
W=\{f: G \rightarrow V \mid f \text { satisfies (14)-(15) }\}
$$

- Once we have set the space W we can define $\mathcal{R}: G \rightarrow U(W)$ as follows

$$
\mathcal{R}(g) f=f \circ R_{g}, \quad \text { i.e., }(\mathcal{R}(g) f)\left(g^{\prime}\right)=f\left(g^{\prime} g\right)
$$

where the R_{g} is the right translation.

- One can check that \mathcal{R} is unitary and strongly continuous.

Crucial for computations!

■ We have a natural projection $\pi: G \rightarrow H \backslash G$.

- Given any section $s: H \backslash G \rightarrow G$ (this means that $\pi \circ s=\mathrm{id}$ on $H \backslash G)$ we can consider the image of the section $K=s(H \backslash G)$ and try to write elements of G as products $H \cdot K$.
- Write $g^{\prime} g=h k$ we can split

$$
\begin{equation*}
(R(g) f)\left(g^{\prime}\right)=f\left(g^{\prime} g\right)=f(h k)=X(h) f(k) \tag{16}
\end{equation*}
$$

Crucial step: solve the Master equation

$$
g^{\prime} g=h \cdot k
$$

■ it is enough to solve the Master equation for $g^{\prime} \in K$ (use the last equality in (16) and f is a equivariant function)

$$
K \cdot G=H \cdot K
$$

Back to Heisenberg

To compute the representations.
■ If we take $\eta=\left(h_{1}, h_{2}, 0\right) \in \mathfrak{g}^{*}$ then we can take $\mathfrak{h}=\mathfrak{g}$ since $[\mathfrak{g}, \mathfrak{g}]=\mathbb{R} X_{0}$ and the corresponding character

$$
X_{\eta}(g)=e^{i\left(h_{1} x+h_{2} y\right)}
$$

where $g=e^{x X+y Y+z Z}$. Notice that since we can take $\mathfrak{h}=\mathfrak{g}$ there is "nothing to induce", so these are representation of the abelian \mathbb{R}^{2}.
■ If we take $\eta=\left(0,0, h_{0}\right) \in \mathfrak{g}^{*}$ with $\lambda \neq 0$ as representative of the orbit. We can take $\mathfrak{h}=\operatorname{span}\{Y, Z\}$ since $[\mathfrak{h}, \mathfrak{h}]=0$ and it is maximal

$$
X_{\eta}(g)=e^{i \lambda z}
$$

what to do then?

The induced representation in this case works as follows: we can take as complement $K=e^{\mathbb{R} X}$ and then try to write the elements as product $H \cdot K$ as follows. Let us take $k=e^{\theta X}$ in K and $g=e^{y Y+z Z} e^{x X}$ general element (it is convient to use these coordinates). We have

$$
\left(X_{\eta}(g) f\right)(k)=f(k g)
$$

and we have to write

$$
e^{\theta X} e^{y Y+z Z} e^{x X}
$$

as an element of H times an element of K. We have

$$
e^{\theta X} e^{y Y+z Z} e^{x X}=e^{y Y+(z+\theta y) Z} e^{(\theta+x) X}
$$

so that

$$
\begin{align*}
\left(\mathcal{R}_{\eta}(g) f\right)(k) & =f\left(e^{y Y+(z+\theta y) Z} e^{(\theta+x) X}\right) \tag{17}\\
& =X_{\eta}\left(e^{y Y+(z+\theta y) Z}\right) f\left(e^{(\theta+x) X}\right) \tag{18}
\end{align*}
$$

Last step

Writing explicitly the character and $\widetilde{f}(\theta)=f\left(e^{\theta X}\right)$ as a function on $L^{2}(\mathbb{R})$ instead of $L^{2}(K)$ we have

$$
\begin{equation*}
\left(\mathcal{R}_{\eta}(g) \widetilde{f}\right)(\theta)=e^{i \lambda(z+\theta y)} \widetilde{f}(\theta+x) \tag{19}
\end{equation*}
$$

One can recognise the representation of the Lie algebra which are skew-adjoint operators on the same space of functions

$$
X_{1} \widetilde{f}=\frac{d}{d t} \widetilde{f}, \quad X_{2} \tilde{f}=i \lambda \theta \widetilde{f}, \quad X_{0} \widetilde{f}=i \lambda \tilde{f}
$$

which indeed satisfy $\left[X_{1}, X_{2}\right]=X_{0}$.

$$
\Delta=X_{1}^{2}+X_{2}^{2}=\frac{d^{2}}{d \theta^{2}}-\lambda^{2} \theta^{2}
$$

The trick for the Master equation

This is related to CHB formula

Lemma

Assume that the Lie algebra generated by A, B is nipotent. Then we have that $e^{A} e^{B} e^{-A}=e^{C(A, B)}$ where

$$
C(A, B)=e^{\operatorname{ad}(A)} B=\sum_{k=0}^{\infty} \frac{\operatorname{ad}^{k}(A)}{k!} B=B+[A, B]+\frac{1}{2}[A,[A, B]]+\ldots
$$

Notice that the sum is finite due to nilpotency assumption.
In Heisenberg

$$
e^{\theta X} e^{y Y+z Z} e^{x X}=e^{y Y+z Z+[\theta X, y Y+z Z]} e^{(\theta+x) X}
$$

since

$$
e^{\theta X} e^{y Y+z Z} e^{x X}=e^{y Y+(z+\theta y) Z} e^{(\theta+x) X}
$$

An observation on the coordinates

The Heisenberg group $\mathfrak{g}=\operatorname{span}\{X, Y, Z\}$ with the only non trivial commutator

$$
[X, Y]=Z
$$

Elements of $G=\exp (\mathfrak{g})$ can be also written as follows $g=e^{y Y} e^{z Z} e^{x X}=e^{y Y+z Z} e^{x X}$. This means that we identify

$$
(x, y, z)=e^{y Y+z Z} e^{x X}
$$

With this coordinate representation of G we have the group law

$$
\begin{aligned}
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right) & =e^{y Y+z Z} e^{x X} e^{y^{\prime} Y+z^{\prime} Z} e^{x^{\prime} X} \\
& =e^{\left(y+y^{\prime}\right) Y+\left(z+z^{\prime}+x y^{\prime}\right) Z} e^{\left(x+x^{\prime}\right) X} \\
& =\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y^{\prime}\right)
\end{aligned}
$$

using the same trick

The Engel group

This is the nilpotent Lie group of dimension 4 with a basis of the Lie algebra satisfying

$$
\left[X_{1}, X_{2}\right]=X_{3}, \quad\left[X_{1}, X_{3}\right]=X_{4}
$$

In particular we can consider the smooth functions $h_{1}, h_{2}, h_{3}, h_{4}: \mathfrak{g}^{*} \rightarrow \mathbb{R}$. To find a basis of the Poisson vector fields it is enough to write down \vec{h}_{i} for every $i=1,2, \ldots, 5$. Using our formulas

$$
\begin{gathered}
\vec{h}_{1}=h_{3} \partial_{h_{2}}+h_{4} \partial_{h_{3}}, \quad \vec{h}_{2}=-h_{3} \partial_{h_{1}} \\
\vec{h}_{3}=-h_{4} \partial_{h_{1}}
\end{gathered}
$$

while h_{4} is a casimir since the corresponding vector field X_{0} is in the center. There is a second casimir.

$$
f=\frac{1}{2} h_{3}^{2}-h_{2} h_{4}
$$

Coadjoint orbits

All coadjoint orbits are contained in the level sets

$$
\left\{\begin{array}{l}
h_{4}=\lambda, \tag{20}\\
\frac{1}{2} h_{3}^{2}-\lambda h_{2}=\nu
\end{array}\right.
$$

Note that $\left\{f, h_{j}\right\}=0$ for $j \geq 2$ (the only non zero commutators must contain X_{1}) and

$$
\left\{f, h_{1}\right\}=\left\{h_{3}, h_{1}\right\} h_{3}-\left\{h_{2}, h_{1}\right\} h_{4}=-h_{4} h_{3}+h_{3} h_{4}=0
$$

Combining this and the Poisson vector fields we have the orbits
(i) if $\lambda=\nu=0$ then every point $\left(h_{1}, h_{2}, 0,0\right)$ is an orbit
(ii) if $\lambda=0$ and $\nu \neq 0$ then orbits are planes $h_{4}=0, h_{3}= \pm \sqrt{2 \nu}$
(iii) if $\lambda \neq 0$ then the orbit coincides with the set defined by the equations above

New representations

Fix $\eta=(0,-\nu / \lambda, 0, \lambda)$ then we have a choice of maximal subalgebra

$$
\mathfrak{h}=\operatorname{span}\left\{X_{2}, X_{3}, X_{4}\right\}, \quad[\mathfrak{h}, \mathfrak{h}]=0 .
$$

and the corresponding 1-dim representation

$$
x_{\nu, \lambda}\left(e^{x_{2} x_{2}+x_{3} x_{3}+x_{4} x_{4}}\right)=e^{i\left(-\frac{\nu}{\lambda} x_{2}+\lambda x_{4}\right)} .
$$

We write points on G as

$$
g=e^{x_{2} X_{2}+x_{3} x_{3}+x_{4} X_{4}} e^{x_{1} x_{1}} .
$$

We take a complement $K=\exp \left(\mathbb{R} X_{1}\right)$ and we solve the Master equation

$$
\begin{align*}
& e^{\theta X_{1}} e^{x_{2} X_{2}+x_{3} X_{3}+x_{4} X_{4}} e^{x_{1} X_{1}}= \tag{21}\\
& \quad=e^{x_{2} X_{2}+\left(x_{3}+\theta x_{2}\right) X_{3}+\left(x_{4}+\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right) X_{4}} e^{\left(\theta+x_{1}\right) X_{1}} \tag{22}
\end{align*}
$$

We deduce that

$$
\mathcal{R}_{\nu, \lambda} f\left(e^{\theta X_{1}}\right)=X_{\nu, \lambda}\left(e^{x_{2} X_{2}+\left(x_{3}+\theta x_{2}\right) X_{3}+\left(x_{4}+\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right) X_{4}}\right) f\left(e^{\left(\theta+x_{1}\right) X_{1}}\right)
$$

that is in the notation $\widetilde{f}(\theta)=f\left(e^{\theta X_{1}}\right)$

$$
\mathcal{R}_{\nu, \lambda} \tilde{f}(\theta)=\exp \left[i\left(-\frac{\nu}{\lambda} x_{2}+\lambda\left(x_{4}+\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right)\right)\right] \widetilde{f}\left(\theta+x_{1}\right)
$$

Differentiating with respect to the x_{i} at zero we get also the representation of the Lie algebra

$$
\begin{aligned}
& x_{1} \widetilde{f}=\frac{d}{d t} \widetilde{f}, \\
& x_{2} \widetilde{f}=i\left(\frac{\lambda}{2} \theta^{2}-\frac{\nu}{\lambda}\right) \widetilde{f}, \\
& x_{3} \widetilde{f}=i \lambda \theta \widetilde{f}, \\
& x_{4} \widetilde{f}=i \lambda \widetilde{f}
\end{aligned}
$$

notice $\left[X_{1}, X_{2}\right]=X_{3}$ and $\left[X_{1}, X_{3}\right]=X_{4}$.

The Laplacian

In particular notice that

$$
\begin{aligned}
& X_{1} \widetilde{f}=\frac{d}{d t} \widetilde{f} \\
& X_{2} \widetilde{f}=i\left(\frac{\lambda}{2} \theta^{2}-\frac{\nu}{\lambda}\right) \widetilde{f}
\end{aligned}
$$

Notice that the Laplacian is

$$
X_{1}^{2}+X_{2}^{2}=\frac{d^{2}}{d \theta^{2}}-\left(\frac{\lambda}{2} \theta^{2}-\frac{\nu}{\lambda}\right)^{2}
$$

This gives the basis of left-invariant vector fields

$$
\begin{gathered}
x_{1}=\partial_{x_{1}}, \quad x_{2}=\partial_{x_{2}}+x_{1} \partial_{x_{3}}+\frac{x_{1}^{2}}{2} \partial_{x_{4}} \\
x_{3}=\partial_{x_{3}}+x_{1} \partial_{x_{4}}, \quad x_{4}=\partial_{x_{4}}
\end{gathered}
$$

Final comments for today?

Observation

Notice that the Laplacian is

$$
X_{1}^{2}+X_{2}^{2}=\frac{d^{2}}{d \theta^{2}}-\left(\frac{\lambda}{2} \theta^{2}-\frac{\nu}{\lambda}\right)^{2}
$$

- it is the square of a polynomial of degree $=2$ (step- 1)
- polynomial which does not has term on degree step-2
- it is arbitrary!
- oscillator with polynomial potential!
- what is the spectrum?
- summability property and relation with the Plancherel formula
- proof in the case of the Engel group, remark in higher steps

