Strichartz estimates and sub-Riemannian geometry Lecture 4

Davide Barilari,

Dipartimento di Matematica "Tullio Levi-Civita", Università degli Studi di Padova

Spring School "Modern Aspects of Analysis on Lie groups", Gottinga, April 2-5, 2024

Università degli Studi di Padova

Chapter 6: Spectral summability of quartic oscillators \& Engel group

The Engel group

This is the nilpotent Lie group of dimension 4 with a basis of the Lie algebra satisfying

$$
\left[X_{1}, X_{2}\right]=X_{3}, \quad\left[X_{1}, X_{3}\right]=X_{4}
$$

In particular we can consider the smooth functions $h_{1}, h_{2}, h_{3}, h_{4}: \mathfrak{g}^{*} \rightarrow \mathbb{R}$. To find a basis of the Poisson vector fields it is enough to write down \vec{h}_{i} for every $i=1,2, \ldots, 5$. Using our formulas

$$
\begin{gathered}
\vec{h}_{1}=h_{3} \partial_{h_{2}}+h_{4} \partial_{h_{3}}, \quad \vec{h}_{2}=-h_{3} \partial_{h_{1}} \\
\vec{h}_{3}=-h_{4} \partial_{h_{1}}
\end{gathered}
$$

while h_{4} is a casimir since the corresponding vector field X_{0} is in the center. There is a second casimir.

$$
f=\frac{1}{2} h_{3}^{2}-h_{2} h_{4}
$$

Coadjoint orbits

All coadjoint orbits are contained in the level sets

$$
\left\{\begin{array}{l}
h_{4}=\lambda \tag{1}\\
\frac{1}{2} h_{3}^{2}-h_{4} h_{2}=\nu
\end{array}\right.
$$

Note that $\left\{f, h_{j}\right\}=0$ for $j \geq 2$ (the only non zero commutators must contain X_{1}) and

$$
\left\{f, h_{1}\right\}=\left\{h_{3}, h_{1}\right\} h_{3}-\left\{h_{2}, h_{1}\right\} h_{4}=-h_{4} h_{3}+h_{3} h_{4}=0
$$

Combining this and the Poisson vector fields we have the orbits
(i) if $\lambda=\nu=0$ then every point $\left(h_{1}, h_{2}, 0,0\right)$ is an orbit
(ii) if $\lambda=0$ and $\nu \neq 0$ then orbits are planes $h_{4}=0, h_{3}= \pm \sqrt{2 \nu}$
(iii) if $\lambda \neq 0$ then the orbit coincides with the set defined by the equations above

New representations

Fix $\eta=(0,-\nu / \lambda, 0, \lambda)$ then we have a choice of maximal subalgebra

$$
\mathfrak{h}=\operatorname{span}\left\{X_{2}, X_{3}, X_{4}\right\}, \quad[\mathfrak{h}, \mathfrak{h}]=0 .
$$

and the corresponding 1-dim representation

$$
x_{\nu, \lambda}\left(e^{x_{2} x_{2}+x_{3} x_{3}+x_{4} x_{4}}\right)=e^{i\left(-\frac{\nu}{\lambda} x_{2}+\lambda x_{4}\right)} .
$$

We write points on G as

$$
g=e^{x_{2} X_{2}+x_{3} x_{3}+x_{4} X_{4}} e^{x_{1} x_{1}} .
$$

We take a complement $K=\exp \left(\mathbb{R} X_{1}\right)$ and we solve the Master equation

$$
\begin{align*}
& e^{\theta X_{1}} e^{x_{2} X_{2}+x_{3} X_{3}+x_{4} X_{4}} e^{x_{1} X_{1}}= \tag{2}\\
& \quad=e^{x_{2} X_{2}+\left(x_{3}+\theta x_{2}\right) X_{3}+\left(x_{4}+\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right) X_{4}} e^{\left(\theta+x_{1}\right) X_{1}} \tag{3}
\end{align*}
$$

We deduce that

$$
\mathcal{R}_{\nu, \lambda} f\left(e^{\theta X_{1}}\right)=X_{\nu, \lambda}\left(e^{x_{2} X_{2}+\left(x_{3}+\theta x_{2}\right) X_{3}+\left(x_{4}+\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right) X_{4}}\right) f\left(e^{\left(\theta+x_{1}\right) X_{1}}\right)
$$

that is in the notation $\widetilde{f}(\theta)=f\left(e^{\theta X_{1}}\right)$

$$
\mathcal{R}_{\nu, \lambda} \tilde{f}(\theta)=\exp \left[i\left(-\frac{\nu}{\lambda} x_{2}+\lambda\left(x_{4}+\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right)\right)\right] \widetilde{f}\left(\theta+x_{1}\right)
$$

Differentiating with respect to the x_{i} at zero we get also the representation of the Lie algebra

$$
\begin{aligned}
& x_{1} \widetilde{f}=\frac{d}{d t} \widetilde{f}, \\
& x_{2} \widetilde{f}=i\left(\frac{\lambda}{2} \theta^{2}-\frac{\nu}{\lambda}\right) \widetilde{f}, \\
& x_{3} \widetilde{f}=i \lambda \theta \widetilde{f}, \\
& x_{4} \widetilde{f}=i \lambda \widetilde{f}
\end{aligned}
$$

notice $\left[X_{1}, X_{2}\right]=X_{3}$ and $\left[X_{1}, X_{3}\right]=X_{4}$.

The Laplacian

In particular notice that

$$
\begin{aligned}
& X_{1} \widetilde{f}=\frac{d}{d t} \widetilde{f} \\
& X_{2} \widetilde{f}=i\left(\frac{\lambda}{2} \theta^{2}-\frac{\nu}{\lambda}\right) \widetilde{f}
\end{aligned}
$$

Notice that the Laplacian is

$$
X_{1}^{2}+X_{2}^{2}=\frac{d^{2}}{d \theta^{2}}-\left(\frac{\lambda}{2} \theta^{2}-\frac{\nu}{\lambda}\right)^{2}
$$

This gives the basis of left-invariant vector fields

$$
\begin{gathered}
x_{1}=\partial_{x_{1}}, \quad x_{2}=\partial_{x_{2}}+x_{1} \partial_{x_{3}}+\frac{x_{1}^{2}}{2} \partial_{x_{4}} \\
x_{3}=\partial_{x_{3}}+x_{1} \partial_{x_{4}}, \quad x_{4}=\partial_{x_{4}}
\end{gathered}
$$

The Engel group

$\mathbb{E} \sim \mathbb{R}^{4}$

$$
X_{1}:=\partial_{1}, \quad X_{2}:=\partial_{2}+x_{1} \partial_{3}+\frac{x_{1}^{2}}{2} \partial_{4}, \quad X_{3}:=\partial_{3}+x_{1} \partial_{4}, \quad X_{4}:=\partial_{4}
$$

Group law:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \cdot\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}+x_{1} y_{2} \\
x_{4} y_{4}+x_{1} y_{3}+\frac{x_{1}^{2}}{2} y_{2}
\end{array}\right)
$$

Homogeneous dimension: $Q=\sum_{j} j \operatorname{dimg}_{j}=7$

$$
\delta_{\varepsilon}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\varepsilon x_{1}, \varepsilon x_{2}, \varepsilon^{2} x_{3}, \varepsilon^{3} x_{4}\right)
$$

The sublaplacian

In general

$$
\Delta:=\sum_{X_{j} \in \mathfrak{g}_{1}} X_{j}^{2}
$$

so on \mathbb{H} and \mathbb{E}

$$
\Delta=X_{1}^{2}+X_{2}^{2} .
$$

Homogeneous and inhomogeneous Sobolev spaces are defined by

$$
\|u\|_{\mathcal{H}^{s}}=\left\|(-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}}, \quad\|f\|_{H^{s}}=\left\|(\operatorname{Id}-\Delta)^{\frac{s}{2}} u\right\|_{L^{2}} .
$$

Questions:

- "Space of frequencies" for Fourier Analysis
- Summation formula
- Some applications

The Fourier transform on \mathbb{E}

For any integrable function u on \mathbb{E}

$$
\forall(\nu, \lambda) \in \mathbb{R} \times \mathbb{R}^{*}, \quad \widehat{u}(\nu, \lambda):=\int_{\mathbb{E}} u(x) \mathcal{R}_{x}^{\nu, \lambda} d x,
$$

- $\mathcal{R}^{\nu, \lambda}$ the group homomorphism between \mathbb{E} and $\mathcal{U}\left(L^{2}(\mathbb{R})\right)$
- for all x in \mathbb{E} and ϕ in $L^{2}(\mathbb{R})$, by

$$
\mathcal{R}_{x}^{\nu, \lambda} \phi(\theta):=\exp \left(i \lambda x_{4}+i \lambda \theta x_{3}-i \frac{\nu}{\lambda} x_{2}+i \lambda \frac{\theta^{2}}{2} x_{2}\right) \phi\left(\theta+x_{1}\right) .
$$

- λ is dual to the center X_{4} (homogeneous of degree 3)
- ν is representing the operator (homogeneous of degree 4)

$$
X_{4} X_{2}-\frac{1}{2} X_{3}^{2}
$$

The Fourier transform of the sublaplacian 0 n

$\widehat{-\Delta_{\mathbb{E}} u}(\nu, \lambda)=\widehat{u}(\nu, \lambda) \circ P_{\nu, \lambda}, \quad$ with $\quad P_{\nu, \lambda}:=-\frac{d^{2}}{d \theta^{2}}+\left(\lambda \frac{\theta^{2}}{2}-\frac{\nu}{\lambda}\right)^{2}$.

- $\operatorname{Sp}\left(P_{\nu, \lambda}\right)=\left\{E_{m}(\nu, \lambda), m \in \mathbb{N}\right\}$ not explicit!
- $\psi_{m}^{\nu, \lambda}$ the eigenfunctions of $P_{\nu, \lambda}$ associated with $E_{m}(\nu, \lambda)$.

Homogeneity reduces to the study

$$
P_{\mu}:=-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\theta^{2}}{2}-\mu\right)^{2}
$$

Setting $T_{\alpha} \varphi:=\alpha^{\frac{1}{2}} \varphi(\alpha \cdot)$ and $\mu=\frac{\nu}{|\lambda|^{4 / 3}}$ then $P_{\nu, \lambda}=|\lambda|^{2 / 3} T_{|\lambda|^{1 / 3}} \mathrm{P}_{\mu} T_{|\lambda|^{-1 / 3}}$

$$
E_{m}(\nu, \lambda)=|\lambda|^{2 / 3} \mathrm{E}_{m}(\mu) \quad \text { and } \quad \psi_{m}^{\nu, \lambda}=T_{|\lambda|^{1 / 3}} \varphi_{m}^{\mu}
$$

The Lai-Robert, Colin de Verdière-Letrouit, Helffer, Helffer-Léautaud...

The frequency space on \mathbb{E}

Set $\widehat{x}:=(n, m, \nu, \lambda) \in \widehat{\mathbb{E}}=\mathbb{N}^{2} \times \mathbb{R} \times \mathbb{R}^{*}$, and

$$
\begin{aligned}
\mathcal{F}_{\mathbb{E}}(u)(n, m, \nu, \lambda) & :=\left(\widehat{u}(\lambda) \psi_{m}^{\nu, \lambda} \mid \psi_{n}^{\nu, \lambda}\right)_{L^{2}(\mathbb{R})} \\
& =: \int_{\mathbb{H}} \mathcal{W}(\widehat{x}, x) u(x) d x
\end{aligned}
$$

where

$$
\mathcal{W}((n, m, \nu, \lambda), x):=e^{i\left(\lambda x_{4}-\frac{\nu}{\lambda} x_{2}\right)} \int_{\mathbb{R}} e^{i \lambda\left(\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right)} \psi_{m}^{\nu, \lambda}\left(\theta+x_{1}\right) \psi_{n}^{\nu, \lambda}(\theta) d \theta .
$$

Then

$$
\mathcal{F}_{\mathbb{E}}\left(-\Delta_{\mathbb{E}} u\right)(n, m, \nu, \lambda)=\underbrace{E_{m}(\nu, \lambda)}_{\text {frequency }} \mathcal{F}_{\mathbb{E}}(u)(n, m, \nu, \lambda) .
$$

Spectral summability

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

$$
\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{1}{\mathrm{E}_{m}(\mu)^{\gamma}} d \mu<\infty \Longleftrightarrow \gamma>2
$$

Moreover assume $\Phi \in L^{1}\left(\mathbb{R}_{+}, r^{\frac{5}{2}} d r\right)$

$$
\sum_{m \in \mathbb{N}} \int_{\mathbb{R} \times \mathbb{R}^{*}} \Phi\left(E_{m}(\nu, \lambda)\right) d \nu d \lambda=\mathrm{C} \int_{0}^{\infty} \Phi(r) r^{\frac{5}{2}} d r
$$

where

$$
\mathrm{C}=\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{3}{\mathrm{E}_{m}(\mu)^{\frac{1}{2}}} d \mu .
$$

■ it splits the contribution of the spectrum and the one of F
■ it is a summability result for all the spectra

Spectral summability

Theorem (Bahouri-DB-Gallagher-Léautaud 2023)

$$
\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{1}{\mathrm{E}_{m}(\mu)^{\gamma}} d \mu<\infty \Longleftrightarrow \gamma>2
$$

Moreover assume $\Phi \in L^{1}\left(\mathbb{R}_{+}, r^{\frac{Q-2}{2}} d r\right)$

$$
\sum_{m \in \mathbb{N}} \int_{\mathbb{R} \times \mathbb{R}^{*}} \Phi\left(E_{m}(\nu, \lambda)\right) d \nu d \lambda=\mathrm{C} \int_{0}^{\infty} \Phi(r) r^{\frac{Q-2}{2}} d r
$$

where

$$
\mathrm{C}=\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{3}{\mathrm{E}_{m}(\mu)^{\frac{Q}{2}}} d \mu .
$$

- it splits the contribution of the spectrum and the one of F
- it is a summability result for all the spectra

Formula in simpler situations

Analogue in Heisenberg \mathbb{H}^{d}
$\sum_{m \in \mathbb{N}^{d}} \int_{0}^{\infty} \Phi(|\lambda|(2|m|+d))|\lambda|^{d} d \lambda=\left(\sum_{m \in \mathbb{N}^{d}} \frac{2}{(2|m|+d)^{d+1}}\right) \int_{0}^{\infty} \Phi(r) r^{d} d r$.

- notice the Plancherel measure in LHS and $d=(Q-2) / 2$, $d+1=Q / 2$.
- the convergence in this case is easy

Analogue in \mathbb{R}^{n} would be the spherical coordinate formula

$$
\int_{0}^{\infty} \Phi\left(|\xi|^{2}\right) d \xi=\left|S^{d-1}\right| \int_{0}^{\infty} \Phi(r) r^{\frac{n-2}{2}} d r .
$$

On the surface measure in Heisenberg

Recall that for θ being the Fourier transform of a radial function

$$
\int_{\widehat{\mathbb{H}} \mathbb{I}^{d}} \theta(\widehat{x}) d \widehat{x}=\int_{\mathbb{R}} \sum_{n \in \mathbb{N}^{d}} \theta(n, n, \lambda)|\lambda|^{d} d \lambda
$$

For spherical measures (on sphere of radius R) we want

$$
\int_{\widehat{\mathbb{H}}^{d}} \theta(\widehat{x}) d \widehat{x}=\int_{0}^{\infty}\left(\int_{\mathbb{S}_{\mathbb{R}^{R} d}} \theta(\widehat{x}) d \sigma_{R}(\widehat{x})\right) d R
$$

So we have (change of variable $R^{2}=(2|n|+d)|\lambda|$)

$$
\int_{\mathbb{S}_{\mathbb{R} d}^{R}} \theta(\widehat{x}) d \sigma_{R}(\widehat{x})=\sum_{n \in \mathbb{N}^{d}} \frac{2 R^{2 d+1}}{(2|n|+d)^{d+1}}\left(\sum_{ \pm} \theta\left(n, n, \frac{ \pm R^{2}}{2|n|+d}\right)\right)
$$

On the Plancherel formula and measure

Let G be a simply connected nilpotent Lie group, \mathfrak{g} its Lie algebra, and \mathfrak{g}^{*} its dual.

Lemma (Kirillov lemma)

It exists in \mathfrak{g}^{*}

- a G-invariant subset V (open in the Zariski topology),
- a linear submanifold Q of \mathfrak{g}^{*}
such that all coadjoint orbits lying in V intersect Q at exactly one point.
Elements of $\mathfrak{g}=\mathfrak{g}^{* *}=$ linear functions on \mathfrak{g}^{*}.
We choose a basis of \mathfrak{g} by

$$
X_{1}, \ldots, X_{m}, Y_{m+1}, \ldots, Y_{n}
$$

such that

- Y_{m+1}, \ldots, Y_{n} will be constant on Q,
- X_{1}, \ldots, X_{m} as coordinates on Q,

A formula for that

For every point $\eta_{X} \in Q$ with coordinates $X=\left(X_{1}, \ldots, X_{m}\right)$ we consider a skew-symmetric matrix A of size $n-m$ with elements

$$
B_{i j}(X)=\left\langle\eta_{X},\left[Y_{i}, Y_{j}\right]\right\rangle, \quad i, j=m+1, \ldots, n
$$

Theorem

The Plancherel measure is

$$
\mu=\sqrt{\operatorname{det} B\left(X_{1}, \ldots, X_{m}\right)} d X_{1} \wedge \ldots \wedge d X_{m}
$$

where $d X_{1}, \ldots, d X_{m}, d Y_{m+1}, \ldots, d Y_{n}$ is the dual basis.
Case of the Heisenberg and Engel \rightarrow at the blackboard.

Summability of eigenvalues of the operator P_{i}

It relies on a refined analysis of the spectrum of P_{μ} : recall

$$
\mathrm{P}_{\mu}=-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\theta^{2}}{2}-\mu\right)^{2}, \quad \mu \in \mathbb{R}
$$

This operator appears also in different contexts:

- in quantum mechanics;
- in the study of Schrödinger operators with magnetic fields

It is defined on the domain

$$
\begin{equation*}
D\left(\mathrm{P}_{\mu}\right)=\left\{u \in L^{2}(\mathbb{R}), \quad-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\theta^{2}}{2}-\mu\right)^{2} u \in L^{2}(\mathbb{R})\right\} \tag{4}
\end{equation*}
$$

and that its spectrum consists in countably many real eigenvalues $\left\{\mathrm{E}_{m}(\mu)\right\}_{m \in \mathbb{N}}$ of multiplicity 1 and satisfying

$$
0<\mathrm{E}_{0}(\mu)<\mathrm{E}_{1}(\mu)<\cdots<\mathrm{E}_{m}(\mu)<\mathrm{E}_{m+1}(\mu) \rightarrow+\infty .
$$

On the summability of the spectrum

It relies on a refined analysis of the spectrum of P_{μ} : recall

$$
\mathrm{P}_{\mu}=-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\theta^{2}}{2}-\mu\right)^{2}, \quad \mu \in \mathbb{R}
$$

The behavior of the potential depends on the sign of the parameter μ :
■ It admits a single well when $\mu<0$

- It admits a double well when $\mu>0$.

■ need combination of microlocal and semiclassical analysis along with known spectral results.
Another observation for later
■ it is the square of a polynomial of degree 2 (with no 1st order term)

Discuss (in terms of the parameter γ) convergence of

$$
J_{\gamma}=\sum_{k \in \mathbb{N}} \int_{\mathbb{R}} \frac{1}{\mathrm{E}_{k}(\mu)^{\gamma}} d \mu=\int_{\mathbb{R} \times \mathbb{N}} \frac{1}{\mathrm{E}_{k}(\mu)^{\gamma}} d \mu d \delta(k)
$$

where $d \delta(k)$ is the counting measure on \mathbb{N}.

- three main regimes to be considered in the analysis of the eigenvalues $\mathrm{E}_{k}(\mu)$.
- In each of these regimes, we will use a semiclassical reformulation
$\boldsymbol{1}|\mu| \lesssim 1$ or $|\mu| \ll \sqrt{E_{k}(\mu)}$ (classical and perturbative classical regime) that is, μ bounded or going to $\pm \infty$ not too fast,
2 $\mu \rightarrow-\infty$ and $\mathrm{E}_{k}(\mu) \lesssim \mu^{2}$ (Semiclassical Harmonic oscillator/single well regime),
3 $\mu \rightarrow+\infty$ and $\mathrm{E}_{k}(\mu) \lesssim \mu^{2}$ (Semiclassical double well regime).

We shall then split \mathcal{J}_{γ} accordingly, for some $\varepsilon>0$ (small) and $\mu_{0}>0$ (large) as

$$
\begin{align*}
& \mathcal{J}_{\gamma}=J_{\gamma}^{-}\left(\varepsilon, \mu_{0}\right)+J_{\gamma}^{0}\left(\varepsilon, \mu_{0}\right)+\mathcal{J}_{\gamma}^{+}\left(\varepsilon, \mu_{0}\right), \quad \text { with } \tag{5}\\
& \mathcal{J}_{\gamma}^{\bullet}\left(\varepsilon, \mu_{0}\right) \stackrel{\text { def }}{=} \int_{\varepsilon}\left(\varepsilon, \mu_{0}\right) \tag{6}\\
& \mathcal{E}_{k}(\mu)^{\gamma} \\
& \mathcal{E}^{0}\left(\varepsilon, \mu_{0}\right) \stackrel{d d \delta(k)}{=}\left\{(\mu, k) \in \mathbb{R} \times \mathbb{N},|\mu| \leq \mu_{0} \text { or }|\mu|^{2} \leq \varepsilon^{2} E_{k}(\mu)\right\}, \\
& \mathcal{E}^{-}\left(\varepsilon, \mu_{0}\right) \stackrel{\text { def }}{=}\left\{(\mu, k) \in \mathbb{R} \times \mathbb{N}, \mu \leq-\mu_{0} \text { and }|\mu|^{2} \geq \varepsilon^{2} E_{k}(\mu)\right\}, \\
& \mathcal{E}^{+}\left(\varepsilon, \mu_{0}\right) \stackrel{\text { def }}{=}\left\{(\mu, k) \in \mathbb{R} \times \mathbb{N}, \mu \geq \mu_{0} \text { and }|\mu|^{2} \geq \varepsilon^{2} E_{k}(\mu)\right\} .
\end{align*}
$$

- Note that the (necessary and sufficient) condition $\gamma>2$ for having $\mathrm{J}_{\gamma}<\infty$, as stated in Theorem, comes from the third (double well) region

Recover known results

As for instance some Sobolev embeddings. Remember here $Q=7$.

Proposition

For $s>Q / 2$, then $H^{s}(\mathbb{E})$ embeds in $L^{\infty}(\mathbb{E})$.
Recall that

$$
\|u\|_{H^{s}(\mathbb{E})}^{2}:=\int_{\widehat{E}}\left|\mathcal{F}_{\mathbb{E}}(u)(\widehat{x})\right|^{2}\left(1+E_{m}(\nu, \lambda)\right)^{s} d \widehat{x}
$$

Start from the inversion formula

$$
u(x)=(2 \pi)^{-3} \int_{\widehat{E}} \mathcal{W}\left(\widehat{x}, x^{-1}\right) \mathcal{F}_{\mathbb{E}}(u)(\widehat{x}) d \widehat{x}
$$

so that

$$
|u(x)| \leq \int_{\widehat{E}}|\mathcal{W}(\widehat{x}, x)|\left|\mathcal{F}_{\mathbb{E}}(u)(\widehat{x})\right| d \widehat{x}
$$

Sobolev embeddings

Multiplying/dividing $\left(1+E_{m}(\nu, \lambda)\right)^{s / 2}$ and using Cauchy-Schwartz

$$
|u(x)| \leq\|u\|_{H^{s}}\left(\int_{\widehat{E}}\left|\mathcal{W}\left(\widehat{x}, x^{-1}\right)\right|^{2}\left(1+E_{m}(\nu, \lambda)\right)^{-s} d \widehat{x}\right)^{1 / 2}
$$

Since $\sum_{n \in \mathbb{N}}\left|\mathcal{W}\left(\widehat{x}, x^{-1}\right)\right|^{2}=1$ due to the fact that representation are unitary it remains to estimate

$$
\left(\sum_{m \in \mathbb{N}} \int_{\mathbb{R} \times \mathbb{R}^{*}}\left(1+E_{m}(\nu, \lambda)\right)^{-s} d \lambda d \nu\right)^{1 / 2}
$$

which thanks to the summation formula is finite for $s>Q / 2$

$$
\leq\left(\int_{0}^{\infty}(1+r)^{-s} r^{\frac{Q-2}{2}} d r\right)\left(\sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{1}{\mathrm{E}_{m}(\mu)^{\frac{Q}{2}}} d \mu\right)
$$

An application

We are interested in the assumptions on Φ giving,

$$
\begin{equation*}
\Phi\left(-\Delta_{\mathbb{E}}\right) u=u \star k_{\phi}, \quad \text { for all } u \in \mathcal{S}(\mathbb{E}) \tag{7}
\end{equation*}
$$

Theorem (BBGL, 23)

Assume $\Phi \in L^{1}\left(\mathbb{R}_{+}, r^{\frac{5}{2}} d r\right)$. Then

- For any $u \in \mathcal{S}(\mathbb{E})$, then $\Phi\left(-\Delta_{\mathbb{E}}\right): \mathcal{S} \rightarrow L^{\infty}$ is well-defined by

$$
\Phi\left(-\Delta_{\mathbb{E}}\right) u \stackrel{\text { def }}{=} \mathcal{F}_{\mathbb{E}}^{-1}\left(\Phi\left(E_{m}(\nu, \lambda)\right) \mathcal{F}_{\mathbb{E}}(u)(\widehat{x})\right) .
$$

- Moreover, there is k_{Φ} in $S^{\prime}(\mathbb{E})$ such that $\Phi\left(-\Delta_{\mathbb{E}}\right) u=u \star k_{\phi}$ and we have the continuous map

$$
\begin{aligned}
L^{1}\left(\mathbb{R}_{+}, r^{\frac{5}{2}} d r\right) & \longrightarrow S^{\prime}(\mathbb{E}) \\
\Phi & \longmapsto k_{\Phi}
\end{aligned}
$$

- Indeed k_{Φ} belongs to $C^{0} \cap L^{\infty}(\mathbb{E})$ and there holds

$$
\begin{aligned}
\left\|k_{\Phi}\right\|_{L \infty(\mathbb{E})} & \leq(2 \pi)^{-3} \mathrm{C} \int_{0}^{\infty} r^{5 / 2}|\Phi(r)| d r \quad \text { and } \\
k_{\Phi}(0) & =(2 \pi)^{-3} C \int_{0}^{\infty} r^{5 / 2} \Phi(r) d r
\end{aligned}
$$

where

$$
\mathrm{C} \stackrel{\text { def }}{=} \sum_{m \in \mathbb{N}} \int_{\mathbb{R}} \frac{3}{E_{m}(\mu)^{\frac{7}{2}}} d \mu<\infty .
$$

- Finally $k_{\phi} \in L^{2}(\mathbb{E})$ if and only if $\Phi \in L^{2}\left(\mathbb{R}_{+}, r^{5 / 2} d r\right)$ and there holds

$$
\left\|k_{\Phi}\right\|_{L^{2}(\mathbb{E})}^{2}=(2 \pi)^{-3} C \int_{0}^{\infty} r^{5 / 2}|\Phi(r)|^{2} d r .
$$

Chapter 7: Higher steps groups: some observations and comments

The Goursat group in dim 5

This is the nilpotent Lie group of dimension 5 with a basis of the Lie algebra satisfying

$$
\left[X_{1}, X_{2}\right]=X_{3}, \quad\left[X_{1}, X_{3}\right]=X_{4}, \quad\left[X_{1}, X_{4}\right]=X_{5}
$$

In particular we can consider the (linear) smooth functions $h_{1}, h_{2}, h_{3}, h_{4}, h_{5}: \mathfrak{g}^{*} \rightarrow \mathbb{R}$. To find a basis of the Poisson vector fields it is enough to write down \vec{h}_{i} for every $i=1,2, \ldots, 5$. Using our formulas

$$
\begin{gathered}
\vec{h}_{1}=h_{3} \partial_{h_{2}}+h_{4} \partial_{h_{3}}+h_{5} \partial_{h_{4}}, \quad \vec{h}_{2}=-h_{3} \partial_{h_{1}} \\
\vec{h}_{3}=-h_{4} \partial_{h_{1}}, \quad \vec{h}_{4}=-h_{5} \partial_{h_{1}}
\end{gathered}
$$

while h_{5} is a casimir since the corresponding vector field X_{5} is in the center. There is a second casimir similar to Engel.

Lemma

The function $f=\frac{1}{2} h_{4}^{2}-h_{3} h_{5}$ is a casimir.

Notice that $\left\{f, h_{j}\right\}=0$ for $j \geq 2$ since the only non zero commutators between the vector fields must contain X_{1} and

$$
\left\{f, h_{1}\right\}=\left\{h_{4}, h_{1}\right\} h_{4}-\left\{h_{3}, h_{1}\right\} h_{5}=-h_{5} h_{4}+h_{4} h_{5}=0
$$

There is a third casimir. It is necessary since the dimension of the leaves should be even, hence in this case is $2=5-3$.

Lemma

This function is a casimir

$$
f=h_{2} h_{5}^{2}+\frac{1}{3} h_{4}^{3}-h_{3} h_{4} h_{5}
$$

All coadjoint orbits are contained in the level sets

$$
\left\{\begin{array}{l}
h_{5}=\lambda, \tag{8}\\
\frac{1}{2} h_{4}^{2}-h_{5} h_{3}=\nu \\
h_{2} h_{5}^{2}+\frac{1}{3} h_{4}^{3}-h_{3} h_{4} h_{5}=\mu
\end{array}\right.
$$

The Poisson orbits are NOT NEEDED

\rightarrow It is enough to fix one point.
On the orbit we take $\eta=\left(0, \mu / \lambda^{2},-\nu / \lambda, 0, \lambda\right)$ then we have a choice of maximal subalgebra

$$
\mathfrak{h}=\operatorname{span}\left\{X_{2}, X_{3}, X_{4}, X_{5}\right\}, \quad[\mathfrak{h}, \mathfrak{h}]=0
$$

and the corresponding 1-dim representation

$$
X_{\nu, \lambda}\left(e^{x_{2} x_{2}+x_{3} x_{3}+x_{4} x_{4}+x_{5} x_{5}}\right)=\exp i\left(\frac{\mu}{\lambda^{2}} x_{2}-\frac{\nu}{\lambda} x_{3}+\lambda x_{5}\right) .
$$

We write points on G as

$$
g=e^{x_{2} x_{2}+x_{3} x_{3}+x_{4} x_{4}+x_{5} x_{5}} e^{x_{1} x_{1}}
$$

We take a complement $K=\exp \left(\mathbb{R} X_{1}\right)$ and we solve the Master equation

$$
\begin{align*}
& e^{\theta X_{1}} e^{x_{2} X_{2}+x_{3} X_{3}+x_{4} X_{4}+x_{5} X_{5}} e^{x_{1} X_{1}}= \tag{9}\\
& \quad=e^{x_{2} X_{2}+\left(x_{3}+\theta x_{2}\right) X_{3}+\left(x_{4}+\theta x_{3}+\frac{\theta^{2}}{2} x_{2}\right) X_{4}+\left(x_{5}+\theta x_{4}+\frac{\theta^{2}}{2} x_{3}+\frac{\theta^{3}}{6} x_{2}\right) x_{5}} e^{\left(\theta+x_{1}\right) X_{1}}
\end{align*}
$$

We deduce that in the notation $\widetilde{f}(\theta)=f\left(e^{\theta X_{1}}\right)$

$$
\begin{gathered}
\mathcal{R}_{\mu, \nu, \lambda} \widetilde{f}(\theta)=\exp \left[i\left(\frac{\mu}{\lambda^{2}} x_{2}-\frac{\nu}{\lambda}\left(x_{3}+\theta x_{2}\right)+\lambda\left(x_{5}+\theta x_{4}+\frac{\theta^{2}}{2} x_{3}+\frac{\theta^{3}}{6} x_{2}\right)\right)\right] . \\
\cdot \tilde{f}\left(\theta+x_{1}\right)
\end{gathered}
$$

Differentiating with respect to the x_{i} at zero we get also the representation of the Lie algebra

$$
\begin{aligned}
& X_{1} \widetilde{f}=\frac{d}{d \theta} \tilde{f}, \\
& X_{2} \widetilde{f}=i\left(\frac{\mu}{\lambda^{2}}-\frac{\nu}{\lambda} \theta+\frac{\lambda}{6} \theta^{3}\right) \widetilde{f}, \\
& X_{3} \widetilde{f}=i\left(-\frac{\nu}{\lambda}+\frac{\lambda}{2} \theta^{2}\right) \widetilde{f}, \\
& X_{4} \widetilde{f}=i \lambda \theta \widetilde{f}, \quad X_{5} \widetilde{f}=i \widetilde{\tilde{f}}
\end{aligned}
$$

notice $\left[X_{1}, X_{2}\right]=X_{3},\left[X_{1}, X_{3}\right]=X_{4}\left[X_{1}, X_{4}\right]=X_{5}$.

Similar comments to Engel case

Observation

Notice that the Laplacian is

$$
X_{1}^{2}+X_{2}^{2}=\frac{d^{2}}{d \theta^{2}}-\left(\frac{\lambda}{6} \theta^{3}-\frac{\nu}{\lambda} \theta+\frac{\mu}{\lambda^{2}}\right)^{2}
$$

- it is a polynomial of degree $=2($ step -1)
- it does not has term on degree step-2
- it is arbitrary!
- oscillator with polynomial potential!

Homogeneity

Replacing $\theta \mapsto \alpha \theta$ (rescaling the functions) gives

$$
\frac{1}{\alpha^{2}} \frac{d^{2}}{d \theta^{2}}-\left(\frac{\lambda}{6} \alpha^{3} \theta^{3}-\frac{\nu}{\lambda} \alpha \theta+\frac{\mu}{\lambda^{2}}\right)^{2}=\frac{1}{\alpha^{2}}\left[\frac{d^{2}}{d \theta^{2}}-\left(\frac{\lambda}{6} \alpha^{4} \theta^{3}-\frac{\nu}{\lambda} \alpha^{2} \theta+\alpha \frac{\mu}{\lambda^{2}}\right)^{2}\right]
$$

which is

$$
\frac{1}{\alpha^{2}}\left[\frac{d^{2}}{d \theta^{2}}-\left(\frac{\alpha^{4} \lambda}{6} \theta^{3}-\frac{\alpha^{6} \nu}{\alpha^{4} \lambda} \theta+\frac{\alpha^{9} \mu}{\left(\alpha^{4} \lambda\right)^{2}}\right)^{2}\right]
$$

- one recovers the good homogeneity μ, ν, λ of degree $9,6,4$.
- These numbers also follows from the polynomial structure of the casimir
- assigning weights $(1,1,2,3,4)$ to the coordinates $\left(h_{1}, \ldots, h_{5}\right)$.

More formally

More formally as in the Engel group

$$
P_{\alpha^{9} \mu, \alpha^{6} \nu, \alpha^{4} \lambda}=\alpha^{2} T_{\alpha} P_{\mu, \nu, \lambda} T_{\alpha}^{-1}
$$

Normalizing $\alpha^{-4}=\lambda$ we have

$$
\frac{d^{2}}{d \theta^{2}}-\left(\frac{\theta^{3}}{6}-\lambda^{-6 / 4} \nu \theta+\lambda^{-9 / 4} \mu\right)^{2}
$$

and renaming $a=\lambda^{-6 / 4} \nu$ and $b=\lambda^{-9 / 4} \mu$ we "reduce" the study to the following family

$$
\frac{d^{2}}{d \theta^{2}}-\left(\frac{\theta^{3}}{6}-a \theta+b\right)^{2}
$$

An algebraic observation

The normalized potential at step satisfies

$$
\frac{d^{2}}{d \theta^{2}}-\left(V_{s}(\theta)\right)^{2}
$$

with at each s being the primitive $V_{s+1}=\int V_{s} d \theta$

$$
\begin{gathered}
V_{2}=\theta \\
V_{3}=\frac{\theta^{2}}{2}+a \\
V_{4}=\frac{\theta^{3}}{6}+a \theta+b
\end{gathered}
$$

A summation formula on the eigenvalue of the operator?

Generalization of summability

- The next case would be

$$
-\frac{d^{2}}{d \theta^{2}}+\left(\frac{\lambda}{6} \theta^{3}-\frac{\nu_{2}}{\lambda} \theta+\frac{\nu_{3}}{\lambda^{2}}\right)^{2}
$$

with ν_{3}, ν_{2}, λ homogeneous of degree $9,6,4$ respectively.
■ Denoting $E_{m}\left(\nu_{2}, \nu_{3}, \lambda\right)$ the corresponding eigenvalues we are asking for which γ

$$
\sum_{m \in \mathbb{N}} \int \frac{1}{E_{m}\left(\nu_{2}, \nu_{3}, 1\right)^{\gamma}} d \nu<\infty
$$

■ I do not know!
■ relation with the measure of the unit sphere?

The summation formula

We denote $\mathrm{E}_{m}(\mu, \nu, \lambda)$ is the m-th eigenvalue of $\mathrm{P}_{\mu, \nu, \lambda,} \mathrm{I}$ assume they exists but I do not know :)
By scaling we have (check the signs) setting $\nu^{\prime}=\frac{\nu}{\lambda^{6 / 4}} \mu^{\prime}=\frac{\mu}{\lambda^{9 / 4}}$

$$
\begin{align*}
P_{\mu, \nu, \lambda} & =|\lambda|^{1 / 2} T_{|\lambda|^{1 / 4}} \mathrm{P}_{\mu^{\prime}, \nu^{\prime}, 1} T_{|\lambda|-1 / 4}, \tag{11}\\
E_{m}(\mu, \nu, \lambda) & =|\lambda|^{1 / 2} E_{m}\left(\mu^{\prime}, \nu^{\prime}, 1\right), \tag{12}
\end{align*}
$$

Then we compute
$\sum_{m \in \mathbb{N}} \int F\left(E_{m}(\mu, \nu, \lambda)\right) \lambda^{-2} d \lambda d \nu d \mu=\sum_{m \in \mathbb{N}} \int F\left(\lambda^{1 / 2} E_{m}\left(\frac{\mu}{\lambda^{9 / 4}}, \frac{\nu}{\lambda^{6 / 4}}, 1\right)\right) \lambda^{-2} d \lambda$
so setting $\nu^{\prime}=\frac{\nu}{\lambda^{6 / 4}} \mu^{\prime}=\frac{\mu}{\lambda^{9 / 4}}($ for fixed $\lambda)$

$$
=\sum_{m \in \mathbb{N}} \int F\left(\lambda^{1 / 2} E_{m}\left(\mu^{\prime}, \nu^{\prime}, 1\right)\right) \lambda^{\frac{7}{4}} d \lambda d \nu^{\prime} d \mu^{\prime}
$$

and then setting $r=\lambda^{1 / 2} E_{m}\left(\mu^{\prime}, \nu^{\prime}, 1\right)$ (for fixed $\left.\mu^{\prime}, \nu^{\prime}\right)$ we find

$$
d r=\lambda^{-1 / 2} E_{m}\left(\mu^{\prime}, \nu^{\prime}, 1\right) d \lambda
$$

so that

$$
\lambda^{\frac{7}{4}} d \lambda=\lambda^{\frac{9}{4}} \lambda^{-\frac{1}{2}} d \lambda=\left(\frac{r}{E_{m}}\right)^{9 / 2} \frac{d r}{E_{m}}
$$

and

$$
\begin{aligned}
& \sum_{m \in \mathbb{N}} \int F\left(E_{m}(\mu, \nu, \lambda)\right) \lambda^{-2} d \lambda d \nu d \mu= \\
&=\left(\int r^{9 / 2} F(r) d r\right) \sum_{m \in \mathbb{N}} \int \frac{1}{E_{m}(\mu, \nu, 1)^{11 / 2}} d \mu d \nu
\end{aligned}
$$

This is the nilpotent Lie group of dimension n and step $s=n-1$ with a basis of the Lie algebra satisfying

$$
\left[X_{1}, X_{i}\right]=X_{i+1}, \quad i=2, \ldots, n
$$

Example: Filiform/Goursat group (step 4)

$$
\overbrace{X_{1}, X_{2}}^{\mathrm{g}_{1}}, \overbrace{X_{3}=\left[X_{1}, X_{2}\right]}^{\mathrm{g}_{2}}, \overbrace{X_{4}=\left[X_{1}, X_{3}\right]}^{\mathrm{g}_{3}}, \quad \overbrace{X_{5}=\left[X_{1}, X_{4}\right]}^{\mathrm{g}_{4}}
$$

- dimension increase each time by 1
- s step, then $n=s+1$ dimension
- it is always rank 2
- it is always the same vector field of \mathfrak{g}_{1} generating the new direction

Generalization of summability

Generalization (only for this class of groups at the moment) as follows :
■ the set of parameters will be $s-1=n-2$ dimensional : (ν, λ)
■ $\nu=\left(\nu_{2}, \ldots, \nu_{s-1}\right)$ a set of $s-2$ parameters
■ the Plancherel measure as $f(\lambda) d \lambda d \nu$,
■ $Q=1+s(s+1) / 2$ be the homogeneous dimension
$\sum_{m \in \mathbb{N}} \int \Phi\left(E_{m}(\nu, \lambda)\right) f(\lambda) d \lambda d \nu=c_{n}\left(\int r^{(Q-2) / 2} \Phi(r) d r\right)\left(\sum_{m \in \mathbb{N}} \int \frac{1}{E_{m}(\nu, 1)^{Q / 2}} d \nu\right)$
where $E_{m}(\nu, 1)$ is the family of eigenvalue of a 1D oscillator of the form

$$
-\frac{d^{2}}{d \theta^{2}}+\left(V_{s}(\nu ; \theta)\right)^{2}
$$

with $V_{s}(\nu ; \cdot)$ polynomial of degree $s-1$ with no term of degree $s-2$

Formula for the V_{s}

Better to show in $\operatorname{dim} n+2$ (or step s, with $s=n+1$)

$$
V_{s}(\nu ; \cdot)=\frac{d^{2}}{d \theta^{2}}-\left(\frac{\lambda}{n!} \theta^{n}+\sum_{k=2}^{n}(-1)^{k-1} \frac{\nu_{k}}{(k-2)!\lambda^{k-1}} \frac{\theta^{n-k}}{n-k!}\right)^{2}
$$

- λ is the dual variable to the center
- the ν represents the casimirs

$$
\frac{1}{k} X_{2}^{k}+\sum_{\ell=1}^{k-1}(-1)^{\ell} \frac{(k-2)!}{(k-\ell-1)!} X_{1}^{\ell} X_{2}^{k-\ell-1} X_{\ell+2}
$$

- explicit homogeneity

A reference or... an advertisement

Cambridge University Press, 2020, 764pp

A Comprehensive Introduction to Sub-Riemannian Geometry

ANDREI ACRACHEV
DAVIDE BARILARI
UCO BOSCAIN

