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Chapter 6: Spectral summability of quartic oscillators & Engel group
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The Engel group (L5 s

This is the nilpotent Lie group of dimension 4 with a basis of the Lie
algebra satisfying

[X1, Xo] = X, [X1, X3] = Xa

In particular we can consider the smooth functions
h1, ha, hs, hy : g* — R. To find a basis of the Poisson vector fields it is
enough to write down h; for every i =1,2,...,5. Using our formulas

—

El = h33h2 + h48h3, hy = 7/133[,1

hs = —hOp,

while hy is a casimir since the corresponding vector field Xj is in the
center. There is a second casimir.

1
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Coadjoint orbits (L5 s

All coadjoint orbits are contained in the level sets

{”“ . (1)

102 — hyhy = v

Note that {f, h;} = 0 for j > 2 (the only non zero commutators must
contain Xi) and

{f, i} = {hs, hi}hs — {ha, hi}hs = —hahs + hshs = 0

Combining this and the Poisson vector fields we have the orbits
(i) if A =v =0 then every point (hy, hp,0,0) is an orbit
(ii) if A =0 and v # 0 then orbits are planes hy =0, h3 = £V 2v

(iii) if A # 0 then the orbit coincides with the set defined by the
equations above
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New representations 1 s

Fix n = (0,—v/A,0,\) then we have a choice of maximal subalgebra
b = span{Xz, X3, Xa }, [h,b] =0.

and the corresponding 1-dim representation
xV’A(eX2X2+X3X3+X4X4) _ ei(fgxz+/\><4)'

We write points on G as

g = eX2X2+X3X3+X4X4 e><1X1.

We take a complement K = exp(RX;) and we solve the Master equation
e(ixl eX2X2+X3X3+X4X4 eX1X1 — (2)

2
_ eX2X2+(X3 +9X2)X3+(X4+9X3+ %XQ)X4 6(9+X1 )X1 (3)

S



We deduce that

Rux f(e"Xl) _ x,,)\(eXZXZ+(X3+9X2)X3+(X4+9X3+ %xz)X;; ) f(e(0+x1)X1 )

that is in the notation f(f) = (%)

~ 92 _
RuAf(0) = exp {" (sz + AM(xq + 0x3 + 2@))} (0 + x1)

Differentiating with respect to the x; at zero we get also the
representation of the Lie algebra

Xif=—f

e

~ (A, V)=
X2f1<29 A) f
Xsf = iNOF,
Xof = iNf

notice [X17X2] = X3 and [X17X3] = X4_ _
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The LaplaCian DI PADOVA

In particular notice that

Notice that the Laplacian is

& (r, v\

This gives the basis of left-invariant vector fields

2
X
Xl = 8)(1, X2 = 3X2 + X1(9X3 + Elam

X3 — 8><3 + Xlaxu X4 — aX4
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The Engel group 1 s

E ~ R*

2
X
X1:=01, Xp:= (92+X1(r)3+§1(94, X3:=03+x104, X4:=04.

Group law:
X1 V1 X1+ y1
X2 2 X2+ 2
x| |y | X3+ 3 "‘leg
X4 Ya XaYs + X1Y3 + 5y

Homogeneous dimension: Q = ijdimgj =7

(55(X1, X2, X3, X4) = (€X1, EXo, 62X37 €3X4)

S o
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The sublaplacian 1 s

In general
A=) X
Xi€g1
soon H and E
A=X?+X5.

Homogeneous and inhomogeneous Sobolev spaces are defined by

i

fe = (=2 2ulle, [IFllme = 1(1d = A)ul 2.

Questions :

- “Space of frequencies” for Fourier Analysis
- Summation formula

- Some applications

S o
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The Fourier transform on E s S

For any integrable function u on E

V(r,A) ERxR*, G(r,\) := / u(x)Ru dx
E

m R“* the group homomorphism between E and U(L?(R))
m for all x in E and ¢ in L?(R), by

92
RUAH(0) := exp (/')\X4 + iNOx3 — i%)@ + I'/\§X2> o0+ x1) .

m ) is dual to the center X, (homogeneous of degree 3)

m v is representing the operator (homogeneous of degree 4)

1
XaXo — §x32
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— d2 92 2
7A]EU(V7>‘) = ZJ\(V7>‘) © PV,)\7 with Pu,A = *ﬁ = (/\ = I/) .

m Sp(P,.\) = {Em(v, \), m € N} not explicit!
m 2> the eigenfunctions of P, associated with E,(v, ).

Homogeneity reduces to the study
d? (62 ?
P,u == d92 ( - ILL>

Setting Top = a%ga(a-) and p = then P, 5 = |A\[?/3 TiasPuTiy-1s

|A‘4/3

En(v,)) = [A°Em(p) and v = Ty /500

The Lai-Robert, Colin de Verdiére-Letrouit,
Helffer, Helffer-Léautaud...
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The frequency space on [E s oo

Set X := (n,m, v, \) cE=N2xR x R*, and
Falu)(n, m, v, ) = (@) iy

=: / W(X, x)u(x)dx
JH
where

W((n, m, v, \),x) = ele—5x) / N OsHER) N (g 4 Vb (0)d6 .
R

Then

Fe(—Agu)(n,m, v, \) = En(v,\) Fe(u)(n,m,v, \).
——
frequency

S



Spectral summability i

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

1
——du<oo<=v>2
n%/REm(M)V

Moreover assume ® € L(R., r? dr)

Z/ ¢(Em(u,>\))dudA:C/ &(r)r? dr.
men Y RxR* 0

where

m it splits the contribution of the spectrum and the one of F

m it is a summability result for all the spectri n



Spectral summability

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

1
———du<oo<=vy>2
n%/REm(u)V

07
Moreover assume ® € L}(R., s dr)

> /RXR* & (Enm(v, A)) dvdA = c/ooo o(r)r s dr.

meN

where

C:Z/R 3 du.

Q
meN Em(ﬂ) 2

m it splits the contribution of the spectrum and the one of F

m it is a summability result for all the siecti-



UNIVERSITA

Formula in simpler situations (L5 s

Analogue in Heisenberg H¢

2 oo
Z/ (IN@[m[+d))[Aldx = { Y P /0 &(r)rd dr.

meNd meNd

m notice the Plancherel measure in LHS and d = (Q — 2)/2,
d+1=Q/2.

m the convergence in this case is easy

Analogue in R" would be the spherical coordinate formula

[ oter)ae =152 [~ o) o
JO JO
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On the surface measure in Heisenberg

Recall that for 6 being the Fourier transform of a radial function

[0z~ [ 3 o(nn 2 dn.

neNd

For spherical measures (on sphere of radius R) we want

'/H;{d O(xX)dx = /Ox </S 6‘()?)daR(>?)> dR

So we have (change of variable R? = (2|n| + d)|)|)
R R 2 R2d+1 +R2
[ 00)dor(®) = 3 i (zi:@(n, " S d )

Hd neNd

S



On the Plancherel formula and measure =l

Let G be a simply connected nilpotent Lie group, g its Lie algebra, and
g* its dual.

Lemma (Kirillov lemma)

It exists in g*
m a G-invariant subset V' (open in the Zariski topology),
m a linear submanifold Q of g*
such that all coadjoint orbits lying in V intersect @ at exactly one point.

Elements of g = g** = linear functions on g*.
We choose a basis of g by

X17"'7Xm7Ym+17"'7Yn

such that

m Yyi1,-.., Y, will be constant on Q,

m Xi,..., X, as coordinates on @, —
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A formula for that (15 oS

For every point n7x € Q with coordinates X = (Xi,..., X,,) we consider a
skew-symmetric matrix A of size n — m with elements

Bii(X) = (nx,[Y: Yil), ihj=m+1,...,n

Theorem

The Plancherel measure is

p=/det B(X1,...,Xm)dX1 A ... A dXp,
where dXi,...,dXm, dYmi1,...,dY, is the dual basis.

Case of the Heisenberg and Engel — at the blackboard.

T
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Summability of eigenvalues of the operator P, mi

It relies on a refined analysis of the spectrum of P,: recall

This operator appears also in different contexts:
® in quantum mechanics;
m in the study of Schrodinger operators with magnetic fields
It is defined on the domain
2 d? 0 2 2
D) ={ueP®), ——+ (5 —n)uel’®}. (@)

and that its spectrum consists in countably many real eigenvalues
{Em(pt) } men of multiplicity 1 and satisfying

0 < Eo(p) < Ex(p) < -+ <Em(p) < Empa(p) = 400.

S e



On the summability of the spectrum

It relies on a refined analysis of the spectrum of P,: recall

2 2
The behavior of the potential depends on the sign of the parameter u:
m It admits a single well when 1 < 0
m It admits a double well when p > 0.

m need combination of microlocal and semiclassical analysis along with
known spectral results.

Another observation for later

m it is the square of a polynomial of degree 2 (with no 1st order term)

T



Discuss (in terms of the parameter ) convergence of

Z/ Ex(1 /RXN Ek(l) dudolk),

keN

where dd(k) is the counting measure on N.

m three main regimes to be considered in the analysis of the
eigenvalues Ej(u).

m In each of these regimes, we will use a semiclassical reformulation

lp] <1 or|pl < +/Ex(n) (classical and perturbative classical
regime) that is, 1 bounded or going to +o0o not too fast,

pu — —oo and Ex(p) < p? (Semiclassical Harmonic oscillator/single
well regime),

p — +oo and Ex(i) < p? (Semiclassical double well regime).

S o



We shall then split J., accordingly, for some € > 0 (small) and pg >0

(large) as
Iy = j;  10) +95(e, o) + I3 (£, 10),  with (5)
. def dudd(k)
J €, ko = 6
dewo) [T (6)
% m0) ¥ [(u k) € R x N, || < pio or |ul? < e2Ex(p)},
& (&, po) def {(p, k) €e R x N,y < —pp and |/1\ > EzEk(/l,)},
of
€ (e, o) = {1 k) ER XN, i > po and [uf? > e?Ex(p)}-

m Note that the (necessary and sufficient) condition v > 2 for having
Jy < 00, as stated in Theorem, comes from the third (double well)

region

S
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Recover known results Ll

As for instance some Sobolev embeddings. Remember here Q = 7.

Fors > Q/2, then H*(E) embeds in L*°(E).

Recall that

lul

b = [P+ Enlr ) 0%
Start from the inversion formula

u(x) = (2r) 73 /E W(R, x 1) Fe(u)(R) d=

so that

u(x)] < /E\W(?,X)H?E(u)(?)ld?

e,
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Sobolev embeddings (15 oo

Multiplying/dividing (1 + E,(v, \))*/? and using Cauchy-Schwartz

. 1/2
G < o (/E|W(zx1)2(1 + En(1,0) d?)

Since 3, cn IW(X, x71)[? = 1 due to the fact that representation are
unitary it remains to estimate

i 1/2
(n%./naw(l + En(v, ) d)\dz/>

which thanks to the summation formula is finite for s > Q/2

< (/Om(1+r)—5r022 dr> (Z/REm(lu)?d”)

meN

S e
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An application 11:<.)|.|S'|‘l|n

We are interested in the assumptions on ® giving,

O(—Ag)u=uxke, forall ueS(E), (7)

Theorem (BBGL, 23)
Assume & € L'(R., r3dr). Then
m For any u € 8(E), then ®(—Ag) : 8 — L™ is well-defined by

O(—Ag)u L :ﬁgl(¢(5m(y, /\))?E(u)(?)) .

m Moreover, there is ke in 8'(E) such that ®(—Ag)u = u* ke and we
have the continuous map

LY(R,, r3dr) — 8'(E)
b +— k¢>

T



m Indeed k¢ belongs to CON L°(E) and there holds

ko llieqe) < (2m)3C / /S/20(r)|dr and
0

0) = (2m)~3C /030 52 (r)dr

defz/

meN

where

du<oo

m Finally ko € L2(E) if and only if ® € L2(R,, r%/?dr) and there holds

Ko aqey = (27)°C / P5/2(0(r) P

S o



Chapter 7: Higher steps groups: some observations and comments
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The Goursat group in dim 5 (L5 s

This is the nilpotent Lie group of dimension 5 with a basis of the Lie
algebra satisfying

[Xl7 X2] - X37 [le X3] - X47 [le X4] - X5

In particular we can consider the (linear) smooth functions
h1, hy, hs, hg, hs - g* — R. To find a basis of the Poisson vector fields it is
enough to write down h; for every i =1,2,...,5. Using our formulas

—

hy = hsOh, + haOn, + hsOn,, hy = —h30p,

—

hs = —h4Oh,, ha = —hs0p,

while hs is a casimir since the corresponding vector field Xs is in the
center. There is a second casimir similar to Engel.

Lemma

The function f = %hﬁ — hshs is a casimir.




Notice that {f, hj} = 0 for j > 2 since the only non zero commutators
between the vector fields must contain X; and

{f,h1} = {ha, h1}hy — {h3, hi}hs = —hshs + hshs =0

There is a third casimir. It is necessary since the dimension of the leaves
should be even, hence in this case is 2 =5 — 3.

Lemma

This function is a casimir
1
f:m@+§ﬁ—mm%
All coadjoint orbits are contained in the level sets

hs = A,
3h3 — hshs = v (8)
hoh2 + 1h3 — hshahs = pu

S e



The Poisson orbits are NOT NEEDED 15

— It is enough to fix one point.
On the orbit we take 7 = (0, /A%, —//X, 0, \) then we have a choice of
maximal subalgebra

h = span{ Xz, X3, Xy, Xs }, [h,h] = 0.
and the corresponding 1-dim representation

v v
xu’/\(e><2X2+><3X3+><4X4+><5X5) =expi (pX2 _ XX3 + Axg ) .

We write points on G as

g = eX2X2+X3X3+X4X4+X5X5 eX1X1'

We take a complement K = exp(RX;) and we solve the Master equation
69X1 eX2X2+X3X3+X4X4+X5X5 eX1X1 _ (9)

2 2 3
— e Xot(xa0x2) Xs+(xa+0xs+ G x0) Xa+(xs+0xa+ G x3+ 2 x2) Xs e(0+x1)X

S e



We deduce that in the notation f(0) = f(e%%)

~ a v 0?2 63
Ruwaf(0) =exp {/ ()/\2X2 — X(X3 +6x2) + N(x5 + Oxa + EXg, + 6@))} .

. f(0 + X1)

Differentiating with respect to the x; at zero we get also the
representation of the Lie algebra

Xf = 2F,

XoF =i L Vo 23) 7
? X2 A6 ’
= vooA,
X3f1< /\+29>f,

Xof = iNOF,  Xof = iMf
notice [X17 X2] = X3, [Xl, X3] = X4 [Xl, X4] = X5.

e,
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Similar comments to Engel case i

Notice that the Laplacian is

d? A v o 2
2 2 3

m it is a polynomial of degree = 2(step-1)
m it does not has term on degree step-2

m it is arbitrary!
[

oscillator with polynomial potential!

T
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Homogeneity :)Il\ll“\l\m

Replacing 0 +— «af (rescaling the functions) gives

1 d®> (X5, v p\> 1 [d® /A v %
— — | Z, 93_7 0 -~ -~ | = _ - 493_7429 -~
oZ dg? (6“ 3 +A2> a2 | 462 (60‘ PR

which is )
S d72 — @93 — @g 4 o’
a? | do? 6 ot (a*))?

m one recovers the good homogeneity p, v, A of degree 9,6, 4.

m These numbers also follows from the polynomial structure of the
casimir

m assigning weights (1,1,2,3,4) to the coordinates (hy, ..., hs).

S o



More formally e

More formally as in the Engel group
2 -1
PQQ[L,O6I/,O¢4)\ =« T(YP;L,I/,)\T@

Normalizing o=* = X\ we have

2 3 2
% - (96 — A% 4 )\‘9/4u)
and renaming a = A"%%v and b= A\"%*; we “reduce’ the study to the

following family
&> (6 ?
J7 (6 —af + b)

S o
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An algebraic observation (L5 s

The normalized potential at step s satisfies

d2 2
5 — (Vs(0))

with at each s being the primitive Vo1 = [ Vsdf

V4:€+39+b

A summation formula on the eigenvalue of the operator 7

T



Generalization of summability e

m The next case would be

d? A s v\ °
_w+<69 - 50+ A2>

with v3, 5, A homogeneous of degree 9,6, 4 respectively.

m Denoting E,,(12, 13, \) the corresponding eigenvalues we are asking

for which ~
Z / dl/ < 0
= (v2,v3, 1)

m | do not know!

m relation with the measure of the unit sphere?

S o
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The summation formula (15 oS

We denote En,(u, v, A) is the m-th eigenvalue of P, , 1, | assume they
exists but | do not know :)

By scaling we have (check the signs) setting v' = £ 1/ = b
P = A2 TPy a T, (11)
Em(/l’7ya/\) = ‘A‘1/2Em(/1’/71//:1)7 (12)

Then we compute

Z/ (111, A)A™ 2d)\dudu—2/ (V2En (56 5o7+1) ) A2

meN meN

so setting V' = g7 i =

72/ F (\YV2E,, (4 v/ 1)>)\4d/\d1/ dy

meN

S o

sz (for fixed A)



and then setting r = \Y/2E,, (i', /', 1) (for fixed ', ') we find
dr = A"Y2E, (i, V', 1) dA
so that

9/2
dr
Mdy=rirdda=(—) &
7 7 2 Em Em

Z/ (1, v, \))A"2dAdvdp =

(oo

Z/ (1, v,1) 11/2d“dV'

meN

S o
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The filiform /Goursat group in general dimension::”

This is the nilpotent Lie group of dimension n and step s = n — 1 with a
basis of the Lie algebra satisfying

[XI:XI]:Xi+17 i:27"'7n
Example: Filiform/Goursat group (step 4)

g1 92 g3 94
—~N
X17X2 9 X3 — [X17 X2] ) X4 — [X17X3]7 X5 — [X17X4]

dimension increase each time by 1
s step, then n = s + 1 dimension
it is always rank 2

it is always the same vector field of g; generating the new direction

S o
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Generalization of summability ST

Generalization (only for this class of groups at the moment) as follows :
m the set of parameters will be s — 1 = n — 2 dimensional : (v, \)
mv=(va...,Vs_1) a set of s — 2 parameters
m the Plancherel measure as f(\)dAdv,

m Q=14 s(s+1)/2 be the homogeneous dimension

Z/ )F(A)dAdv = c, (/ Q=224 > (Z/ E.nen?

meN meN
(13)

where E,(v,1) is the family of eigenvalue of a 1D oscillator of the form

\_/

L Vo))
dgz T

with Vs(v;-) polynomial of degree s — 1 with no term of degree s — 2

S o
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Formula for the V, 15 oo

Better to show in dim n+ 2 (or step s, with s = n+ 1)

2
d2 Vk enfk
Velvi) = Gz — <n| +Z —z)w—ln—k!)

m )\ is the dual variable to the center

m the v represents the casimirs

2)!
*X2 *Z T_l)Xle “Xeso

m explicit homogeneity

S o
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A reference or... an advertisement
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