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The Engel group

This is the nilpotent Lie group of dimension 4 with a basis of the Lie
algebra satisfying

[X1,X2] = X3, [X1,X3] = X4

In particular we can consider the smooth functions
h1, h2, h3, h4 : g

∗ → R. To find a basis of the Poisson vector fields it is
enough to write down h⃗i for every i = 1, 2, . . . , 5. Using our formulas

h⃗1 = h3∂h2 + h4∂h3 , h⃗2 = −h3∂h1

h⃗3 = −h4∂h1

while h4 is a casimir since the corresponding vector field X0 is in the
center. There is a second casimir.

f =
1

2
h23 − h2h4
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Coadjoint orbits

All coadjoint orbits are contained in the level sets{
h4 = λ,
1
2h

2
3 − h4h2 = ν

(1)

Note that {f , hj} = 0 for j ≥ 2 (the only non zero commutators must
contain X1) and

{f , h1} = {h3, h1}h3 − {h2, h1}h4 = −h4h3 + h3h4 = 0

Combining this and the Poisson vector fields we have the orbits

(i) if λ = ν = 0 then every point (h1, h2, 0, 0) is an orbit

(ii) if λ = 0 and ν ̸= 0 then orbits are planes h4 = 0, h3 = ±
√
2ν

(iii) if λ ̸= 0 then the orbit coincides with the set defined by the
equations above
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New representations

Fix η = (0,−ν/λ, 0, λ) then we have a choice of maximal subalgebra

h = span{X2,X3,X4}, [h, h] = 0.

and the corresponding 1-dim representation

Xν,λ(e
x2X2+x3X3+x4X4) = e i(−

ν
λ x2+λx4).

We write points on G as

g = ex2X2+x3X3+x4X4ex1X1 .

We take a complement K = exp(RX1) and we solve the Master equation

eθX1ex2X2+x3X3+x4X4ex1X1 = (2)

= ex2X2+(x3+θx2)X3+(x4+θx3+
θ2

2 x2)X4e(θ+x1)X1 (3)
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We deduce that

Rν,λf (e
θX1) = Xν,λ(e

x2X2+(x3+θx2)X3+(x4+θx3+
θ2

2 x2)X4)f (e(θ+x1)X1)

that is in the notation f̃ (θ) = f (eθX1)

Rν,λ f̃ (θ) = exp

[
i

(
−ν
λ
x2 + λ(x4 + θx3 +

θ2

2
x2)

)]
f̃ (θ + x1)

Differentiating with respect to the xi at zero we get also the
representation of the Lie algebra

X1 f̃ =
d

dt
f̃ ,

X2 f̃ = i

(
λ

2
θ2 − ν

λ

)
f̃ ,

X3 f̃ = iλθf̃ ,

X4 f̃ = iλf̃

notice [X1,X2] = X3 and [X1,X3] = X4.
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The Laplacian

In particular notice that

X1 f̃ =
d

dt
f̃ ,

X2 f̃ = i

(
λ

2
θ2 − ν

λ

)
f̃ ,

Notice that the Laplacian is

X 2
1 + X 2

2 =
d2

dθ2
−
(
λ

2
θ2 − ν

λ

)2

This gives the basis of left-invariant vector fields

X1 = ∂x1 , X2 = ∂x2 + x1∂x3 +
x21
2
∂x4

X3 = ∂x3 + x1∂x4 , X4 = ∂x4
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The Engel group

E ∼ R4

X1 := ∂1 , X2 := ∂2 + x1∂3 +
x21
2
∂4 , X3 := ∂3 + x1∂4 , X4 := ∂4 .

Group law: 
x1
x2
x3
x4

 ·


y1
y2
y3
y4

 =


x1 + y1
x2 + y2

x3 + y3 + x1y2

x4y4 + x1y3 +
x2
1

2 y2



Homogeneous dimension: Q =
∑

j j dimgj = 7

δε(x1, x2, x3, x4) = (εx1, εx2, ε
2x3, ε

3x4)
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The sublaplacian

In general

∆ :=
∑
Xj∈g1

X 2
j

so on H and E
∆ = X 2

1 + X 2
2 .

Homogeneous and inhomogeneous Sobolev spaces are defined by

∥u∥Ḣs = ∥(−∆)
s
2 u∥L2 , ∥f ∥Hs = ∥(Id−∆)

s
2 u∥L2 .

Questions :

- “Space of frequencies” for Fourier Analysis

- Summation formula

- Some applications
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The Fourier transform on E

For any integrable function u on E

∀(ν, λ) ∈ R× R∗ , û(ν, λ) :=

∫
E
u(x)Rν,λ

x dx ,

Rν,λ the group homomorphism between E and U(L2(R))
for all x in E and ϕ in L2(R), by

Rν,λ
x ϕ(θ) := exp

(
iλx4 + iλθx3 − i

ν

λ
x2 + iλ

θ2

2
x2
)
ϕ(θ + x1) .

λ is dual to the center X4 (homogeneous of degree 3)

ν is representing the operator (homogeneous of degree 4)

X4X2 −
1

2
X 2
3
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The Fourier transform of the sublaplacian on E

−̂∆Eu(ν, λ) = û(ν, λ) ◦ Pν,λ , with Pν,λ := − d2

dθ2
+

(
λ
θ2

2
− ν

λ

)2

.

Sp(Pν,λ) = {Em(ν, λ),m ∈ N} not explicit!

ψν,λ
m the eigenfunctions of Pν,λ associated with Em(ν, λ).

Homogeneity reduces to the study

Pµ := − d2

dθ2
+

(
θ2

2
− µ

)2

Setting Tαφ := α
1
2φ(α ·) and µ =

ν

|λ|4/3
then Pν,λ = |λ|2/3T|λ|1/3PµT|λ|−1/3

Em(ν, λ) = |λ|2/3Em(µ) and ψν,λ
m = T|λ|1/3φ

µ
m

The Lai-Robert, Colin de Verdière-Letrouit,

Helffer, Helffer-Léautaud...
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The frequency space on E

Set x̂ := (n,m, ν, λ) ∈ Ê = N2 × R× R∗, and

FE(u)(n,m, ν, λ) :=
(
û(λ)ψν,λ

m |ψν,λ
n

)
L2(R)

=:

∫
H
W(x̂ , x)u(x)dx

where

W((n,m, ν, λ), x) := e i(λx4−
ν
λ x2)

∫
R
e iλ(θx3+

θ2

2 x2)ψν,λ
m (θ + x1)ψ

ν,λ
n (θ)dθ .

Then
FE(−∆Eu)(n,m, ν, λ) = Em(ν, λ)︸ ︷︷ ︸

frequency

FE(u)(n,m, ν, λ) .
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Spectral summability

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

∑
m∈N

∫
R

1

Em(µ)γ
dµ <∞ ⇐⇒ γ > 2

Moreover assume Φ ∈ L1(R+, r
5
2 dr)∑

m∈N

∫
R×R∗

Φ
(
Em(ν, λ)

)
dνdλ = C

∫ ∞

0

Φ(r)r
5
2 dr .

where

C =
∑
m∈N

∫
R

3

Em(µ)
7
2

dµ .

it splits the contribution of the spectrum and the one of F

it is a summability result for all the spectra
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Formula in simpler situations

Analogue in Heisenberg Hd

∑
m∈Nd

∫ ∞

0

Φ
(
|λ|(2|m|+d)

)
|λ|ddλ =

∑
m∈Nd

2

(2|m|+ d)d+1

∫ ∞

0

Φ(r)rd dr .

notice the Plancherel measure in LHS and d = (Q − 2)/2,
d + 1 = Q/2.

the convergence in this case is easy

Analogue in Rn would be the spherical coordinate formula∫ ∞

0

Φ
(
|ξ|2
)
dξ = |Sd−1|

∫ ∞

0

Φ(r)r
n−2
2 dr .
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On the surface measure in Heisenberg

Recall that for θ being the Fourier transform of a radial function∫
Ĥd

θ(x̂)dx̂ =

∫
R

∑
n∈Nd

θ(n, n, λ)|λ|d dλ .

For spherical measures (on sphere of radius R) we want∫
Ĥd

θ(x̂)dx̂ =

∫ ∞

0

(∫
SR
Ĥd

θ(x̂)dσR(x̂)

)
dR

So we have (change of variable R2 = (2|n|+ d)|λ|)∫
SR
Ĥd

θ(x̂)dσR(x̂) =
∑
n∈Nd

2R2d+1

(2|n|+ d)d+1

(∑
±
θ(n, n,

±R2

2|n|+ d
)
)
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On the Plancherel formula and measure

Let G be a simply connected nilpotent Lie group, g its Lie algebra, and
g∗ its dual.

Lemma (Kirillov lemma)

It exists in g∗

a G -invariant subset V (open in the Zariski topology),

a linear submanifold Q of g∗

such that all coadjoint orbits lying in V intersect Q at exactly one point.

Elements of g = g∗∗ = linear functions on g∗.
We choose a basis of g by

X1, . . . ,Xm,Ym+1, . . . ,Yn

such that

Ym+1, . . . ,Yn will be constant on Q,

X1, . . . ,Xm as coordinates on Q,
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A formula for that

For every point ηX ∈ Q with coordinates X = (X1, . . . ,Xm) we consider a
skew-symmetric matrix A of size n −m with elements

Bij(X ) = ⟨ηX , [Yi ,Yj ]⟩, i , j = m + 1, . . . , n

Theorem

The Plancherel measure is

µ =
√
detB(X1, . . . ,Xm)dX1 ∧ . . . ∧ dXm

where dX1, . . . , dXm, dYm+1, . . . , dYn is the dual basis.

Case of the Heisenberg and Engel → at the blackboard.
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Summability of eigenvalues of the operator Pµ

It relies on a refined analysis of the spectrum of Pµ: recall

Pµ = − d2

dθ2
+
(θ2
2

− µ
)2
, µ ∈ R

This operator appears also in different contexts:

in quantum mechanics;

in the study of Schrödinger operators with magnetic fields

It is defined on the domain

D(Pµ) =
{
u ∈ L2(R) , − d2

dθ2
+
(θ2
2

− µ
)2

u ∈ L2(R)
}
, (4)

and that its spectrum consists in countably many real eigenvalues
{Em(µ)}m∈N of multiplicity 1 and satisfying

0 < E0(µ) < E1(µ) < · · · < Em(µ) < Em+1(µ) → +∞ .
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On the summability of the spectrum

It relies on a refined analysis of the spectrum of Pµ: recall

Pµ = − d2

dθ2
+
(θ2
2

− µ
)2
, µ ∈ R

The behavior of the potential depends on the sign of the parameter µ:

It admits a single well when µ < 0

It admits a double well when µ > 0.

need combination of microlocal and semiclassical analysis along with
known spectral results.

Another observation for later

it is the square of a polynomial of degree 2 (with no 1st order term)

19 of 45



Discuss (in terms of the parameter γ) convergence of

Iγ =
∑
k∈N

∫
R

1

Ek(µ)γ
dµ =

∫
R×N

1

Ek(µ)γ
dµdδ(k) ,

where dδ(k) is the counting measure on N.
three main regimes to be considered in the analysis of the
eigenvalues Ek(µ).

In each of these regimes, we will use a semiclassical reformulation

1 |µ| ≲ 1 or |µ| ≪
√
Ek(µ) (classical and perturbative classical

regime) that is, µ bounded or going to ±∞ not too fast,

2 µ→ −∞ and Ek(µ) ≲ µ2 (Semiclassical Harmonic oscillator/single
well regime),

3 µ→ +∞ and Ek(µ) ≲ µ2 (Semiclassical double well regime).
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We shall then split Iγ accordingly, for some ε > 0 (small) and µ0 > 0
(large) as

Iγ = I−γ (ε, µ0) + I0γ(ε, µ0) + I+γ (ε, µ0), with (5)

I•γ(ε, µ0)
def
=

∫
E•(ε,µ0)

dµdδ(k)

Ek(µ)γ
(6)

E0(ε, µ0)
def
= {(µ, k) ∈ R× N, |µ| ≤ µ0 or |µ|2 ≤ ε2Ek(µ)},

E−(ε, µ0)
def
= {(µ, k) ∈ R× N, µ ≤ −µ0 and |µ|2 ≥ ε2Ek(µ)},

E+(ε, µ0)
def
= {(µ, k) ∈ R× N, µ ≥ µ0 and |µ|2 ≥ ε2Ek(µ)}.

Note that the (necessary and sufficient) condition γ > 2 for having
Iγ <∞, as stated in Theorem, comes from the third (double well)
region
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Recover known results

As for instance some Sobolev embeddings. Remember here Q = 7.

Proposition

For s > Q/2, then Hs(E) embeds in L∞(E).

Recall that

∥u∥2Hs (E) :=

∫
Ê

|FE(u)(x̂)|2(1 + Em(ν, λ))
s dx̂

Start from the inversion formula

u(x) = (2π)−3

∫
Ê

W(x̂ , x−1)FE(u)(x̂) dx̂

so that

|u(x)| ≤
∫
Ê

|W(x̂ , x)||FE(u)(x̂)| dx̂

22 of 45



Sobolev embeddings

Multiplying/dividing (1 + Em(ν, λ))
s/2 and using Cauchy-Schwartz

|u(x)| ≤ ∥u∥Hs

(∫
Ê

|W(x̂ , x−1)|2(1 + Em(ν, λ))
−s dx̂

)1/2

Since
∑

n∈N |W(x̂ , x−1)|2 = 1 due to the fact that representation are
unitary it remains to estimate(∑

m∈N

∫
R×R∗

(1 + Em(ν, λ))
−sdλdν

)1/2

which thanks to the summation formula is finite for s > Q/2

≤
(∫ ∞

0

(1 + r)−s r
Q−2
2 dr

)(∑
m∈N

∫
R

1

Em(µ)
Q
2

dµ

)
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An application

We are interested in the assumptions on Φ giving,

Φ(−∆E)u = u ⋆ kΦ , for all u ∈ S(E) , (7)

Theorem (BBGL, 23)

Assume Φ ∈ L1(R+, r
5
2 dr). Then

For any u ∈ S(E), then Φ(−∆E) : S → L∞ is well-defined by

Φ(−∆E)u
def
= F−1

E

(
Φ
(
Em(ν, λ)

)
FE(u)(x̂)

)
.

Moreover, there is kΦ in S′(E) such that Φ(−∆E)u = u ⋆ kΦ and we
have the continuous map

L1(R+, r
5
2 dr) −→ S′(E)

Φ 7−→ kΦ
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Indeed kΦ belongs to C 0 ∩ L∞(E) and there holds

∥kΦ∥L∞(E) ≤ (2π)−3C

∫ ∞

0

r5/2|Φ(r)|dr and

kΦ(0) = (2π)−3C

∫ ∞

0

r5/2Φ(r)dr ,

where

C
def
=
∑
m∈N

∫
R

3

Em(µ)
7
2

dµ <∞ .

Finally kΦ ∈ L2(E) if and only if Φ ∈ L2(R+, r
5/2dr) and there holds

∥kΦ∥2L2(E) = (2π)−3C

∫ ∞

0

r5/2|Φ(r)|2dr .

25 of 45



Chapter 7: Higher steps groups: some observations and comments
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The Goursat group in dim 5

This is the nilpotent Lie group of dimension 5 with a basis of the Lie
algebra satisfying

[X1,X2] = X3, [X1,X3] = X4, [X1,X4] = X5

In particular we can consider the (linear) smooth functions
h1, h2, h3, h4, h5 : g

∗ → R. To find a basis of the Poisson vector fields it is
enough to write down h⃗i for every i = 1, 2, . . . , 5. Using our formulas

h⃗1 = h3∂h2 + h4∂h3 + h5∂h4 , h⃗2 = −h3∂h1

h⃗3 = −h4∂h1 , h⃗4 = −h5∂h1

while h5 is a casimir since the corresponding vector field X5 is in the
center. There is a second casimir similar to Engel.

Lemma

The function f = 1
2h

2
4 − h3h5 is a casimir.

27 of 45



Notice that {f , hj} = 0 for j ≥ 2 since the only non zero commutators
between the vector fields must contain X1 and

{f , h1} = {h4, h1}h4 − {h3, h1}h5 = −h5h4 + h4h5 = 0

There is a third casimir. It is necessary since the dimension of the leaves
should be even, hence in this case is 2 = 5− 3.

Lemma

This function is a casimir

f = h2h
2
5 +

1

3
h34 − h3h4h5

All coadjoint orbits are contained in the level sets
h5 = λ,
1
2h

2
4 − h5h3 = ν

h2h
2
5 +

1
3h

3
4 − h3h4h5 = µ

(8)
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The Poisson orbits are NOT NEEDED

→ It is enough to fix one point.
On the orbit we take η = (0, µ/λ2,−ν/λ, 0, λ) then we have a choice of
maximal subalgebra

h = span{X2,X3,X4,X5}, [h, h] = 0.

and the corresponding 1-dim representation

Xν,λ(e
x2X2+x3X3+x4X4+x5X5) = exp i

( µ
λ2

x2 −
ν

λ
x3 + λx5

)
.

We write points on G as

g = ex2X2+x3X3+x4X4+x5X5ex1X1 .

We take a complement K = exp(RX1) and we solve the Master equation

eθX1ex2X2+x3X3+x4X4+x5X5ex1X1 = (9)

= ex2X2+(x3+θx2)X3+(x4+θx3+
θ2

2 x2)X4+(x5+θx4+
θ2

2 x3+
θ3

6 x2)X5e(θ+x1)X1

(10)
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We deduce that in the notation f̃ (θ) = f (eθX1)

Rµ,ν,λ f̃ (θ) = exp

[
i

(
µ

λ2
x2 −

ν

λ
(x3 + θx2) + λ(x5 + θx4 +

θ2

2
x3 +

θ3

6
x2)

)]
·

· f̃ (θ + x1)

Differentiating with respect to the xi at zero we get also the
representation of the Lie algebra

X1 f̃ =
d

dθ
f̃ ,

X2 f̃ = i

(
µ

λ2
− ν

λ
θ +

λ

6
θ3
)
f̃ ,

X3 f̃ = i

(
−ν
λ
+
λ

2
θ2
)
f̃ ,

X4 f̃ = iλθf̃ , X5 f̃ = iλf̃

notice [X1,X2] = X3, [X1,X3] = X4 [X1,X4] = X5.
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Similar comments to Engel case

Observation

Notice that the Laplacian is

X 2
1 + X 2

2 =
d2

dθ2
−
(
λ

6
θ3 − ν

λ
θ +

µ

λ2

)2

it is a polynomial of degree = 2(step-1)

it does not has term on degree step-2

it is arbitrary!

oscillator with polynomial potential!
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Homogeneity

Replacing θ 7→ αθ (rescaling the functions) gives

1

α2

d2

dθ2
−
(
λ

6
α3θ3 − ν

λ
αθ +

µ

λ2

)2

=
1

α2

[
d2

dθ2
−
(
λ

6
α4θ3 − ν

λ
α2θ + α

µ

λ2

)2
]

which is
1

α2

[
d2

dθ2
−
(
α4λ

6
θ3 − α6ν

α4λ
θ +

α9µ

(α4λ)2

)2
]

one recovers the good homogeneity µ, ν, λ of degree 9, 6, 4.

These numbers also follows from the polynomial structure of the
casimir

assigning weights (1, 1, 2, 3, 4) to the coordinates (h1, . . . , h5).
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More formally

More formally as in the Engel group

Pα9µ,α6ν,α4λ = α2TαPµ,ν,λT
−1
α

Normalizing α−4 = λ we have

d2

dθ2
−
(
θ3

6
− λ−6/4νθ + λ−9/4µ

)2

and renaming a = λ−6/4ν and b = λ−9/4µ we “reduce” the study to the
following family

d2

dθ2
−
(
θ3

6
− aθ + b

)2
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An algebraic observation

The normalized potential at step s satisfies

d2

dθ2
− (Vs(θ))

2

with at each s being the primitive Vs+1 =
∫
Vsdθ

V2 = θ

V3 =
θ2

2
+ a

V4 =
θ3

6
+ aθ + b

A summation formula on the eigenvalue of the operator ?
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Generalization of summability

The next case would be

− d2

dθ2
+

(
λ

6
θ3 − ν2

λ
θ +

ν3
λ2

)2

with ν3, ν2, λ homogeneous of degree 9, 6, 4 respectively.

Denoting Em(ν2, ν3, λ) the corresponding eigenvalues we are asking
for which γ ∑

m∈N

∫
1

Em(ν2, ν3, 1)γ
dν <∞

I do not know!

relation with the measure of the unit sphere?
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The summation formula

We denote Em(µ, ν, λ) is the m-th eigenvalue of Pµ,ν,λ, I assume they
exists but I do not know :)
By scaling we have (check the signs) setting ν′ = ν

λ6/4 µ
′ = µ

λ9/4

Pµ,ν,λ = |λ|1/2T|λ|1/4Pµ′,ν′,1T|λ|−1/4 , (11)

Em(µ, ν, λ) = |λ|1/2Em(µ
′, ν′, 1), (12)

Then we compute∑
m∈N

∫
F
(
Em(µ, ν, λ)

)
λ−2dλdνdµ =

∑
m∈N

∫
F
(
λ1/2Em

( µ

λ9/4
,
ν

λ6/4
, 1
))

λ−2dλdνdµ

so setting ν′ = ν
λ6/4 µ

′ = µ
λ9/4 (for fixed λ)

=
∑
m∈N

∫
F
(
λ1/2Em (µ′, ν′, 1)

)
λ

7
4 dλdν′dµ′
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and then setting r = λ1/2Em (µ′, ν′, 1) (for fixed µ′, ν′) we find

dr = λ−1/2Em (µ′, ν′, 1) dλ

so that

λ
7
4 dλ = λ

9
4λ−

1
2 dλ =

(
r

Em

)9/2
dr

Em

and∑
m∈N

∫
F
(
Em(µ, ν, λ)

)
λ−2dλdνdµ =

=

(∫
r9/2F (r)dr

)∑
m∈N

∫
1

Em(µ, ν, 1)11/2
dµdν .
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The filiform/Goursat group in general dimension

This is the nilpotent Lie group of dimension n and step s = n − 1 with a
basis of the Lie algebra satisfying

[X1,Xi ] = Xi+1, i = 2, . . . , n

Example: Filiform/Goursat group (step 4)

g1︷ ︸︸ ︷
X1,X2 ,

g2︷ ︸︸ ︷
X3 = [X1,X2] ,

g3︷ ︸︸ ︷
X4 = [X1,X3],

g4︷ ︸︸ ︷
X5 = [X1,X4]

dimension increase each time by 1

s step, then n = s + 1 dimension

it is always rank 2

it is always the same vector field of g1 generating the new direction
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Generalization of summability

Generalization (only for this class of groups at the moment) as follows :

the set of parameters will be s − 1 = n − 2 dimensional : (ν, λ)

ν = (ν2, . . . , νs−1) a set of s − 2 parameters

the Plancherel measure as f (λ)dλdν,

Q = 1 + s(s + 1)/2 be the homogeneous dimension∑
m∈N

∫
Φ
(
Em(ν, λ)

)
f (λ)dλdν = cn

(∫
r (Q−2)/2Φ(r)dr

)(∑
m∈N

∫
1

Em(ν, 1)Q/2
dν

)
(13)

where Em(ν, 1) is the family of eigenvalue of a 1D oscillator of the form

− d2

dθ2
+ (Vs(ν; θ))

2

with Vs(ν; ·) polynomial of degree s − 1 with no term of degree s − 2
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Formula for the Vs

Better to show in dim n + 2 (or step s, with s = n + 1)

Vs(ν; ·) =
d2

dθ2
−

(
λ

n!
θn +

n∑
k=2

(−1)k−1 νk
(k − 2)!λk−1

θn−k

n − k!

)2

λ is the dual variable to the center

the ν represents the casimirs

1

k
X k
2 +

k−1∑
ℓ=1

(−1)ℓ
(k − 2)!

(k − ℓ− 1)!
X ℓ
1X

k−ℓ−1
2 Xℓ+2

explicit homogeneity
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