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Prelude

Differential Geometry is a vast subject, whose very first goal is to introduce instruments to develop
differential and integral calculus on manifolds, i.e., smooth spaces which are not necessarily R", or
embedded in some Euclidean space.

Indeed when starting to study the subject, one often has already encountered smooth subsets
of R”, called submanifolds, such as surfaces of R? like the sphere, the torus, etc. To say what
smooth means in this context one uses the notion of smooth function in R™. In this approach, the
regularity properties of the object are extrinsic, i.e., related with the ambient space. In geometry
it is preferable to have an approach to objects that permits to work with them using intrinsic
properties, i.e., not referring to (or independent from) external objects or structures.

The goal of the course is to introduce the language of Differential Geometry. For this reason, a
major part consists in building correct notions and acquire the right flexibility in order to work with
them. A recurrent paradigm in Differential Geometry is the duality between the two viewpoints:
intrinsic vs in coordinates. Several instances of this question are already present in linear alge-
bra courses, comparing presentation of abstract vector spaces and their coordinate version when
choosing a basis. For instance one might define what an eigenvalue for a square matrix is and
then discover that similar matrices have the same eigenvalues. This might seem at first a beautiful
coincidence or only the result of a surprisingly short proof. However, when one understands that
the two matrices represent the same endomorphism in different coordinates, the proof is even no
more needed! Indeed, since the notion of an eigenvalue of an endomorphism is independent on any
choice of basis, the statement is a coordinate—invariance property and must be true.

La géométrie n’est pas vraie, elle est avantageuseﬂ
La Science et 'Hypothese, 1902
Henri Poincaré, 1854 — 1912

These lecture notes presents some of the material taught by the author in the Master Degree
of Mathematics at Universita degli Studi di Padova, in the course of Differential Geometry. The
reader is invited to have a look to classical books of Differential Geometry [?, 7, 7, 7 7 ?] and
Riemannian Geometry [?, 7, 7, 7, 7]

Padova, Academic years 2020—202

!Transl. Geometry is not true, it is advantageous.






Chapter 1

Smooth manifolds and smooth maps

La notion générale de variété est assez difficile a définir avec pre’cz’sion[]
Lecons sur la Géométrie des espaces de Riemann, 1946
Elie Cartan, 1869 — 1951

The basic idea to build the definition of abstract manifold, is the one of a space that “looks
locally like R™”. A naive approach might be dangerous (cf. E. Cartan). In what follows we formalize
this idea.

1.1 Topological and smooth manifolds

Definition 1.1. Let M be a topological space, U C M open. Let ¢ : U — ¢(U) =V C R"
be an homeomorphism onto an open set V' of R™. The pair (U, ¢) is called a chart. The inverse
0 1V = U is a local parametrization.

A chart (U, p) gives local coordinates to points of U. Namely, for ¢ € U C M we assign n
coordinates to it, i.e., ¢(q) = (z1,...,x,) € R™. Here n is the number of scalar information needed
to identify a point on the space M when looking in a (small) region U.

We stress that there is no regularity on the space M up to now. Moreover, notice that the
number n is attached to a single chart and might a priori depend on the chart itself.

Remark 1.2. If we have two charts ¢1 : Uy — ¢(U1) = V3 C R™ and g : Uy — ¢(Us) = Vo C R"™2,
with U; N Uy # 0, we can consider

@2 0 901—1 : (pl(Ul N Uz) — gOQ(Ul N UQ)

which is an homeomorphism from an open set of R™ and R"2. By a topological argument, it follows
that ny = ng (cf. Appendix of this chapter). We deduce that on connected components of M the
number n is independent on the chart, this is the dimension of the connected component of M.

Definition 1.3. A topological manifold is a topological space together with an atlas, i.e., a family
{(Ui, ¢i) }ier of charts such that M is covered by the open sets, M = U;cU;.

'Transl. The general notion of manifold is quite hard to define precisely.
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By Remark [I.2] when M is connected we have a well-defined notion of dimension of a topological
manifold. For simplicity we develop the theory for connected spaces and we will say M is a n-
dimensional topological manifold when charts take values in R".

Remark 1.4. As a consequence of the definition, a differentiable manifold is always locally compact,
locally connected and locally path connected (prove this as an exercise!). But this does not impose
topological properties at the global level.

Sometimes in the literature, the definition of topological manifold include further (global) topo-
logical assumptions, which we will always require from now on.

Standing assumptions. From now on we will always assume for a topological manifold M:
(C) M is connected
(H) M is Hausdorff (points are separated)

(SC) M is second countable (existence of a countable basis for the topology of M)

Assumption (C) could be replaced by asking that all connected components of a topological
manifold have the same dimension. Since all the theory is local, there is no restriction to assume
connectedness.

Assumption (H) permits to avoid the example of the line with two origins, which is locally
Fuclidean but not Hausdorff and geometrically not so “smooth” !

Assumption (SC) is related to paracompactness, which is needed for partition of unity, cf.

Section [1.4]

Functions

Let M be a n-dimensional topological manifold. Since M is a topological space, we have a well-
defined notion of continuous functions f : M — R. At the moment we can not say what does it
mean “f : M — R is of class C*°”. It turns out that defining smooth (C*°) functions correspond
exactly to introduce a notion of smooth structure on M.

Let f: M — R be continuous. For each i of an open cover we deﬁneﬂ
ﬁ = fogoi_l cpi(U;) CR™ — R

Notice that ﬁ is the f “read in coordinates” on the open set U;. Hence with f we build a collection
{fi}ier of functions from (open subsets of ) R™ to R. It is easy to notice that f is continuous if and
only if each ﬁ is continuous. R

We can say what it means for a single f; to be C°°, but this does not define a good notion on
f since L R

fi=Fiopjopt = fiomy

where 7;; := ¢; o go;l is the transition function. If fj is C"°° we can deduce that ﬁ is C'*° only if
@; 0 goi_l is C* as well. We stress that the change of charts is defined on the following sets

pjopt iU NU;) = (Ui NTj).

This motivates the following definitions (and proves that they are well-posed).

2technically one should write f|o, o ¢; *



Definition 1.5. A differentiable manifold of class C* and dimension n is a n-dimensional topo-
logical manifold M together with a smooth atlas, i.e. an atlas {(U;, ;) }ier of charts such that all
transition functions ¢; o <pi_1 are of class CF.

Notice that here k& may takes value in {0,1,2,...,00,w} where w stands for analytic. In what
follows we focus on C*° case and smooth means always C'°°, unless specified. A smooth atlas is
what defines on M a so-called differentiable structure.

Definition 1.6. Let M be endowed with the smooth structure given by the atlas {(U;, ¢i) }ier. A
funtion f : M — R is smooth if and only if f; :== fo goi_l is smooth for every ¢ € I.

It is a direct consequence of the definition but it is a good idea to get convinced of the following
fact, saying that it is enough to check smoothness locally.

Exercise 1.7. Prove that f is smooth if and only if for every point = there exists j = j(z) € I
such that x € U; and fj := fo cpj_l is smooth.

Remark 1.8. 1. The Euclidean space R™ has its canonical differentiable structure covered by a
single chart (U, ), with U = R™ and ¢(x) = x, the identity map. With this differentiable structure
smooth functions with respect to the smooth structure are just the usual C* functions in R", i.e.,
those for which partial derivatives of every order are continuous.

2. On R we can define a differentiable structure with a single chart (R, ), 1 : R — R, ¢(x) = z3.
In this case the function f: R — R given by f(x) = x (the identity function) is in coordinates

F=foy™Ha)=f(¥x) = ¥z

which is not smooth! The standard differentiable structure and this new one are not equal, in the
sense that they define different smooth functions.

3. On the other hand one can consider on R the atlas {(I;, Yzr)}zcr,r>0 Where I, = (x —
r,x +r) is the open interval and ¢, ,(y) = y for every y € I, ,. This is the standard structure due
to locality of the notion of smoothness for real functions.

Two smooth atlases A, A’ are said compatible if every change of chart is smooth, i.e., if the
union A U A’ is still a smooth atlas. A smooth atlas is called mazimal if it is not contained in any
strictly larger compatible smooth atlas.

A chart is compatible with a smooth atlas A if adding the chart to the atlas A one gets a
smooth atlas. In this case we say that the chart is a smooth chart.

Proposition 1.9. Let M be a topological manifold. Then
(i) every smooth atlas for M is contained in a unique mazximal smooth atlas

(ii) two smooth atlases for M determine the same maximal smooth atlas if and only if they are
compatible

In what follows we simply say smooth manifold for differentiable manifold of class C*° and we
assume that smooth atlas are maximal.

All this sounds very difficult to use in concrete situations, especially because one has to start
with a topological structure on the set before defining a smooth structure. Here is a construction
lemma for smooth manifolds which permits to do both steps together.



Proposition 1.10 (construction lemma). Let M be a set and {Uy}taca a collection of subsets
together with pq : Uy — R™ injective maps such that

1. ¢o(Uy) is open in R™,
2. pa(UaNUg) and ¢g(Us NUg) are open in R™
3. ©q 0 @El s a diffeomorphism
4. M s covered by countably many U,
5. if x # y either they belong to the same U, or to two disjoint ones
Then there exists a unique smooth manifold structure such that (Uy, ¢o) are charts.

Proof. Consider the topology generated by ¢ (V), with V open set in R™. (Exercice: prove that
this is a topology!). Then check that all other conditions included (H) and (SC) are satisfied by
construction. O

1.2 Some fundamental examples

Note. Very often we write “M is a smooth manifold” meaning that M can be endowed with a
smooth structure manifold.

e R" is a n-dimensional manifold. Every open set U C R” is a n-dim manifold. Union of
countably many points are 0-dimensional manifolds.

e if M is m-dimensional and N is n-dimensionale then M x N is (m + n)-dim manifold.

Spheres

We want to prove that the unit sphere S™ has the structure of smooth n-dimensional manifold. Let

us consider
St ={x=(21,...,2n41) € R ||z]? =1} c R*T!

with the topology induced by R"*!. We will build an atlas A = {(Un,¢n), (Us, ps)} with two
charts where
Un =S"\ {N}, Us =5"\ {5},

with N and S the north and south pole respectively. The maps @y, g are stereographic projections.
For instance let us construct ¢n: given P = (z1,...,2p41) in Uy we consider ¢y (P) as the
intersection of the segment PN with the hyperplane H = {x,,,1 = 0}. Identifying H with R” (just
by removing the last component of the vector) we get a map

1

= m(xl, e ,xn),

en: Uy = R", on(P)

which is well defined since on Uy we have z,41 # 1. Similarly one can define and compute

1

:Ug — R™, P)=——
s : Us ws(P) T

(331, cee ,l’n).
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A computation shows that the inverse has the following form

1

= W@Ul, s 2, [u* = 1),

o R = Uy, oxt(w)

and similar results hold for gogl. We invite the reader to check the details and to compute that

— n n y
<PSO<PN15R \ {0} — R™\ {0}, wa-

Notice that with the above identifications o (Uy NUs) = ps(Un NUg) = R™\ {0}.

Remark 1.11. The atlas A has two charts. This is the minimum. Indeed if we could build an atlas
with one chart S™ would be homeomorphic to an open set of R", which is not possible since S is
compact.

Exercise 1.12. Consider the function f : S? — R given by f(z,y,2) = z if (z,y, 2) € S?. Clearly
f is the restriction of a smooth function of R® to the sphere. Write f in coordinates and show that
f is also smooth with respect to the differential structure just introduced.

Exercise 1.13. Consider the atlas A’ = {(Uii, @?:)}izlwwn_l,_l defined as follows
U =5"n{x; >0}, U~ =858"n{z; <0}

with charts
@j(xla---axn—&-l) = sz'_(xlv"wwn-f—l) = (xla‘-wf’ia”'vxn-{-l)

Show that A and A’ are compatible, i.e., change of charts between elements of the two atlases are
smooth.

Projective spaces

The usual definition of P"(R) is as the quotient (endowed with quotient topology):
P"(R) = (R"1\ {0})/ ~
with the equivalence relation z ~ 3 in R"*1\ {0} if 2 = Ay for some A # 0. Denoting
z = (z0,...,2,) € R"\ {0}

we denote

[] = [z0,...,2n) € P*(R)

the equivalence class. We define U; = {[z] € P*(R) : &; # 0} for i = 0,...,n. It is easy to see that
these are well defined and that

We set ; : U; — R" as follows

i) = (f’foxll‘fﬂﬂxn> c R"

11



where the “hat” stands for having removed that component (so it remains a n-vector). Geometri-
cally ¢;([z]) are the coordinates of the intersection of the line represented by [z] with the hyperplane
{z; = 1} (after removing the i-th coordinate equal to 1). The map ; is an homeomorphism onto
R"™ with inverse

o7 R = Uy, Y= YY1 L Yis o Unl

One can check that (we set for instanceﬂ j < i) the change of charts is smooth

_ Yo yi-1 1 yjm1 Yi-1 Ui Yit1 Y
S@,Losp]]'Rn\{ylzo}—)Rn\{yjzo}—}y}—)(7’ / s ]+a‘°'7 - 77@5 Z+7"‘7n>

where we should notice that R™\ {y; = 0} = ¢;(U; NU;), and similarly for the other one. It follows
that P"(R) is a differentiable manifold of dimension n.

The set of affine lines in the plane

Consider the set AL(R?) of affine lines in R?. This space has no a priori a topology, we use
Proposition to build the differential structure.
Given a line £ of equation ax + by = ¢ we define the sets

U, = {¢ € AL(R?) | a # 0}, Uy, = {¢ € AL(R?) | b # 0},

and the charts ¢; : U; — R? defined for i = a,b by

wal0=(-2.5). w0=(-55).

Notice that all these definitions are well-posed, i.e. independent on the coefficients a, b, ¢ represent-
ing the line. It is not difficult to check that if (u,v) denote the coordinate on R? then

5095 (Ua) = {(u,0) | u# 0} = ga 09, (Up)

_ 1 v
®b © (pal(uvv) = (’>

u u

and on this set

which is smooth on {(u,v) | u # 0}.
The atlas A = {(U;, i) }i=ap gives the structure of smooth manifold to AL(R?).

Remark 1.14. The charts corresponds to writing the line ax + by = ¢ in the form
Yy =mzx + p, rT=ny+q

Indeed if the line is neither horizontal nor vertical we have

mn=(-55). o= (-55)

Exercise 1.15. Let o be the origin of R?, for every affine line £ € AL(R?) define f(¢) := dist?(o, £),
where dist denotes the Euclidean distance in R? from a point to a line. Prove that the function f
is C with respect to the smooth structure of AL(R?) .

3the other case is similar but pay attention to indices if you write it!
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Level sets

Let U C R™ be open and F': U — R™ be a smooth map. We say that x € U is critical point if
DF(x) is not surjective, = is a regular point otherwise.
A point y € R™ is said to be a regular value if every € F~1(y) is a regular point.

Theorem 1.16. Let F': U C R™ — R™ be a smooth map such that yo € R™ is a reqular value for
F. Then F~Y(yo) is a smooth manifold of dimension n —m.

Proof. Tt is not restrictive to assume yg = 0. Fix z9 € U N F~1(0). Since rank(DF(z0)) = m up
to reordering variables we can split the space as z = (2/,2”) € R x R™ in such a way that
the m x m block OF /02" is invertible. Then applying the classical implicit function theorem there
exists a neighborhood of xg, which we can take of the form U’ x U” with U’ ¢ R*» ™, U” c R™,
and a smooth function f: U’ — U” such that

F(z)=0, zeU xU"

is equivalent to
" = f(2)), el

Then defining ¢ : U’ C R"™™ — R™ as ¢(2') = (2, f(2')) we have proved that
(U x U") N F~H0) =y (U")

with v invertible onto its image. Denoting ¢ = 1)~! we have that ¢ defines a chart on the open set
(U x U"yn F~1(0). O

Exercise 1.17. As an exercise check that the change of two such charts is smooth. Notice that
the operation of renaming variables (used at the very beginning of the proof) corresponds to apply
an invertible linear transformation to the space.

We will see how this generalizes to manifolds later.
Exercise 1.18. Discuss for which ¢ € R the following subset of R? is a smooth manifold
B ray+yd=c (1.1)
Exercise 1.19. Discuss whether the following subset of R? is a smooth manifold

{x2+y2+22=1 (1.2)

2?4y —2=0

This subset of R is also known as “Viviani’s window” (but check that on the web only after having
tried to solve the exercise!).
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Grassmannians

Let us consider the Grassmannian of k£ planes in a n-dim vector space V.
Gpr(V)={W CV | dim(W) = k}.

We want to show this is a k(n — k) dimensional manifold. The idea behind the construction is
that k-dimensional subspaces can be described as the graph of linear maps R¥ — R"*, hence
parametrized by k(n — k) matrices.

Charts are build as follows: for every U C V with dimU = n — k we consider

UN={W eG(V) | WaeU=V}={WecGp(V)|WnU =0}

Of course G (V) is covered by such open sets

since every k-dimensional set is transversal to some (n — k)-dim one. To define charts let us fix an
element Z € U™, which will play the role of the origin of the chart.
The following lemma of linear algebra holds.

Lemma 1.20. Every W € U™ is the graph of a unique linear map Ay : Z — U.
Choosing basis for Z and U we can easily build a bijective map
oy UM = My p—1(R) =~ RF(—F) ou(W) = Aw.
Notice that ¢y (Z) = 0 (i.e., the Z we have chosen is the origin).

Exercise 1.21. Let Uy, U; be two (n — k) dimensional subspaces and fix Z; in such a way that
Z; ®U; = V. Compute

©u, © SO(_]QI . Rk‘(n—k‘) N Rk(n—k)

and prove it is a diffeomorphism. Use the construction lemma (Proposition [1.10) to complete the
proof that this gives G (V') the structure of a manifold.

Examples in the space of matrices

The space M, (R) of square matrices with real entries can be endowed with a structure of smooth
2 since it is a vector space. Let us consider some subset of it and show
that they are actually smooth manifolds.

manifold of dimension n

e the space GL,(R) = {A € M,(R) | det(A) # 0} is an open set within M, (R), since det is a

continuous function, so it is a smooth manifold of dimension n?.

e the space SL(n) is a smooth manifold of dimension n? — 1. Indeed we have
SL(n) = {A € GL,(R) | det(A) = 1} = det™'(1).

14



If we prove that F' := det : GL,(R) — R is smooth and the differential is surjective at every
point, we are done. It is smooth because it is a polynomial map. Moreover we have

DF(I)H = trace(H) (1.3)
Equation (|1.3)) can be proved by linearity of the differential and applying to a basis. This

implies

det(I + H) =1+ trace(H) + o(||H]|)
Using the properties of the determinant, for A € GL,(R) and H € M, (R)

det(A + H) = det(A) + det(A)trace(A™ H) + o(|| H||)
Which in turns gives for A € SL,(R)
DF(A)H = trace(A™'H)

Notice that that DF(A) : M,(R) — R is surjective as a linear map for every A (this means
for every A there exists H such that trace(A™1H) # 0, and this is clearly true).

the space Op(R) is a smooth manifold of dimension n(n — 1). Recall that
On(R) ={A e M,(R) | ATA =1} =FI)

where F : O,(R) — Sym,,(R) is given by F(A) = AT A. We have restricted the target space
in order for F' to have surjective differential. In fact, it is easy to see that

DF(A)H = H'A+ ATH

where DF(A) : M,(R) — Sym,,(R). To prove that it is surjective for every S € Sym,,(R)
choose H = 2 AS and for such H we have DF(A)H = S. Notice that

5 nn+l) n(n—l)‘

dim O, (R) =n 5 = 5

Exercise 1.22. What happens in the above argument if one starts with the space of special
orthogonal matrices SO, (R) = {A € M,(R) | ATA=1,det =1} = O, (R) N SL,(R)?

1.3 Smooth maps

We want to define what is a smooth map F' : M — N between two smooth manifolds.

Definition 1.23. Let M, N be two smooth manifolds and F': M — N be continuous. We say that
F is of class C* around a point gy € M if there exists charts (U, o) around g and (V) around
F(qo) such that the following map is of class C*

Fi=¢oFo¢ t:plU)CR"—¢(V)CR"

Exercise 1.24. Show that the previous definition one can replace “if there exists charts (U, )
around gop and (V,4) around F'(qp)” with “for every charts (U, ) around go and (V%) around

F(qo)”

15



Definition 1.25. Let M, N be two smooth manifolds. A continuous map F' : M — N is a smooth
diffeomorphism if F is bijective with F' and F~! of class C*°.

We say that F'is a local smooth diffeomorphism around qg € M if there exists U neighborhood
of go such that F(U) is open in N and F|y : U — F(U) is a diffeomorphism.

As before we focus on smooth maps (i.e., of class C°) but one can define C* diffeomorphisms
as well. We stress that a diffeomorphism is more than a smooth homeomorphism. The inverse
should also be smooth. Recall that a continuous injective map is a homeomorphism onto its image
by Theorem

The function z — 23 is an example of a map which is a smooth homeomorphism but not a
diffeomorphism from R to R (when both are endowed with the standard structure, cf. Example

Exercise 1.26. Prove that if F': M — N and G : N — P are smooth then G o F' is smooth. If F’
and G are diffeomorphisms then G o F' is also a diffeomorphism. This implies that being smoothly
diffeomorphic defines an equivalence relation between smooth manifolds.

Example 1.27. 1. The (open) unit ball B is diffeomorphic to R™ through (write explicitly the

inverse of F')
x

V1= |z]?

2. A trivial but important observation for what comes later is that if (U, ) is a smooth chart
on a smooth manifold then ¢ : U — ¢(U) C R" is a diffeomorphism when regarded as a map from
the smooth manifold U and the open subset ¢(U) in R™ with the standard structure.

3. The two smooth manifolds S! and SO(2) endowed with their standard smooth structures
(defined as in the previous section) are diffeomorphic through the bijective smooth map

F:B—>R"  F(z)=

F:S'550(2), (z,y)~ <_xy z>

where 22 4 y? = 1. It is left to the reader to check that both F' and F~! are smooth.

Exercise 1.28. Recall that (R, ) with the ordinary smooth structure given by the identity chart
o(z) = z, and (R,) with the chart ¢ : R — R given by ¥(x) = 23, are not defining the same
smooth structure.

Nevertheless these two structures are equivalent up to diffeomorphism. Consider F : (R, ¢) —
(R, 1) the map F'(x) = </« which is an homeomorphism. Its coordinate presentation F= YolFo
o !(z) = x so it is smooth (and the same is true for the inverse).

Remark 1.29. We state here some general fact without proofs.

e If a smooth manifold M has dimension dim M < 3, then all smooth structures on M are
equivalent up to diffeomorphisms.

e There exists topological manifolds which admit no smooth structure. In particular Michael
Freedman in 1982 found an example of a 4-dimensional topological manifold (called Eg man-
ifold) which can be proved to admit no smooth structure (using Rokhlin’s theorem, or Don-
aldson’s theorem).
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e On R, for n # 4, all smooth structures are equivalent up to diffeomorphisms. R?* admits
an uncountable number of smooth structures that are non equivalent up to diffeomorphisms.
These are called fake R*’s. (DeMichelis Freedman, 1982)

e John Milnor first proves the existence of a smooth structure on S” which is not diffeomorphic
to the standard one (1956). There are actually 28 non equivalent (1963). These smooth
structures are also called exotic spheres.

Lie groups

Another key notion in geometry is the one of Lie group. This is both a group and a manifold and
the group law is well-behaved with respect to the smooth structure.

Definition 1.30. We say that G is a Lie group if G is a smooth manifold and a group where the
maps multiplication and inverse

m:Gx G — G, m(z,y) = zy

i:G— G, i(z) =2t
are smooth with respect to the differentiable structure.

Indeed one can check that it is enough to verify that the map G x G — G that (z,y) > xy~!

is smooth. Then we can define right and left translations
Ry:G — G, Ry(h) = hg

Ly:G—G,  Ly(h) =gh

which are diffeomorphisms since they are smooth (composition of injection in a product and mul-

tiplication) with inverses Lg_1 = L, and Rg_1 =Ry-1.

— examples of Lie groups: S, T" GL,(R), SO, (R), SU,(C).

Coverings

Another class of smooth maps that are local diffeomorphisms are smooth coverings.

Definition 1.31. We say that 7 : M — M is a smooth covering if 7 is surjective, of class C'°°°, and
for every ¢ € M has a connected neighborhood U such that for every connected component U of
7 1(U) we have 7|z : U — U is a diffecomorphism.

Another way to say that: for every ¢ € M has a connected neighborhood U such that

=~ U) = Va

aEA

where V,, are open set diffeomorphic to U through 7. A covering is said to be universal covering if
M is simply connected. The universal covering is unique up to diffeomorphism.
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Remark 1.32. Notice that the set A depends on ¢. If the cardinality of A is finite, then it is locally
constant (prove it!), so that if M is connected and the cardinality is finite at one point, then it is
everywhere constant. In this case we say that the covering has m = card(A) sheets.

Example 1.33. example R — S! with ¢ — e*™. Infinitely many sheets

Example 1.34. example S” — P" with  — [z]. Two sheets. For n = 3 this has a Lie group
incarnation: SU(2) — SO(3). Consider S3 C R* ~ C2 such that (u,v) € C?isin S? if |u>+|v|? = 1.
Then

S35 SU©2),  (u,v) < b ”)

U u
is a bijective map, which is indeed a diffeomorphism with respect to the smooth structures.
The fact that SO(3) ~ P3(R) is also diffeomorphic to P3(R) is interesting. Every matrix A
in SO(3) different from the identity represents a rotation around some axis Rv and of some angle

6 € [~m, 7). Then one can build the map SO(3) — P3(R) given by A + v
Another way to see that S3 is a group, is to identify it to unit quaternions

g=a+bi+cj+dk
where i, j, k are the imaginary elements.

Example 1.35. The covering 7 : S! — S where z — 2" is a covering with n sheets.

Proper maps

We begin with some definitions

Definition 1.36. A continuous map f : M — N between smooth manifold is proper if f~!(K) is
compact in M for any K compact in N.

Definition 1.37. A continous (resp. smooth) map f : M — N between smooth manifold is a
continuous (resp. smooth) covering map if for every y € N, there exists an open neighborhood V' of
y, such that f~(V) is a union of disjoint open sets in M, each of which is mapped homeomorphically
(resp. diffeomorphically) onto V.

Proposition 1.38. Any proper continuous map f : M — N between smooth manifold is closed,
i.e., f(C) is closed in N for every closed set C C M.

Proof. Take a sequence y, in f(C) with y, — y. Then y, = f(x,) and x,, € C. For n large
enough, we can assume y, € K where K compact neighborhood of y. So that x; € f~!(K) which
is compact. hence x,, — x for some x (up to subsequences) and f continuous so that f(z) = y.
f(C) is closed. O

Theorem 1.39. Let M, N be smooth connected manifold and f : M — N be a proper local
diffeomorphism. Then f is a smooth covering map.

Proof. Since f is a local diffeomorphism, it is open. Since f is proper, it is closed. Hence f(M)
is open and closed in N and, by connectedness, f is surjective. Fix y € N. Since f is a local
diffeomorphism, each point of f~!(y) has a neighborhood on which f is injective, so f~!(y) is a
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discrete set. Since the singleton {y} is compact and f is proper, then f~!(y) is compact, hence
finite. Set f~1(y) = {x1,...,2x}. Fix U; a neighborhood of z; where f is a diffeomorphism.
It is not restrictive to suppose that U; N U; = 0 for ¢ # j. Set V = ﬁlef(Ui). Since each
f(U;) is a neighborhood of y, V' is a neighborhood of y also. By replacing V' with the connected
component of V'\ f(M \ U;U;) (which is open since f is closed) containing y, we can moreover
assume that V is connected and f~1(V) C U;U;. Hence if one set U; := U; N f~1(V) one can
check that f=1(V) = U;U;, dijoint union of its connected components, and that f : U; — V is a
diffeomorphism, as desired. O

Once it is known that the map f is a covering map, to show that it is injective one should
prove that it is a 1-sheet covering, i.e., the preimage of each point is a single point. The following
corollary provides a criterium.

Corollary 1.40. Under the previous assumptions, if N is simply connected, then f is a diffeomor-
phism.

Proof. 1t is enough to show that the map f is injective. Let x; # x2 in M such that f(z1) = f(x2).
Take a continuous curve « : [0,1] — M such that v(0) = x; and (1) = 21 homotopic to a point.
Its image v := foa : [0,1] — N is a closed loop in N such that v(0) = (1) = y. Since N is simply
connected there exists a continous map

I':[0,1] x[0,1] » N

such that I'(0,¢) = y and T'(1,¢) = «(t). For s sufficiently closed to 0 the curve v4(t) = I'(s, t) stays
in the set V where f is a covering hence f~!(y) is the union on k closed loop and it should be
homotopic to a point. This gives a contradiction. ]

1.4 Bump functions, partition of unity and paracompactness

In this section we discuss partition of unity and its relation with paracompactness. For what
described in this section is really important to assume the standing assumptions in Section in
particular the assumption (SC).

We start with the following auxiliary lemma.

Lemma 1.41. There exists a C*° function ® : R" — R such that
(i) 0 <P <1
(ii) ® =1 on B(0,1/2) ={z € R" | ||z|| < 1/2},

(iii) ® =0 on B(0,1) = {x € R™ | ||z|| > 1}.

Proof. We start by recalling that the following function h : R — R is of class C*°

0 if t<0
h(t) =< -
®) {e—l/t, if > 0.

It is enough then to define ® : R™ — R as follows

o h(1— [l
@) = R l?) + A2~ 174
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It is easily seen that ® is C°° and satisfies the properties above. O

The function ® is what is called a bump function. To build bump functions on smooth manifolds
we first need the following observation.

Proposition 1.42. Every topological manifolds admits a countable cover of precompact coordinate
balls.

Proof. Asssume M is covered by one chart ¢ : M — ¢(M) =V C R"™. Consider the set B of balls B
in R™ with rational center and rational radius, whose closure is contained in V. This is a countable
basis for the topology of V. Then consider the topology on M generated by the open sent ¢~ (B)
for B € B. The general case follows using (SC) assumption. (Details left to the reader). O

Proposition 1.43. Let K C V C M with K compact and V' open subset of a smooth manifold M.
There exists a smooth function f: M — R such that f =1 on K and f =0 on M\ V.

Proof. Use an open cover with values in precompact balls. More precisely for every ¢ in K take a
chart ¢, : U, = B(0,2) with U, C V. By compactness take a finite number (relabeled ¢; : U; —
B(0,2) for i = 1,..., N) of such charts such that

N N
Kc|Je '(BO,1/2) c|JUicV
=1 =1

Then set

fi: U =R, filq) = {(‘f(«pz(q)), Cq] ; gz,

Notice that f; is smooth since ()0;1(31/2) C U;. We define f: M — R as

N

OESE | [EE0)

i=1

which is clearly smooth. Moreover if ¢ € K then at least one f; is 1, hence f(¢) = 1. If ¢ ¢ V then
all f; are 0 hence f(q) =0. O

Of course one can exchange zero with one and reduce the compact to a point.

Corollary 1.44. For every q € M and U open neighborhood of q, there exists a smooth function
such that f(q) =0 and f =1 outside U.

Another such a property. Here by f smooth on a compact set means f coincides with the
restriction to K of a smooth function defined on some open neighborhood of K.

Proposition 1.45. Let K CV C M with K compact and V' open subset of a smooth manifold M .
If g: K — RY is smooth then there exists a smooth extension g : M — RN with suppg C V.

Recall that for f € C°°(M,R") we denote supp f = {x € M | f(z) #0}.
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Proof. Let U be the neigh of K where there exists the extension so that g = §|x for g: U — RV,
Set W = U NV which is still a neighborhood of K and apply the proposition to the pair K C W,
i.e., find a smooth function f such that f =1 on K and f = 0 outside W. Then consider:

@) = {f<q>§<q>, qew,
0, q ¢ Ww.

which satisfies the requirements. O

Paracompactness and partition of unity

Given an open cover U = {U;}icr of M we say that an open cover V = {V}},c; is a refinement of
U if for every j € J one has V; C U; for some i € I.

An open cover U = {U;}ier of M is locally finite if each point ¢ € M has a neighborhood V
that V NU; # () only for a finite number of ¢ € I.

Definition 1.46. A smooth manifold is said to be paracompact if from every open cover we can
extract a refinement which is locally finite.

Proposition 1.47. Every smooth manifold is paracompact.

Proof. For a complete proof we refer to [?]. Here we only prove a key step which is given in the
following Lemma. 0

Lemma 1.48. FEvery topological manifold has a countable and locally finite open cover by precom-
pact sets.

Sketch of the proof. Start from {B;};cn countable open cover by precompact balls. Make it locally
finite as follows: set U; = By and then define iteratively U; as follows: if U; is defined then set m;
such that

U;j CB1U...UBy,

which is finite by compactness. Set Uj;1 = By U...U By . Notice that necessarily mj;1 > m; in
this construction. Then define V; = Uj12 \ U;. This is locally finite. O

We stress that here the second countable assumption (SC) we added is crucial! This proves the
existence of the partition of unity.

Definition 1.49. A partition of unity is a family of smooth functions {t; };cs such that
(i) 0<y; <1
(ii) {supp;}icr is a locally finite cover of M
(i) > iervi =1

A partition of unity {t;};cs is subordinated to an open cover U = {U,};cs if suppy; C U; for
every i € I. Notice that the sum in (iii) is finite at every point by condition (ii).

Theorem 1.50. Every open cover U = {U; }ier admits a partition of unity {;}icr which is subor-
dinated to U.
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Proof. See [?]. O

Notice that the initial open cover in the previous theorem is not necessarily locally finite. Thanks
to partition of unity it is very easy to prove the existence of bump function even for closed sets
(not only compact as in Proposition [1.43]).

Proposition 1.51. Let C C V C M with C closed and V' open subset of a smooth manifold M.
There exists a smooth function a : M — R such that f =1 on C and f =0 on M\ V.

Proof. Let us consider the open cover Uy = V and Uy = M \ C. Let 11,12 a partition of unity
subordinated to the open cover. We have 13 = 0 on C i.e., outside U = M \ C. Then ¢; =1 on
C and has support inside U; =V, i.e., satisfies the requirements. O

Similarly, but with little more work, one proves the corresponding extension lemma.

Proposition 1.52. Let C CV C M with C closed and V' open subset of a smooth manifold M. If
f:C = RN is smooth then there exists a smooth extension f : M — RN with supp f C V.

Proof. See [?]. O

To end the section let us prove another application: every noncompact manifold can be approx-
imated via a family of compact subsets. Recall that an exhaustion function for a smooth manifold
is a f € C°°(M) such that the sublevel set {f < ¢} is compact for every c € R.

Proposition 1.53. Every smooth manifold admit a smooth exhaustion function.

Proof. Since the sublevel sets {f < ¢} are closed and monotone with respect to ¢ € R, it is enough
to prove that {f < N} is compact for every N € N.

Consider a countable open cover by precompact open sets {V;};eny and a partition of unity
{1} jen subordinated to it. Define

fla) = j;(q)
=1

Notice that the sum is finite at every point since {9;};en is a partition of unity (the supports define
a locally finite cover). Fix N € N and notice that if ¢ ¢ U;-Vlej then ¢j(q) =0for 1 <j < N. We
can estimate

Fl@= > i@ >N D vl =N> vlg) =N
J=N+1 j=N+1 =1

It follows that the sublevel set satisfies for every N € N.
{f <N}ycuLiV;
which is a closed set contained in a compact set, hence compact. O
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1.5 Appendix: Brower invariance of domain

The following theorem is purely topological.

Theorem 1.54 (invariance of domain, Brower 1912). Let U C R™ be open and f: U C R" — R"
injective and continuous. Then f(U) is open and f is a homeomorphisms between U and f(U).

The proof of this theorem is not trivialE] It has the following

Corollary 1.55. A non-empty open subset of R™ can be homeomorphic to a non-empty open subset
of R™ only if n = m.

Proof. Tt is not restrictive to assume m < n and consider a homeomorphism h : U C R" — V =
h(U) C R™. Then composing h with 7 : R™ — R"™ the canonical injection. We have that i o h is
continuous and injective but it is not an open map since i o h(U) = i(V)) C R™ x {0}. This is in
contradiction with Theorem [[.541 O

This corollary is intuitively obvious, but note that topological intuition is not always rigorous.
For instance, it is intuitively plausible that there should be no continuous surjection from R™ to R"
for n > m, but such surjections always exist, thanks to variants of the Peano curve construction.

4Tt is strongly related to Brower fixed point theorem. For an interesting discussion on this
topic one can see for instance the Terence Tao’s blog https://terrytao.wordpress.com/2011/06/13/
brouwers-fixed-point-and-invariance-of-domain-theorems-and-hilberts-fifth-problem/
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Chapter 2

Tangent space and differentials

The formal definitions in the preceding section do not help much
to an understanding of what the notion of a vector really is.
“The mathematical notion of a vector”[l] 1923

Sir Arthur Stanley Eddington, 1882 — 1944

For submanifolds of R” the tangent space is naturally defined as a vector space of the R”
itself, for smooth manifolds we cannot use the ambient space and we have to define an abstract
notion. There are several approaches to define tangent space: historically one of the first is the
characterisation we will see in Exercice [2.13] which is by the way a non evident definition of
(tangent) vector at a first sight (cf. Sir Arthur Stanley Eddington).

2.1 Tangent space

A natural approach to tangent space is through (equivalence classes of) smooth curves. This has
some drawbacks in particular when proving that the tangent space is a vector space and prove that
the differential is linear.

Here we’ll use the approach through derivations (defined on C°°(M) and not on germs, exploit-
ing bump functions). The reader is invited to have a look to the different presentations one can
find in different books.

Definition 2.1. Let M be a smooth manifold. A tangent vector X at a point ¢ in M is a linear
map X : C°(M) — R which is a derivation, i.e., X satisfies for f,g € C*°(M)

X(fg9) = X(f)g(a) + f(9)X(g)
The tangent space T;M is the set of all tangent vectors at g.

Notice that T, M has the natural structure of vector space. This is not related to any external
structure, which has an advantage: no verification is needed. Notice also that, at the moment, it
is not at all clear what is the dimension of T, M.

Lemma 2.2. We have X(c) = 0 for every constant function ¢, morever we have that X(fg) =0
whevever f(q) = g(q) = 0.

'a section in the book “The Mathematical Theory of Relativity” by the same author
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Proof. The second is trivial by definition of derivation. The first proof is also easy since
X(1)=X(1-1)=2X(1).
Hence X (1) = 0 and by linearity X (c) = cX(1) = 0. O

Let us prove locality of tangent vectors. (Here it is crucial to work in the C'*° category and not
in the analytic one)

Proposition 2.3. Let f and g agree on a neighborhood U of a point q. Then X(f) = X(g) for
every X € TyM.

Proof. 1t is enough to show that if A = 0 on a neighborhood U of ¢ then X (h) = 0. Indeed by
linearity then we obtain the statement by choosing h = f — g.

Let ¥ be a bump function such that v» = 0 on U and ¢ = 1 on supph, whose existence is
guaranteed by Proposition Then h = 1h by construction (where h is non zero, 1 is 1) and
we have

X(h) = X(¢h) = X ()h(q) + ¢ (q) X (h) = 0.

2.2 Differential

Next we move to the definition of differential. This is a linear map between vector spaces. If
one thinks in terms of smooth curves the following definition is natural, otherwise it is a little bit
abstract.

Definition 2.4. Let F' : M — N be a smooth map between smooth manifolds and ¢ € M. We
define the differential Fy : TyM — Tp)N as follows: for every v € T;M we define Fiv € Tp N

(Fuv)(g) =v(go F)
Easy properties of the differential follow from this definition:
Proposition 2.5. Let F': M — N be a smooth map between smooth manifolds and q € M
(i) Fy: TyM — Tp(q)N is a linear map
(ii)) (GoF),=G,oF,
(iii) (idar)« = id7,m
() if F is a diffeo then F is an isomorphism
Proof. The proofs are easy: (i) is linearity of derivations : for every f
F(v+w)(f) = (0 +w)(fo F) =v(f o F) + w(f o F) = Fu(o)(f) + F(w)(f)
(ii) is the definition again
(Go F)w)f =v(f o (GoF)) = v((f o G)o F) = (F)(f o G) = (GuF.v) f
(iii) follows by definition. (iv) follows by G' = F~! and (iii). O
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Combine the locality property with the previous Proposition 2.5 to prove.

Exercise 2.6. Let F': M — N is a local diffeo around ¢ € M. Then F. : TyM — TN is
an isomorphism. In particular show that if U C M is open and ¢ : U — M is the inclusion then
1y 1 TyU — Ty M is an isomorphism.

Consider now a chart (U, ) on M, let us write ¢(q) = (z1,...,2,). Sometimes we also write
(U,{zi}) to denote the chart. This defines n derivations associated with the chart&ﬂ which we will
denote

9 9
0x1 q’”"axn q
acting as follows: for any f: U — R we set
) d(fop! of
Zjlg Lj ¢(q) Tile(q)

1

where f: f o™ is the coordinate representation of f and the derivatives on the right are in R™.

Remark 2.7. This notation will make confusion at first. Do not be scared, it is a good idea to keep
this notation because when you will be used to that you will just identify the two objects!

Proposition 2.8. Let M be a smooth manifold and g € M. If (U,{x;}) is a chart near q, then the
coordinate vectors

9
6$1

0

76,%'”

)
q q

define a basis for TyM. In particular dim Ty M = dim M .

Proof. To prove this, we notice that by definition we have

[ 0
=¢ oy
q 7 lp(q)

where the derivative in the right hand side is the usual derivative with respect to the j-th variable
in R™. Since o, ! is an isomorphism (by construction ¢ is a smooth local diffeo), it is enough to
prove that the family {% ‘(p(q)} is a basis for T,,(,)R", which is proved in the following lemma. [J

K
G:ch

Lemma 2.9. Let f : R® — R be smooth, then there exist smooth funcions g; : R® — R for
i=1,...,n such that g;(0) =0 and

£@) = FO) + Y 5L O+ Y gl
j ¢ i=1

?meaning that these depends on the choice of the charts
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Proof. We have

and it is sufficient to set g;(z fo (89&_ (sz) — %(0)) ds. O
Lemma 2.10. Let g € R". Then 8%1‘10, cee % 2o s a basis for Ty ,R™.
Proof. We have to prove that the space of derivations at zy in R" is generated by 6%1 ‘330’ . % 2o

and that these derivations are independent. It is enough to prove this statement for zg = 0.

(a). Assume that v = Y1 | ai% ’0 = 0. This means that for every smooth function f € C*°(R")

- 0
0=vf= o —
; 5

ilo
By choosing f = x; we get o; = 0 for every j = 1,...,n, hence the derivations are independent.
(b). Now we want to show that every derlvatlon v at 0 can be written as ) 1" | qjm— B ‘0 for some

a;. Let us choose aj :==wv(z;) and set X, = ., O‘Za ‘ for this choice. We show v = X,,. Using
Lemma
0) + ; 5o, (071 + ; gi(@)xs,

for some smooth funcions g; such that g;(0) = 0. Then

v(f) =0+ Zv(mz)gj(O) +
i=1

(2

0= a:tl0) = x.0). =
i=1 v

The differential in coordinates

Let F': M — N be smooth, let us compute the representation of F} in coordinates. Recall that if
we have charts (U, ¢) and (V%) around ¢ and F(q) respectively then F' in coordinates read

=poFopt:plU)CR" = p(V)CR™

Denoting (z1,...,2,) and (y1,...,ym) the corresponding coordinates on M and N we want to
understand what is the matrix A = (a;;) such that
0 - 0
F. s~ | = Z aij
Ozil, j=1 Y5 | F(q)




It is not difficult: we have to sit down, apply to a function f the left hand side, apply definitions
and see what happens:

0
81'Z

aflfi
0 _
=o-| [feFoy]=
0

)f— 01 (for

hence applying the chain rule in R"™ we get

] & af
<F*aﬂfz q> /= Z 89]

Y
where we have used ¥ o F' = Fo ¢ (pay attention to % when they act on R™ or M).

OF;
F(o(q)) i

Y (ﬂ OF,
w(g ) j=1 &Uj »(F(q)) O;

»(q)

f
F(g)

_]:1 #(9) 83/3

Proposition 2.11. Let F': M — N be smooth map between manifolds and g € M. Given charts
(U, ) and (V,¢) around q and F(q) respectively, then we have that

0 o

| - OF
c%i qayj

F
1 8:0,

F(q)

In_particular the matriz representing the dzﬁerentml F, in coordinates is the Jacobian matriz
DF( (q)) of the coordinate representation F= WoFop!

q

oy dF}
o0z T OTn
DF = : :
9Fy 9Fy
9z dra-

Recall that if F: R® — R™ is a map and F(e;) = Y a;; f;

Remark 2.12. There are several other common notations for the differential of a map at ¢

F.q, F'(q), DF(q), D F, d,F, dF(q), T,F

Exercise 2.13 (Change of coordinates for vectors). Given two coordinate sets (U, {z;}) and
(U’ {z}}) with ¢ € UNU’ show that if v € T,M writes as

n

>
i a7

j=1 aqu

then

. . ., oz, . .
(Here, if ¢, ¢’ denotes the coordinate maps, the quantity 8%1 is the jacobian of ¢’ o 1),
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Use what said for R™ to prove the following.
Exercise 2.14. Let V be a vector space and v € V. Prove that T,V is canonically isomorphic to
V' (i.e., the isomorphism is independent on the choice of a basis in V).
2.3 A bit of geometry: tangent vector and curves

Now that we have a differential, given a smooth curve v : I — M defined on an open interval and
top € I we can define simply
d
Y(to) == v« | —
Y(to) =1 ( il

) € Tyeg) M
t=to

where d/dt|;—¢, is the standard basis for the one-dimensional space T3,1 ~ T3 R. By definition

Y(to)f = (fon)

t=to

dt

which is indeed coherent with the intuitive notion of differentiating along a curve.

Remark 2.15. Notice that if v(t) = ¢~ 1(5(t)) for some chart (U, ¢) centered at ¢ = v(0) we have

Y(to) f = a

gl (fen)=

t=to

4
dt

t=to i=1
This means that the coordinate components of the vector can be computed in any coordinate set!
Lemma 2.16. Let q € M. Every tangent vector in T,M 1is the tangent vector to a smooth curve.

Proof. Take a smooth chart (U, ¢) centered at ¢ and write v € T,M as v = Y i, Uia%i‘q. Then

consider (t) = ¢~ !(tvy,...,tv,). This curve is smooth and is tangent to v at t = 0 by the above
computation. O

We can now formally prove the property which was at the basis of our motivation for the
definition of differential.

Proposition 2.17. Let F : M — N and let v € T;M such that v = §(to) for some v : 1 — M.
Then we have

Proof. The proof is just a collage of definitions: define the curve n := F o~

itt0) = . (jt 3 ) = (For). = Fi(t)

t=to dt

t=to
O

This permits the geometric interpretation of the differential: given v € T; M to compute Fiv it
is enough to compute the tangent vector to the curve F' oy where « is a curve tangent to v.
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2.4 Examples
1. (Tangent space to a submanifold of R™.) Consider a submanifold S of R™ defined by
S={z eR" | F(z) = yo},

where F : R"® — R™ has surjective differential at every point of S = F~1(yg), for yo € R™. Then
we have that for zg € S

Ty, S = ker DF (zg) = {v € R" | DF(x0)v = 0}.

Indeed for every curve v : I — S such that 29 = 7(0) and v = §(0) we have that F(v(t)) = yo for
every t and by differentiating at ¢ = 0 we have

d

02&

_OF(V(t)) = DF(~(0))¥(0) = DF(xo)v.

2. (Tangent space to SL(n) and SO(n) at the identity.) Let us compute the tangent space to
these matrix groups. Consider

SL(n) = {A € M,(R) | det(A) = 1} = det™1(1).

We have proved that this is a (n? — 1)-dimensional manifold. Using the previous fact we have that,
denoting I the identity matrix,

sl(n) :== T1SL(n) = ker Ddet(I) = {H € M,(R) | trace(H) = 0}.
Similarly one proves that for
O(n)={Aec M,(R) | ATA=1}=F~(I)
where F : O(n) — Sym(n) is given by F(A) = AT A we have
so(n) :=TrO(n) = ker DF(I) = {H € M,(R) | H + HT = 0}.

where we used that DF(A)H = ATH + HT A.
3. (Tangent space on Lie groups.) If G is a Lie group then its tangent space to the identity
e € GG is a vector space which is called its Lie algebra and denoted by g, namely

g:=T.G
If g € G then the left translation L, : G — G is a diffeomorphisms hence Lgy : TG — TG is
a diffeomorphism, hence one can recover the tangent space to every point just by applying the
differential of the left translation

TyG = Lg«(TeG) = Lygs(g)-

Similar relations are of course true also for right translations.
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Exercise 2.18. Prove that if G is a Lie group of matrices, i.e., G is a subgroup of GL,(R) (or
GL,(C)) with the product of matrices as operation, then if g € G is a matrix then 7,G = ¢gT.G in
the sense that

T,G = {gv | v € T.G},

where now g and v are two matrices and gv is their product in GL,(R).

Exercise 2.19 (Tangent space to the Grassmannian.). Let Gi(V) be the Grassmannian of k-di
subspaces of a n-dim vector space V.Given W € G (V'), prove that

TwGr(V) ~ Hom(W,V/W).

2.5 The fundamental theorem of algebra: a geometric proof

The goal is to give a proof of the following well-known theorem.

Theorem 2.20. Let P(z) = anz™ + ...+ a1z + ag be a nonconstant polynomial with complex
coefficients. Then there exists zo € C such that P(zp) = 0.

The first step is to recognise that a polynomial is a map P : C — C which can be extended to
a smooth map on the sphere S2.

Lemma 2.21. Consider the map P : C — C, P(z) = anz™ + ... + a1z + ag, with a, # 0
thought as a smooth map from R? to R%. Then set P : S* — S? (endowed by the standard atlas

A={(Un,¢n),(Us,¢s)}) defined by

—1
Pla) = {ov ol oentn, w7 N
N, r=N

Then the function P smooth with respect to the C™ structure on S2.

Proof. It is immediate to check that the map P is smooth at every point of S? different from N.
To check that it is smooth at N, since P(N) = N, we can use chart (Ug, ¢g) both in domain and
codomain. We have to check that the map

(psoﬁogogl :R? - R?
is smooth at z = 0 (since N = ¢g'(0)). This is equivalent to show that

(psopy')oPo(pnopg'): R? » R?

z 1

is smooth at z = 0. We have already computed ¢g o gpjvl(z) =L T3 (we use the identification

in dimension 2) which coincides with its inverse so that the smoothness of the map become the
smoothness at z = 0 of the map

1
A —
Pz~
Now we have P(z27!) = a,2 " + ...+ a1z2"' 4+ ag, so that P(z71) = @,z "+ ... + a1z~ + ap and
1 1 2"

P(zY) Gz "+...4@z ' a0 an+...+ 612" 4 ap2"

which is smooth at z = 0 since a,, # 0. O
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Exercise 2.22. Consider the map P : C — C, P(z) = ap2" + ...+ a1z + ag, with a,, # 0 thought
as a smooth map from R? to R2. Prove that the differential DP(z) : R? — R? when regarded as
a linear map C — C is the multiplication by the complex number P’(z).

For the proof we will also use the following fact.

Lemma 2.23. Let M and N be smooth manifolds of the same dimension, with M compact. Let
F: M — N be a smooth map, with yo a reqular value of F'. Then

(i) F~ (yo) is finite;
(ii) there exists an open set V containing yo such that: Yy € V, card F~1(y) = card F~(yo)

Proof. If F~1(yo) = () it suffices to prove (ii). But F(M) is the image of a compact subset M under
a continuous map, so it is a compact subset and is therefore closed in N. Then take V' = N\ F(M).

If F~1(yo) # 0 we first note that it is a compact subset of M, as it is a closed subset of a
compact set. Let x € F~'(yy). By hypothesis, x is a regular point of F: there exists an open
set U, containing = such that F|y, is a diffeomorphism between U, and F(U,). In particular,
is the only point of U, where F(z) = y. The family {U,}.crs is an open cover of F~1(yg) and
we can extract a finite subcover {Uy, }i—1, . N, which shows that F~1(y) is a finite subset with N
elements (more concisely we can say the topological space F~1(yg) is both compact and discrete,
and therefore finite). O

Proof of Theorem [2.20, Let P(z) = anz™+...+a1z+ap be a nonconstant polynomial with complex
coefficients. We can associate an “extension to infinity” to P, denoted here by F, defined in
Lemma 2211

We show that F has a finite number of non-regular values. On S?\ {N}, F has the same
number of non-regular values as F' (we composed on the right and left by diffeomorphisms). But
the differential of F' at a point z of S2\ {N?} is precisely multiplication by the complex number
P'(z), seen as a linear map of R? in R?. The non-regular points of P are those such that P'(z)?
is zero. There are only finitely many of these, and so P has only a finite number of non-regular
values. The same holds for F' seen as a map of S? in S? (if necessary, we add the north pole). Let
C denote the set of these values. Since C' is finite, S? \ C is connected. By Lemma, the function
y — card f~1(y) is locally constant on S? \ C, therefore constant by connectedness. This constant
is nonzero. If not, F', and moreover P have only singular values, which says that P’ is identically
zero and therefore P is constant, contrary to the hypothesis. All points in S? \ C, and therefore all
the points in S? are values taken by F. Returning to the definition of F, we deduce that all of the
points of C are values taken by P. O
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Chapter 3

Immersions, embeddings.
Submanifolds

Geometry is the science of correct reasoning on incorrect figures
George Polya, 1887 — 1985

In this chapter we discuss the notion of submanifold. The basic idea, thinking to a manifold
as a set which “locally looks like R™” for some n, is that a submanifold should be a subset of a
manifold which “locally looks like RF x {0} € R™ for some 0 < k < n. In this context we also
have a “bifurcation” of notions of submanifold, namely immersed and embedded submanifold.

To introduce these concepts, let us first start by some further considerations on smooth maps
between manifolds.

3.1 Immersions, submersions, embeddings

Definition 3.1. Let F' : M — N be smooth. The rank of F' at ¢ is the rank of the linear map
Fo: TyM — Tpg)N, i.e., the dimension of im F.

(i) F is an immersion if F, is injective at every point ¢ € M.
(ii) F is a submersion if F, is surective at every point ¢ € M.

(iii) F is an embedding if F is an immersion and F : M — F(M) C N is an homeomorphism onto
its image endowed with the subspace topology of N.

Later we introduce immersed (resp. embedded) submanifolds. As we will see, these are exactly
images F'(M) of a smooth manifold M under an injective immersion (resp. embedding) F': M — N.

Example 3.2. 1. A local diffeomorphism F': M — N is both an immersion and a submersion.

2. Projections from products m; : M1 X ... X M, — M; are submersions. Injections in products
i; : M; — My x ... x M, are embedding.

3. A smooth curve v : I — M is an immersion if and only if 4(t) # 0 for every t € I.
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4. The curve 71 : R — R? given by 7(t) = (t2,¢%) is injective but not an immersion since
4(t) = (2t, 3t?) vanish at t = 0. Notice that the image of 7 is contained in (in fact it coincides
with) the set {(z,y) € R? | 3 = y?}.

Figure 3.1: The curve v

5. The curve 75 : R — R? given by y2(t) = (#3 — 4t,t? — 4) is an immersion but is not injective
since o(t) = (3t2 — 4,2t) # (0,0) but v2(2) = 72(—2). It is not an embedding (not injective
hence not homeo). Notice that the image of v is contained in (in fact it coincides with) the
set {(z,y) € R? | 2? = (y +4)y°}.

Figure 3.2: The curve 7o

6. The curve 3 : I =] — m/2,37/2[— R? given by v3(t) = (sin(2t), cos(t)) is an injective immer-
sion. But it is not an embedding since v3(I) N B(0,r) is not homeomorphic to an interval for
any r > 0! (make a picture!). Otherwise show that v3(I) is closed and bounded in R?, hence
compact, while I is not! One can observe that the image of the curve is contained in (in fact
it coincides with) the set {(z,y) € R? | 22 = 45%(1 — y?)}.

7. Let ¢ € R\ Q. The curve v : R — S! x S! given by () = (e2™%, 2™) is an injective
immersion. If one writes St = [0,1]/ ~ then v : R — [0, 1]/ ~ becomes 7(t) = (,ct) mod 1.
The curve v is not an embedding since the closure of y(R) is S' x S, i.e., the curve v has
dense image. See Appendix of the chapter.

In general it is not easy to check whether an injective immersion is an embedding. This is a
particular case when it is possible.

Proposition 3.3. Let F' : M — N be an injective immersion. If M is compact then F is an
embedding.
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Figure 3.3: The curve 73

Proposition follows from purely topological considerations: if f : X — Y is continuous
and bijective from X compact topological space and Y Hausdorff topological space, then f is an
homeomorphism. The reader is invited to check the details.

Exercise 3.4. Recall that F': M — N is proper if and only if F~!(K) is compact for every K C N
compact. Prove that if F' is proper then F' is a closed map (i.e., F/(C) is closed for any closed set
C C M) and then show that the assumption M compact in Proposition can be replaced by F
proper.

3.2 The constant rank theorem

Our perspective is mainly local so we are now interested in the description of local properties of
immersions or submersions. We first prove an important result which is a consequence of the inverse
function theorem in R™.

Theorem 3.5. Let F: R® — R™ be a smooth map with constant rank equal to r in a neighborhood
of xo € R™. Then there exists

(i) a local diffeomorphism ¢ : U — Uy from a neigh U of xy to a neigh Uy of 0
(ii) a local diffeomorphism 1 :V — Vi from a neigh V' of F(x¢) to a neigh Vi of 0
such that p(xo) =0, Y(F(x0)) =0 and
YoF|lypop t:Uy— Vo, YoF|lpop Nz, ..., xzp) = (z1,...,2,,0,...,0).

Proof. We split the space (z,y) € R” = R" x R" " and (u,v) € R™ = R" x R™" in such a way
that we write
F(:Z:a y) = (Fl(may)v F2(33‘,y))

with F; : R" x R — R" and Fy : R™ x R*"" — R™". It is not restrictive to assume that
xzo = (0,0) and F(xg) = (0,0). In this notation, we have to prove the existence of ¥ and ¢ such
that ¢ o F o o~ !(x,y) = (,0) for all (x,y) close to (0,0).

We can assume that rank DF(z,y) = r at every point (z,y) € R™ and (up to reordering
variables) that the r x r matrix D, F(0,0) invertible. Let us set

@Rn—)Rna @(xvy) :(Fl(mvy)ay)
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By construction D¢(0, 0) is invertible, hence ¢ is a local diffeo on a neighborhood U of (0,0) (since
we assume that xo = (0,0) in the proof it is not restrictive to take U = Uy). It is a direct check to
see that the composition F o ¢! has the form

Foo ™ (z,y) = (z, F(z,y))

for a suitable map Fy : R"xR"™" — R™"_ Since a local diffeomorphism does not change the rank,
it holds rank D(F o ¢~ !)(z,y) = r on U. Writing down explicitly D(F o ¢~1)(x,y), one easily see

that this implies that F, does not depend on y, i.e.,

Fop ! (z,y) = (z, Fa(x)).
By setting ¢ : R™ — R™ as ¥(u,v) = (u,v — Fy(u)) (notice that # and u both belong to R”, the
space where Fy is defined) then
Yo Fog  (z,y) = ¢z, Fa(x)) = (z, Fa(x) — Fa()) = (x,0)
which is equivalent to the statement. O

Remark 3.6. The statement is local. In particular it can be applied to a smooth map defined on
an open set 2 C R"™.

Remark 3.7. Notice the following two particular cases of Theorem if F'is an immersion then
r = n and there exists local diffeomorphisms ¢, 1 such that

YoF|lpow Y(zy,...,xn) = (x1,...,2,,0,...,0). (3.1)

If F' is a submersion then r = m and there exist local diffeomorphisms ¢, ¥ such that
YoF|lyop (xy,...,zn) = (x1,...,Tm). (3.2)
Notice that is the canonical linear immersion of R™ into R™ x R™~" (for n < m), and is
the canonical linear projection of R"™™ x R™ into R™ (for n > m).
We get the following theorem for manifolds just by applying the previous discussion.
Theorem 3.8 (Rank theorem for manifolds). Let F' : M — N be smooth map between manifolds

of constant rank r in a neighborhood of a point q. Then there exist a chart (U, ) around q a chart
(V,4h) around F(q) such that the coordinate representation F =1 o F o' of F is given by

~

F(zy,...,xpn) = (21,...,24,0,...,0).

Proof. Let us consider coordinates (U, ¢) centered at ¢ and (V, 1) centered at F'(¢). Then F:=1o
Flyop™t:¢(U) CR* — ¥(V) C R™ by definition is a smooth map such that rank(DF(0,0)) = r.
Applying Theorem to F' there exists local diffeo ', ¥’ such that

w’oﬁo(go’)_l(:cl,...,xn):(:Ul,...,xr,(),...,O).

Writing R
Y oFo() =y opoFlyopto(y)!
and using as charts ¥ := ¢’ o1 and ® = ¢’ o ¢ the statement is proved. O
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A series of consequences descend from this result. We can say that immersions are locally injec-
tive, submersions are locally surjective, where the word “locally” should be properly understood.
The following is a more formal statement and the reader is invited to check the details.

Proposition 3.9. If F' : M — N s an immersion then every point ¢ € M has a neighborhood
such that F|y : U — N is an embedding. If F : M — N is a submersion then F is an open map.

Combining the above considerations, also the following corollary is immediate.

Corollary 3.10 (Inverse function theorem for manifolds). Let F': M — N be smooth and q € M
such that Fy : TyM — Tp)N is an isomorphism. Then F' is a local diffeomorphism at q.

The following result also holds (but it works only for constant rank maps!)
Corollary 3.11. Let F : M — N be smooth map of constant rank r between manifolds . Then
(i) if F is injective then it is an immersion.
(ii) if F is surjective then it is a submersion.

The reader is invited to deduce (i) from the rank theorem. The proof of (ii) requires the
definition of a “set of measure zero” on a manifold, it is not difficult but at the moment it is
omitted.

3.3 Submanifolds

We start with the following observation: an injective immersion F defines a smooth structure on
the image of F. The proof is left to the reader.

Lemma 3.12. Let F : M — N be an injective immersion. Given a smooth atlas {(U;, i) }ien of
M prove that {(F(U;), p; o F](}il)}ieN is a smooth atlas for F(M).

Notice that with this smooth structure F': M — F(M) is a diffeomorphism.

Definition 3.13. An immersed submanifold of a smooth manifold M is a subset S C M such
that S is endowed with a smooth manifold structure such that the canonical injection i : S — M
is a smooth immersion. The dimension of an immersed submanifold .S is the dimension of S as a
smooth manifold.

More or less by definition we have the following property.
Proposition 3.14. Immersed submanifold are precisely images of smooth injective immersions.

Proof. If S is immersed submanifold then S is the image of the canonical injection ¢ : S — M,
which is a smooth injective immersion by definition.

We have to prove that given F' : M — N an injective immersion, the canonical inclusion
i: F(M) — N is an immersion, where F(M) is endowed with the smooth structure of Lemma[3.12]
But this is the composition of the map F~1| r(v) @ F(M) — M which is a smooth diffeomorphism
and F': M — N which is an injective immersion. O

39



A question is then whether the structure of manifold F'(M) has from the injective immersion
“agrees” with the smooth structure F(M) might inherit from N.
Another simple but crucial observation before moving to the following definition.

Lemma 3.15. Let F': M — N be an embedding. For every point F(q) in F(M) there exists a
chart (V,4) of N with V' neighborhood of F(q) such that

(VN F(M)) =4(V) N (RF x {0})

Proof. Let U C M be an open set containing ¢. Since F' embedding then (cruciall) we have that
F(U) =V nNF(M) for some V open in N.
Since F' is an immersion there exists charts (U, ¢) and (V) such that

FetoFog o) »o(V),  Blaw...,m) = (@, . x0...,0)
In particular we have (F(U)) = ¢(V N F(M)) = (V) N (RF x {0}). O

Remark 3.16. If the inclusion i : § — M is an embedding, then renaming charts and applying the
above consideration: for every q € S there exist a chart ¢ satisfying

p(UNS) =pU)N(R" x{0})
This is the existence of a “slice chart” for S at every point.

Definition 3.17. An embedded submanifold of a smooth manifold M is a subset S C M such that
S is endowed with a smooth manifold structure such that the canonical injection ¢ : S — M is a
smooth embedding.

Similarly as in Proposition [3.14] we have the following.
Proposition 3.18. Embedded submanifolds are precisely images of smooth embeddings.

Remark 3.19. (again on the difference immersed vs embedded) It is important to stress that given
S C M an immersed submanifold Proposition [3.9] guarantees that for every ¢ € M there exists a
neighborhood V' of ¢ in S such that V' is an embedded submanifold. But in general it is not true
that there exists a neighborhood U of M such that U NS is an embedded submanifold.

An easy consequence of the existence of slice charts is the following fact.

Proposition 3.20. Let f: M — R be smooth and let S be an embedded submanifold of M. Then
the restriction f|g: S — R is smooth.

We can also characterize the tangent space to embedded submanifolds from the algebraic view-
point.

Proposition 3.21. Let S C M be an embedded submanifold, i : S — M the inclusion and q € S.
Then
iw(TgS) ={veTyM |vf =0,Y f e C®(M), fls = 0}. (3.3)

Identifying elements of T;,.S with i,(1S) C T,M we can see T,S as a vector subspace of T, M.
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Proof. Let us first show the inclusion C in (3.3)). Let w € T,S let us prove that v = i,w satisfies
vf = (iyw)f =0 for every f € C>*°(M), fls = 0. Indeed

(iw) f = w(f oi) =w(0) = 0.

Conversely let v € T, M such that vf = 0 for all f € C>(M), f|s = 0. Then we want to show that
v = 1w for some w € T5S. It is easy to show that the set

W ={veT,M|vf=0YfeC®M),fls =0}

is a vector subspace of T,M. Let ¢ € S and choose coordinates (U, ¢) such that ¢(SNU) =
©(U) N (R¥ x {0}). Then we have

e(SNU) ={(z1,...,2n) € oU) | Tfy1 = ... =z, = 0}.

which can be expressed by saying that locally in coordinates

S={(x1,...,2n) | Thr1 = ... =, = 0}.

which more formally means
Hence f|s = f(z1,...,2,0,...,0) and W is spanned by 0/0z; for j =1,...,k and one sees in
coordinates that dim W =k = dim S. Hence W =T,S. O

This characterization is interesting from an abstract viewpoint, but not so convenient for com-
putations. Indeed what one does is to show that embedded submanifold can be always locally
described as regular level set of some map.

How to compute the tangent space to an immersion If F': M — N is an immersion then
locally we can look at it as F : RF — R™ assume F(0) = zg and let X = F(U) so that

Ty X = F.ToR¥

this is generated by the vectors {F.0y, }i=1,.. k. But we have

o OF

F, =

(3.4)

Indeed

0
Fo— =
< 6u1) 9=

which means exactly (3.4) as a vector in R”

O0g OF; OF; 0
Z 8y] 8ul Z ou; 8y]

Level sets

The following results can be obtained simply by corresponding results in R™ and using charts, as
in the proof of Theorem [3.8]

Proposition 3.22. Let F': M — N be a smooth map of constant rank equal to k. Then each level
set F~1(q), for ¢ € N, is a smooth submanifold of M of dimension n — k.
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We have this corollary, which is the previous one with £ = dim N.

Corollary 3.23. Let F: M — N be a smooth submersion. Then each level set F~'(q), for ¢ € N,
is a smooth submanifold of M of dimension dim M — dim N.

Notice that this result can be strenghtened considerably, since actually we only need to check
the assumption on the level set. Following the notation already introduced.

Definition 3.24. Let F': M — N be smooth. We say that ¢ € M is critical point if Fy,q is not
surjective, q is a reqular point otherwise. A point y € N is said reqular value if every ¢ € F~1(y)
is a regular point.

Proposition 3.25. Let F' : M — N be smooth. Assume q € N is a reqular value for F, then
F~Y(q) is a smooth submanifold of M of dimension dim M — dim N.

Proposition 3.26. Let S C M be an embedded submanifold of dimension k and q € S. There
exists U C M neighborhood of ¢ and ® : U — R"™* such that SNU is a reqular level set UN®~1(y)
for some regular value y in N

Proof. Work as in the proof of Lemma and subsequent Remark. For every ¢ € S C M of
dimension k, there exists a chart (U, ¢) such that (S NU) = o(U) N (R* x {0}).

Consider the map 7 : R* — R"* which forgets the first k variables. Then mo ¢ : U — R* %
and

rTop(SNU) = W((p(U) N (R x {O})) = {0}.

The map 7 is a submersion and ¢ a local diffeomorphism, so that ® := 7o ¢ is a submersion. [

We say that ® : U — N is a local map defining S near ¢ € S if SN U is a regular level set
U N®~1(y) for some regular value y in N. By the previous exercise there always exists local maps
defining S.

Proposition 3.27. Let S C M be an embedded submanifold. If ® : U — N s any local map
defining S near q € S then
1yS =ker @, : TyM — Ty) N

Proof. 1dentifying as before T,,S with ,7,S C T, M under the inclusion map i : S — M. Notice
that ® o is a constant map on S N U, by definition. Hence ®, o4, = 0. Then im, C ker ®,. On
the other hand a dimensional count says that

dimker ®, = dim 7T, M — dim Té(q)N = dim 7,5 = dimim,. O

Example 3.28 (Matrices of fixed rank). Recall that the set Mffln(]R) of matrices of size m x n
and of rank £ is an open set of My, ,(R) when k£ = min{m,n} hence a submanifold of dimension
mn, or of codimension 0.

The goal of this exercise is to prove that for 0 < k£ < min{m,n} the set Mﬁln(R) is an embedded
submanifold of M,, ,,(R) of codimension (m — k)(n — k).

Let us consider the open subset of M, ,(R) given by

U= {M - (é g) det(A) o}
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where the upper left A is of size k x k and the other ones accordingly to the fact that M is of size
m X n. Clearly matrices in U have rank > r so that we are intersted in describing U N M,’im(R)
Following the proof of the constant rank theorem: we consider the inverse of the map ¢(z,y) =
(Az + By, y). This means 2’ = Az + By and y’ = y. Inverting, then y = ¢/ and x = A~1(2’ — By/).

Then consider
p_ A"l —A-lB
o 0 I

I 0
ME = (C’A1 D —CAlB>

Since M has rank k the same is true for M P being P invertible, hence D — C A~! B should be the
zero matrix. This suggests to consider the map

®:UC MpynR) = My 0 i(R), &M)=D-CA'B
and to observe that U N Mrlfm (R) = ®~1(0). The map ¥ is a submersion if and only if for every
matrix X € M, n—k(R) there exists a curve v(t) € U such that v(0) = My and (® o~)'(0) = X.

This is easily done by taking
() = A B
TW=\c D+ix

Adjusting the proof for every minor (i.e., applying linear inverible maps to the open set U), one
gets that that M,’%n(R) is a smooth submanifold of dimension

and note that

dim Mﬁm(R) =nm — (n—k)(m — k).

An example to understand Let us consider S? (as a subset of R?) and consider the map
F: 5% = R given by
F(r,y,2) =

Find all regular values y of F and for every such y the set F~!(y) is a circle. Notice that there are
two critical points in S2.

Exercise 3.29. Prove that the map G : R? — R3? defined by
G(p,0) = ((24 cos @) cos b, (2 4 cos ¢) sin 0, sin ¢)
is an immersion. Show that G(IR?) is contained in the set
T = {(,9,2) | (@2 + 422 — 2> + 22— 1 =0}
Indeed G(R?) = T. Let ®(x,y,2) = ((x +4?)"/? —2)2 + 22 — 1. Then
T = {(,9,2) | (22 + 422 =22 + 22— 1 = 0} = & (0)

and it is easy to see that D®(z,y, z) has maximal rank if (x,y) # (0,0), which is true on 7. Hence
T is an embedded 2-dimensional submanifold.

Let F: T — R defined by F(z,y,z) = = for every (x,y,z) € T. Prove that F' is smooth. Find
the critical points of F'.

Exercise 3.30. Consider the function F' : R? — R defined by F(z,y) = 2> + 3zy + 3>. For which
values of ¢ € R the set {(z,y) € R? | F(z,y) = ¢} is a smooth embedded submanfold?
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3.4 Transversality

This is intended as an introduction to the basic concepts of transversality. Transversality is a
description of how two objects intersect. It can be thought of as the “opposite” of tangency. It
extends the natural definition of transversality of vector subspaces: if W1, Wy are vector subspaces
of V then they are said to be transversal if W1 + Ws = V. Notice that two subspaces cannot be
transversal if

dim W7 +dim Wy < dimV

in particular this notion depends on the ambient space V and not only on the subspaces W7, Ws.
If two vector subspaces Wi, Wy are trasversal then by the Grassmann formula we have

dim(W1 N W2) =mi+mg—n

denoting n = dim V' and m; = dim W, for i = 1, 2.

We expect then that if S7, S9 are two embedded submanifold of M which intersect “trasversally”
then the intersection S7 NSy is an embedded submanifold of M of dimension mq + mo — n, where
n =dim M and m; = dim S; for ¢ = 1,2. Let us formalize this.

Definition 3.31. Let S1, 52 be two embedded submanifold of M. We say that S, Sy are transver-
sal, and write Sy h Sy if
qul + TqSQ = TqM, Vqge S NS,.

We can define also the notion of a map transverse to a submanifold in the target space.

Definition 3.32. Let F': M — N be a smooth map and S C N be an embedded submanifold of
the target space. We say that F'is transversal to S, and write F' h S if

FE(TyM) + Tr(g)S = TrgN, Yge F(S).

Given an embedded submanifold S of N we denote codimyS := dim N — dimS. We can
generalize the level set theorem as follows.

Theorem 3.33. Let F: M — N be a smooth map and S C N be an embedded submanifold of the
target space. Assume that F is transversal to S. Then F~1(S) is an embedded submanifold of M
and codimp F~1(S) = codimy S.

Proof. We will construct a map G : M — R? for a suitable d which is a submersion, and such that
G~10) = F~1(S). Since S is an embedded submanifold of N, thanks to Proposition ? there exists
a submersion ® : N — R™~% such that ®1(0) = S, where s = dim S and m = dim N. Consider
then the composition G := ® o F': M — R™~%. For every q € F~1(S), we have

Gig=Pupg) 0 Fug: TyM — TpyN — R™ 7.
We know that Tp(g)S = ker @, p(,) and due to the tranversality condition we have
F(TyM) + Tpg)S = TN
which implies in particular that G, 4 is surjective. O
We have the following corollary.

Corollary 3.34. Let S1, 59 be two embedded submanifold of M, with s; = dim S; and n = dim M.
Assume that S1, S5 are transversal, then S1 N Sy is a smooth embedded submanifold and

dim(51 N SQ) =81 +S83—n
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3.5 Appendix

Proposition 3.35. Let o € R\ Q. The curve v : R — St x St given by y(t) = (e*™, e2™°!) has
dense image.

Proof. If we identify S' x S! with [0,1]?/ ~ with the identification of the boundary then ~ is
rewritten as
~v(t) = (t,at) mod 1.

It is not difficult to see that  has dense image in [0,1]2/ ~ if and only if the following sequence is
dense in [0, 1]
(o )nen C [0,1], ap :=na mod 1.

Let us prove this fact: first of all we notice that «, # «a,, for n # m otherwise we would have
(n —m)a = k for some integer k, which is a contradiction with & € R\ Q. Moreover we notice that
for every n > m we have oy, — Q= Q-

Let us show that 0 is an accumulation point for the sequence: for every IV there exists n € N such
that |ay,| < % Indeed consider the first N 41 element of the sequence a1, ..., an+1. By pigeonhole
principle there exists two integers n, m such that o, o, € [%, %] for the same k € {0,..., N—1}.
Then the element x := ay,—p, = vy, — auy, belongs to [0, %]

Then one can notice that for arbitrary p € N we have pay,—m = qy(,—pm) and then we can find

p = p(k) such that px belongs in [£, 1], -
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Chapter 4

Tangent bundle and vector fields

A smooth assignment of a tangent vector to each point of a manifold is called a vector field. This
seems very clear, up to the moment you start to ask yourself: what does it mean smooth here?

These kind of situations puzzle the modern mathematician which then feel more confortable
with the following neat definition:

A smooth vector field is a smooth section of the tangent bundle.

The next pages are devoted to give a meaning to the last sentence.

4.1 The tangent bundle

The tangent bundle is defined as the disjoint union

™ = | ) T,M
qeEM

endowed with the natural projection
w:TM — M, w(v) =gq, if ve T,M
Proposition 4.1. TM has the natural structure of smooth manifold with dimTM = 2dim M.

Proof. Consider charts {(U;,;)} on M. Then 7=~ 1(U;) is an open set of TM and the reunion of
these sets is an open cover of T'M. We define coordinates

@i (Ui) = @i(Ui) x R

as follows
@;(v) = (T1,..., Tp, V1, ..,0p)
if m(v) = g with ¢;(q) = (x1,...,zy), and moreover
n
0
v = Z'Ulaixl
i=1 q



Notice that if U; N U;j # 0 then 7= 1(U;) N 7= 1(U;) # 0 and
2y O¢;1 : (pj(Ui N Uj) x R"™ — ;(U; N Uj) x R"
where @; 0651(‘%,11) = (2/,v) if (cf. with Exercise [2.13))

Apiop:h)
_ . —1 _ J
v =giop; (x), U= g0 (4.1)

which completes the proof. ]

Notice that the projection m : TM — M is smooth in the atlas defined above since in coordinates
it is just the linear projection (z1,...,ZTn, V1, ..., 0n) = (T1,...,Zp).

We can treat the collection of the differentials at different points as a single map Fy : TM — T'N.
The previous computations shows that.

Corollary 4.2. Let F: M — N be smooth. Then Fy, : TM — TN 1is smooth.

Proof. Consider coordinates as above. The map (z1,...,Zn,v1,...,0,) — (2],..., 2,0}, ...,0))

Y n? ’vn
can be written as follows:
7' = F(z), v' = DF (z)v (4.2)
where F(z) = ;o go_l( ). To show that is is smooth in coordinates
If in coordinates F : M — N is smooth and X = 327" | X; -2 oY = Py Yjaiyj then the equality
F.X =Y means

m gOF m n ﬁaFg

so that the statement follows from formulas

0 L 0F 0
(Z)Z(Z)

j=1 \i=1

O]

Example 4.3 (Tangent bundle 7'S'). We prove that the tangent bundle T'S! to the circle S! is
diffeomorphic to S' x R. Let us identify

St={zecC:|z|=1}

and first notice that 775! = iR. This is a simple consequence of the following computation: let
v(t) = €® for some smooth function # with 6(0) = 0. Then #(0) = i0(0) € iR.

Given v € T,S* we notice that z~'v € iR. Indeed let v(t) = ¢?® for some smooth function 6
with 6(0) = 6y with z = v(0) and v = 4(0). Then

v =%(0) = i0(0)e”® =i9(0)z, = z'weiR.
It follows that we can define the map (identifying iR ~ R)
U:TS" — St xR, v (2,27 )
where z = 7(v). The verification that ¥ is a diffeomorphism is left to the reader.

Notice that S! is a Lie group. Where did we use the Lie group structure here?
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4.2 Vector bundles
We start by the definition of vector bundle.

Definition 4.4. Let M be a smooth n-dimensional manifold. A smooth vector bundle of rank
k over M is a smooth manifold E of dimension n 4 k together with a smooth surjective map
m: E — M such that

(i) for each ¢ € M the set E, := 771(g) is a vector space of dimension k

(ii) for every q € M there exists a neighborhood U C M and a diffeomorphism @ : 7=1(U) —
U x R¥ such tha m=pr; o ® and ®|g, : E; — {q} x R¥ ~ R” is a linear isomoprhism.

We say that E is the total space, M the base of the vector bundle, and 7 the projection. The
diffeomorphism ® : 7=1(U) — U x R is called local trivialization. If one can choose U = M then
E is diffeomorphic to M x R* and we say that the vector bundle is trivial

Technically one should write that a vector bundle is a triple (E, M, 7). For simplicity we will
also say that 7 : E — M (or even E'— M) is a vector bundle.

Lemma 4.5. Let M be a smooth manifold. Then TM is a vector bundle of rank equal to dim M.

Proof. Given any smooth chart (U, ¢) for M with coordinates {x;} we set ® : 7= 1(U) — U x R" as

"9
® i = sy Uly -y Un
(Zv o ) (¢,01, V)

i=1
We notice that (¢ x id) o® = @ where ¢ xid : U x R™ — ¢(U) x R" is defined as (q,v) — (¢(q),v).
Since both ¢ x id and P are diffeomorphisms, it follows that ® is a diffeomorphism as well. We
have build local trivializations. The reader is invited to check all others requirements. ]

If a bundle is not trivial then we need more than one local trivialization.

Proposition 4.6. Let 7 : E — M be a smooth vector bundle of rank k and let ® : 7= Y(Uy) —
Uy x RF and @ : 71 (Us) — Uy x R* be two local trivialization with Uy N Us # 0. Then

Do @ (U NUR) x RF = (U NU) x R”
writes as ®o 0 ®7(q,v) = (¢, 7(q)v) where T : (U; NUs) — GLi(R) is smooth.

Proof. Note that by construction pr; o &3 o <I>f1 = pr; hence &5 o @fl(q,v) = (q,0(q,v)) with
o : (U NUs) x R¥ — R¥ smooth. For a fixed ¢, the map v ~ o(g, v) is linear. Hence o(q,v) = 7(q)v
for some matrix 7(q). We have just to prove that ¢ — 7(¢) is smooth. But the coordinates
7(q) = (7i5(q)) satisfy 7;;(q) = pr;(c(q, e;)) hence they are smootPﬂ O

The map 7 is called transition function. As for smooth manifolds, we have a construction lemma
for vector bundles.

given a product X x Y, we denote pr; : X x Y — X the projection onto the first factor.
2here pr; : R®™ — R is the projection onto the i-th factor pr;(z1,...,2n) = z;
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Proposition 4.7. Let M be smooth manifold. Assume for every q € M we have a k-dimensional
vector space Eq and define
E=|JE, n®:E-M
qeEM
where w is the natural projection. Then assume that we have

(i) an open cover {U;}ien of M
(ii) diffeomorphisms ®; : 7~ Y(U;) — U; x R that are linear isomorphisms on fibers
such that
(a) for every U;NU; # 0 there exists 7;; : U; N Uj — GLk(R) such that
;0 @ (q,v) = (g, i (q)v).

Then there exists a unique smooth structure on E such that m is smooth, E is a smooth vector
bundle of rank k over M, and {®;};en is a local trivialization. ***cocycle property***

Given a smooth vector bundle E — M, a (local) section of E is a map o : U C M — E such
that m oo = idy. If U can be chosen equal to M, then o is a global section.

Remark 4.8. Recall that given a vector bundle there exists always a particular section, which is the
zero global section. This is the section ¢ : M — E defined as ((q) = 0, where 0, € E, is the origin
of the vector space.

Remark 4.9. The space of smooth functions C°°(M) can be identified with the space of smooth
sections of the trivial vector bundle M x R of rank 1.

Definition 4.10. We say that a family of sections 01, ... 0, : U — E are independent if {o;(q) }i=1,...»
are linearly independent as vectors in E, for every ¢ € U. When r = rank(F) then we say that
{o1,...0.} is a local frame.

If & : 771 (U) — U x R* is a local trivialization we can always define a local frame on U as
follows

oi(q) = ®7' (g, 1)
where e; is the canonical basis of R¥. Conversely if {o1,...0}} is a local frame on U then we can
build a local trivialization as follows

U:U xRF — 77 1(U), U(g,v) = Zviai(q).

We have proved the following fact.

Corollary 4.11. Every local frame for a smooth vector bundle is associated to a local trivialization.
A smooth vector bundle is trivial if and only if it admits a smooth global frame.

We observe that a local chart (U, ¢) on M together with a local frame {o1,...0%} gives coor-
dinates to

k
[ (ZWH(Q)) = (p(@);v1, .- o) = (@1(q)s - - -, 20 (@) V1, - - - s VE).
i=1
Remark 4.12. We observe that T'S' is trivial, while the Mdbius band is not.
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4.3 Vector fields

Definition 4.13. A smooth vector field on an open set U C M is a smooth section of the tangent
bundle T'M, i.e., a smooth map X : U — T M such that 7 o X = idy.

The value at a point g of a vector field X is denoted X (q) or X, and is an element of T, M.
The set of all smooth vector fields in M is denoted Vec(M).

Given cooordinate open set (U, ¢) with coordinates {z;}, we notice that for every ¢ € U we
have a basis of the tangent space

9 0
Ox1 |, 7 Oxy, .

and a smooth vector field X on U is decomposed along the canonical basis

Z Xl 3332

where X; : U C M — R are functions defined on U.

Lemma 4.14. X is smooth in U if and only if X; are smooth functions.
Proof. Taking the standard chart on 7=1(U) C TM we have
B(X(qQ) = (x1,..., 20, X1(2),..., Xp(2))
where )?z = X, o ¢~ ! is the coordinate representation of X;. ]

We can use bump functions to prove that

Exercise 4.15. Let ¢ € M and v € T, M. Then there exists X in Vec(M) such that X(q) =
Given f € C*°(M) and X € Vec(M) we notice that fX is a new smooth vector field such that
(fX)(q) = f(@) X (q). Vec(M) is a C*°(M)-module, i.e., a module over the ring C*°(M).

Another way to “couple” vector fields and functions is to use X to differentiate smooth functions:
for f € C°°(M) we can set

Xflq) = X|qf

where in the right hand side the vector differentiate the function.
Corollary 4.16. X is smooth if and only if X f is smooth for every f € C*°(M).
Proof. Let

X(q) = ZXi(q);%

=1 q

If we have a chart (U, ) and ¢ = ¢~ (x) we have

Xf(x)=Xflp (a) = Xp1(n)f = ZX aiz

; 6331 -

Then if f is smooth clearly X f is smooth. If we know that X f is smooth for every f smooth, take
f = z; and you get that X;(x) smooth. dJ

p1(x)

o1



Remark 4.17. We have proved exactly that the identity of vector fields

i 0
ngXiami

implies the identity of functions (in coordinates)

Xf= Zngi
i—1

where we have removed the “hat” in the notation. In what follows we keep this spirit.
A vector field hence induces a linear map X : C*°(M) — C°°(M) which satifies

X(fg)=f Xg+g-Xf

where - here is usual multiplication of functions. Every vector field is a derivation of the algebra
C*°(M). Indeed one can prove the converse: every derivation of the algebra C>°(M) is a vector
field!

Example 4.18. Graphical example of 'S and a vector field on it

Vector fields and smooth maps

If F: M — N is a smooth map and X is a vector field on M then for every ¢ € M we can define
F, X, which is an element of T, N. This in general does not define a vector field on N. (Think
for instance the case when F' is not injective)

If X € Vec(M) and Y € Vec(NN) we say that Y is F-related to X if F..X, = Yp(, for every
qge M.

Exercise 4.19. Prove that F' : R — R? given by F(t) = (cost,sint) then 9/0t is F-related to
—y0/0x + x0/0y.

Lemma 4.20. Let F: M — N be a smooth map, X € Vec(M), Y € Vec(N). ThenY is F-related
to X if for every g € C*°(N)
YgoF =X(goF).

When F is a diffeomorphism then F,X is a well defined smooth vector field on N, called the
push-forward of X via F, and satisfies the following identity

(F.X)g=X(goF)oF!
Notice that, at the level of vectors, we have (F.X)q9 = Xp-1(¢)(g0 F).

- 9 " (<~ OF;\ 0
m(San) % (5050

j=1 \i=1

Exercise 4.21. Let F': R, — R} F(x) = € then F.(9/0x) = yd/dy
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4.4 Lie brackets

If one thinks at a vector field as a first order differential operator, one might ask if (or when) a
Schwartz-like formula holds: give two vector fields X,Y in Vec(M), when is it true that XY f =
Y X f for every f € C°(M)?.

Remark 4.22. Notice that in general the map D : C°(M) — C°(M) defined by D = XY is not a
derivation. A simple check is with M = R?, X = 9/0z, Y = 0/0y and f(x,y) = =, g(z,y) = v.

Exercise 4.23. Let X,Y in Vec(M), prove that the operator D : C*°(M) — C°°(M) defined by
D = XY —YX is a derivation of C°°(M) hence cooresponds to a vector field.

The first think we can do is to define the Lie bracket

Definition 4.24. We define the Lie bracket between X,Y in Vec(M) as the vector field corre-
sponding to the derivation [X,Y]:= XY - Y X

Lemma 4.25. Let (U,{x;}) be a coordinate set and X,Y in Vec(M). Then if on U we have

X = ZX 3% Y = ZY 3:1:1

we have

Proof. Exercise O

Exercise 4.26. Compute the Lie bracket [X,Y] between the two vector fields in R with coordi-
nates (x,y, 2)

0 yo 0 x0
X=—-— Y=—+-—-—
or 20z’ 8y+28z
and 9
X = cosz% +sinza—y, Y = —smz% —|—Cosza—y

The Lie bracket is clearly a bilinear skew-symmetric form on Vec(M) (as R-vector space). It
enjoys also more interesting properties related to the fact that Vec(M) is a module over C*>°(M)
(recall that C°°(M) is an associative R—algebra)ﬁ

Proposition 4.27. The Lie bracket satisfies for X,Y, Z in Vec(M) and f in C*°(M)

(i) [XvY] = _[va]

3recall that an associative algebra A is endowed with two compatible operations addition, multiplication (assumed
to be associative), and a scalar multiplication by elements in some field K. The addition and multiplication operations
together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure
of a vector space over K. A commutative algebra is an associative algebra that has a commutative multiplication, or,
equivalently, an associative algebra that is also a commutative ring.

53



(i) (X +Y, 2] = [X, Z] +[Y, Z]
(i) [fX, Y] = fIX,Y] - (Y )X
() [X, [V, 2]l + [V, [Z, X]| + [Z,[X, Y]] = 0

Proof. (i) and (ii) are direct consequences of the definition.
(iii) It is enough to prove the statement by applying both sides to every smooth g € C*°(N)
and then apply (i) and (ii) to get the general statement. For every g € C°°(M) we have

X Ylg=f-XYg-Y(f - Xg)=f - XYg-Yf-Xg—f-YXg=f[X,Y]g-Y[f -Xg

which proves the statement. We used a f - g as product between smooth functions f and g. (iv)
The proof is a simple check applying the whole expansion to a smooth function f and expanding,
it is left as an exercise. O

Remark 4.28. Collecting the different properties we have also for every X,Y in Vec(M) and every
frg9in C>(M)
[fX. Y] = fg[X.Y] - g(Y [)X + f(Xg)Y. (4.3)

Lemma 4.29. Let F : M — N be a diffeomorphism. Then for every X1, Xo in Vec(M) we have
F.[X1, X3] = [Fu X1, Fi X2 (4.4)

Proof. This is a particular case of the more general fact: if F' is smooth and X, Xy are F-related
with Y1Y5 then [X;, Xs] is F-related to [Y1, Y2]. To prove this claim recall that by Lemma we
have

YigoF = X;(go F), 1=1,2,

hence
XiXj(goF)=X;(Yjgo F) =Y;Yjgo F, i=1,2,

by linearity
[X17X2](g © F) = [Ylvyé]g oF

which proves the desired property. Then the statement follows when F' is a diffeomorphism and
Y, = F.X; fori=1,2. O

Exercise 4.30. Prove that if X(z) = Az and Y (z) = Bx are linear vector fields in R"™ then
[X,Y](x) = [A, B]z where [A, B] = AB — BA is the commutator of matrices.
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Chapter 5

Integral curves and flows

Knowing what is big and what is small is more important
than being able to solve differential equations
Stanislaw Ulam (1909-1984)

In this chapter we discuss integral curves and flows of vector fields, thanks to which we can give
a more geometric interpretation of the Lie bracket.

5.1 Integral curves and flows

Definition 5.1. Let M be a smooth manifold and X € Vec(M). An integral curve of the vector
field X is a smooth curve v : J — M, where J C R is an open interval, such that

A(t) = X(y(t),  Vted. (5.1)

Take a vector field X defined on M and a chart (U, ¢). Write X in coordinates, i.e., consider
the vector field p, X
0

8.%‘1‘

n
X=0X=) Xix)
1=1

Consider a solution x(t) to the ODE associated to X in R"
i = X(z)

defined on some open interval J containing 0. Recall that this means for every t € J the curve z(t)
satisfies in R™ the system of autonomous differential equations

i) = Xi(z1(b), ..., 2n(t), i=1,....n

Then it is easy to see that y(t) = o~ !(x(t)) is an integral curve of X. Indeed

i(t) = @) = 97 (R @) = (7 D)™ (2(1) = X(v(1)).

A consequence of the classical existence uniqueness theorem for solution of ODEs ensures that,
for every initial condition, there exists a unique integral curve of a smooth vector field, defined on
some open interval.
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Theorem 5.2. Let X € Vec(M) and fix to € R, gqo € M. Then there exists a unique integral curve
~v: I — M of X such that v(tg) = qo defined on some mazimal open interval I containing to.

Remark 5.3. Notice that if v : I — M is an integral curve then v, : I. — M defined by ~.(t) =
v(t — ¢) is also an integral curve (defined for ¢t € I, := I + ¢).

Hence we can can always shift initial time and consider integral curves v : I — M where [ is
an open interval containing 0 and v(0) = go. Notice that this is a consequence of the fact that
the vector field is autonomous, i.e., the right hand side of the corresponding ODE does not depend
explicitly on t.

Since vector fields under consideration are smooth, the corresponding ODEs in R™ have smooth

coefficients. Thus we have not only existence and uniqueness of solutions but also smoothness with
respect to initial data. This is translated into the following result.

Theorem 5.4. Let X € Vec(M). There exists an open set U C R x M containing {0} x M and a
map ®X : U — M of class C> such that

(a) for g € M the set I9 = {t € R | (t,q) € U} open neighborhood of 0,
(b) for q € M the curve y9 : I9 — M given by v9(t) = ®X(t, q) integral curve of X, ¥1(0) = g,
(c) for every s € 9 and t € T (59 we have t + s € T9 and

O (t, 2% (s,q)) = ¥ (t +5,9)

We denote by ®¥ := ®X(¢,-) the flow of X at time t, which is a map defined on the open set
Ut ={qe M| (t,q) €U}. Then the property (c) is rewritten as ®;¥ o X = @;% .

X

Remark 5.5. Tt will be also convenient to use the exponential notation ®;X = X, in such a way

that the property (c) is written as

6tX oes

Notice that by definition for every ¢t € 79 we haveﬂ

X _ e(t—i—s)X‘

%6“((1) =X(*(q), X(¢)= % tzoetX (q).

Remark 5.6. When X (x) = Ax is a linear vector field on R™, where A is a n X n matrix, the

corresponding flow is the matrix exponential &5 (z) = etz.

Example 5.7. Let us compute the integral curves and flow of the vector field
X =20, + y0,.
Given (x9,70) in R? the integral curve which passes through (xg,yo) at t = 0 is the solution
r=u
y=vy
2(0) = o, y(0) =yo

The solution is easily computed (z(t),y(t)) = (zoe!, yoe'). If (zo,y0) = (0,0) the vector field is zero
at that point and the corresponding integral curve is constant.

"notice the formula £e** = Xe** (this should be compared with the more formal (5.9))

56



Appendix: on completeness

A vector field X € Vec(M) is called complete if, for every gy € M, the maximal solution of the
equation is defined on I = R.

The classical theory of ODE ensures completeness of the vector field X € Vec(M) in the
following cases:

(i) M is a compact manifold,
(ii) X has compact support in M,
(iii) M = R"™ and X has sub-linear growth at infinity, i.e., there exists Cy, Co > 0 such that
IX@)| < Cillall + G, Va €R™
where || - || denotes the Euclidean norm in R".

When we are interested in the behavior of the trajectories of a vector field X € Vec(M) in a
compact subset K of M, the assumption of completeness is not restrictive.

Indeed consider an open neighborhood U of a compact K in M. There exists a smooth bump
function v : M — R that is identically 1 on K, and that vanishes out of U. Then the vector field
1 X is complete, since it has compact support in M. Moreover, the vector fields X and ¥ X coincide
on K, hence their integral curves coincides on K as well.

Example 5.8. Let f: M — R be a smooth function and X € Vec(M) be a complete vector field.
Denote by « an integral curve of X and let ¢f : R — R be a solution of the differential equation
o(t) = f(v(p(t)). Prove that the curve defined by ~¢(t) = v(¢#(t)) is an integral curve of fX.

Pushforward and flows

If F: M — N is a diffeomorphisms and X € Vec(M), then F. X is the vector field whose integral
curves are the image under F' of integral curves of X. The vector field F,X is also called the
pushforward of X through F.

Lemma 5.9. Let F: M — N be a diffeomorphisms, X € Vec(M). Then
etF*X —Fo 6tX o F_l, (52)

Proof. Given ¢ € N consider the curve n(t) = F o e o F~1(q), we want to prove that 7(t) is an
integral curve of F,X. Indeed
d d
i) = GFoeX o F g = 1| Foe¥od¥oF i) =

= F(X(e" o F7H(q)) = (BX)(F o™ o F7}(q)) = (F.X)(n(t))

This proves that
Foe™oF Y q) =n(t) =¥ (q)

for every ¢ € N, which is the statement. ]

Along the lines we also proved that for ¢ € N

d d _
(F.X)(q) = pr etF*X(q) == FoeXoF 1(q)7 (5.3)
t=0 t=0
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5.2 Lie derivatives and Lie brackets

In this section we introduce the Lie derivative of Y in the direction of X.

Definition 5.10. Let X,Y € Vec(M). We define the Lie derivative of Y wrt X as the vector field

e; Xy (5.4)

More precisely, this means that for every ¢ € M we define

t—0

N
LXY(Q) = lim n (6* tX(l/etX(q)) - Y;]>

Notice that for every ¢ the vector e; ' (Yetx(q)) belong to Ty M hence the limit makes sense in 7, M.
Remark 5.11. The geometric meaning of the Lie bracket can be understood by writing explicitly

X 0

& Vaxg) = 35

LyxY|, = 01 oxy| = 2
t=0

o o X sY X
== t:Oe* ‘q =5 e " oe’ oet(q). (5.5)

t=s=0

Remark 5.12. We have used that for X,Y € Vec(M) we can reinterpret the pushforward of Y with
respect to X as follows:

d s _
(eiXY)}q = elX (Y‘e*tx(q)) == X oe?Y o (g). (5.6)
s=0
where we used that g
V(e ¥ (@)= 2| Vo)
s=0

and the definition of pushforward.

The main goal of the section is to prove the following result, which is not evident at a first
glance.
LxY =[X,Y] (5.7)

Before going into the proof of the theorem we need some preliminary observations.

Vector fields as operators on functions

The action of a vector field X € Vec(M) on the algebra C°°(M) of smooth functions on M can be
rewritten as follows

d

=G|, JC @, e (5-8)

Xf(q)

In other words X f is the derivative of the function f along the integral curves of X.

Notice that given a point ¢ there exists an open neighborhood U of (0,q) € R x M where the
function f(t,q) := f(e!*(q)) is defined and smooth.

The next statement makes more precise in which sense X f is the first order term in the expansion
of foe!® with respect to t.
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Lemma 5.13. Let us denote f : U — R the function f(t,q) := f(e!*(q)). Then we can write

ftq) = f(g) +9(t q)t
where g : U — R is smooth (both in q and t) and satisfies g(0,q9) = X f(q).

Proof. Let us fix (t,q) € U and consider F : R — R defined by F(s) := f(st,q). The fundamental
theorem of calculus

1
d
F(1)—-F(0) = / —F(s)ds
0 ds
is rewritten using that %F(s) = t%(st, q) as follows

1
Fta) = 50+t [ G sta)ds

which proves the statement with g(¢,q) := 01 %(st, q)ds which is smooth. Clearly we have also

9(0,q) = %L(0,9) = X f(q). [

Remark 5.14. The previous result intuitively says that ¢t — f; = f o e!X is “smooth” (but formally
we should give a smooth structure to C°°(M)) and states that X f represents the first order term
in the expansion of f; when t — 0.

We can state this in the following manner: for ¢ € M one has

fila) = flq) +t (X f)(q) +71(t, q)

where sup eyt r1(t,q)] — 0 for t — 0 (and the same is true also for every spatial derivative).
We can write this as

fil@) = f(@) + (X f)(q) + o(t).

Since the remainder is locally uniform, we can interpret this as the identity of functions

fo=f+t(X[f)+o(t)

Exercise 5.15. Let f € C°°(M) and X € Vec(M), and denote f; = f o e!X. Prove the following
formulad?]

d
%ft = Xf, (5.9)

t2 t3 th
fr=FHtXF+ X0+ X0 4 S XEf +o(th). (5.10)

where as before o(t*) is a function 74(¢, q) such that SUPger/ t=*|ri(t,q)| — 0 for t — 0.

2we can think to the formula
k

t2 3 t
foe™ = (1d+tX+§X2+§X3+...+EX’“Jro(t’“))f
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Theorem 5.16. The Lie derivative LxY is a smooth vector field and, as derivations on functions,
it satisfies
LxY =[X,Y]. (5.11)

Proof. We want to prove that for every ¢ € M

0

~ o t:O(eltXY)(Q) = [X,Y](q)-

LxY(q)

Set g = foe X for f smooth and we have
(€ Y)f=Y(foe ™ )oe™ =Ygoe™ =Yg +1(XYg)+o(t)
Now use that g = f — (X f) + o(t) and

Yg=Yf—tYXf+o(t)
XYg=XYf+o(l)

hence collecting the results we have
(e XY)f =Y [ +t[X,Y]f +o(t)

and the statement is proved.

5.3 Lie brackets and commutativity of flows

Lemma 5.17. Let X,Y € Vec(M) be complete. Then the two properties are equivalent
(i) [X,Y]=0
(ii) for every t € R we have e;'XY =Y.

Proof. If e, Y =Y then by definition of Lie brackets clearly [X,Y] = 0.
Assume now that [X,Y] = %‘tzoe;tXY = 0 and we want to prove that $e; XY = 0 for all
t € R. Indeed we have

ie*_tXY _ 4 ey Xy = d ey Xe Xy
dt de | ._g de|._g
d
=i Y =X Y] =0,
de |._g

It follows that e XY does not depend on t, hence it coincides with its value at t = 0 which is
;XY =id, Y =Y.
O

Remark 5.18. Notice that since [X,Y] = —[Y, X], then [X,Y] = 0 is also equivalent to e; ¥ X = X
for every t € R.

3Setting h(t,q) := g(—t, q) we have f(e"**(q)) = f(q) — h(t, q)t, with h smooth and h(0,q) = X f(q).
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To end this section, we show that the Lie bracket of two vector fields is zero (i.e., they commute
as operator on functions) if and only if their flows commute. We state this for complete vector fields
but indeed the result is local so we can apply the argument in the “Appendix: on completeness”
and the result is indeed general.

Proposition 5.19. Let X,Y € Vec(M) be complete. The following properties are equivalent:
(Z) [Xv Y] =0,
(i) eX oe’Y =eY oetX, Vit scR.

Proof. (i)=(ii). Fix t € R. Let us show that ¢, := e X 0¥ o e!X is the flow generated by Y.
Indeed we have

0 0 _
5050 = 5| o e 0 el X (g)
e=0
_ 9 e X 065 0 etX 6 X 6 Y o otX (g
86 e=0 ;:

= e."XY 0 45(q) = Y 0 6u(q)

where in the last equality we used the previous lemma. Using uniqueness of the flow generated by

a vector field we get
e XoeV o™ =¢%Y, Vi, seR,

which is equivalent to (ii).
(ii)=(i). Using that [X,Y] = LxY and the characterization (5.5) we have

0 0
XY — —tX sY tX — —tX tX sY
[X,Y](q) D50t tzs:oe oe® oe(q) 950t tzs:oe oe ™ oe’ (q)
0 sY _
~ 0s0t t:s:Oe (9) =0.

Exercise 5.20. Let XY € Vec(M) and ¢ € M. Consider the curve on M
() = e oe X 0 et 0 e X(g).
Prove that for every f € C°°(M) we have
FOy(®) = fla) + £1X, Y] f(q) + o(t?)

This can be interpreted in the following way: the curve t — v(v/t) is differentiable at t = 0 (but
not smooth!), and its tangent vector at t = 0 is [X, Y](q).

Exercise 5.21 (Another proof of Jacobi identity). Prove that the Lie bracket satisfies the Jacobi
identity:
X, [V, 2] + [V, (2, X]) + [2,[X, Y]] = 0. (5.12)

by differentiating the identity e!X[Y, Z] = [elXY, elX Z] with respect to t at t = 0.
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Exercise 5.22. Let X,Y € Vec(M). Using the semigroup property of the flow, prove that

%ajxyzeﬁXmgyy (5.13)

Deduce the following formal series expansion

qﬁXYzziézkmLXWY’ (5.14)
n=0
2 3
=¥ X, Y]+ DG Y]+ XX XY

where we have introduced the notation (ad X)Y := [X,Y].

5.4 Left-invariant vector fields on a Lie group
A Lie algebra is a vector space g endowed with an operation
[]igxg—g
that is bilinear, skew-symmetric and satisfies the Jacobi identity
(X, Y, Z]| + [V, [Z, X]] + [Z,[X, Y]] = 0

for every X,Y,Z € g.

Remark 5.23. Given an associative algebra A with multiplication (x,y) — xy denoted with juxta-
position, we can always give a Lie algebra structure to A by defining the Lie bracket

[x,y] = zy —yx

Indeed in this case the Jacobi identity is trivially satisfied.

The set of smooth vector fields Vec(M) on a smooth manifold M is naturally a Lie algebra
using as operation the Lie brackets of vector fields.
If M is a Lie group we can give the following definition.

Definition 5.24. Let G be a Lie group and X a vector field on G. We say that X is left-invariant
if for every g € G we have (L)X = X, i.e., we have

(Lg)*Xh = Xgh,Vg, heG
Let us denote by Vecl (@) the subset of left-invariant vector fields on G.

Proposition 5.25. The Lie bracket of left-invariant vector fields is left-invariant. Hence VecL(G)
1s a Lie algebra.

Proof. If X anf Y are left-invariant then (Ly)X = X and (Ly).Y =Y for every g € G. Hence
(Lg)«[X, Y] = [(Lg) X, (Lg)-Y] = [X, Y]

for every g, which proves that [X,Y] is left-invariant. O
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Notice that a left-invariant vector field in particular satisfies the following property
Xy = (Lg)«Xe, Vge G

where e is the indentity of the group G. Indeed this property characterizes left-invariant vector
fields since if this is true we have

(Lg)*Xh = (Lg)*(Lh)*Xe = (Lg o Lp)sXe = (Lgh)*Xe = Xgh

This says that a left-invariant vector field is characterized by its value at one point, for instance
the origin. Hence we have

Proposition 5.26. The map ¢ : Vec"(G) — T.G given by e(X) = X, is an isomorphisms of vector
spaces. In particular dim(Vec®(G)) = dim G.

The two spaces VecL(G) and T.G are then identified and we denote by g both the set of left-
invariant vector fields of G or, equivalently, the tangent space to the identity.

Remark 5.27. Analogously we can introduce right-invariant vector fields VecR(G). This space can
be also identified through right translations with the tangent space to the identity but notice that
in general a left-invariant vector field is not right-invariant.

It is a convention that the Lie algebra of a Lie group is the one of left-invariant vector fields.

Exercise 5.28. Consider in M = R? x S! with coordinates (z,y, #) the two vector fields

X = cos 0, + sinf 0y, Y =0y

1. Prove that [X,Y] = sinf 0, — cosf 0, and give a geometrical interpretation of this fact in
terms of the Exercice [5.20)

2. Prove that X,Y,[X,Y] are linearly independent at every point of R? x S*
3. Prove that the following is a group law in M
(x,9,0) - (2',y,0") = (x + (cos0)z’ — (sinf)y',y + (sinf)z’ + (cos )y, 0 + ")
and that M is a Lie group.

4. Prove that X, Y are left-invariant.
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Chapter 6

Vector distributions: integrability vs
non-integrability

If a notion bears a personal name, then this name
s not the name of the discoverer.

The Arnold Principle.

V.I. Arnold (1937-2010)

In this chapter, we discuss some results about integrability of vector distributions. The most
classical result is Frobenius theorem, stating necessary and sufficient conditions for a vector distri-
bution to be integrable, i.e., to admit a tangent submanifold.

We then discuss also distributions which satisfy an “opposite” assumption than the one of
Frobenius, i.e., bracket-generating distributions and the corresponding Chow theorem.

Despite being named for Ferdinand Georg Frobenius work in 1877, the two implications of
Frobenius theorem were proven by Feodor Deahna, 1840, and Alfred Clebsch, 1866.

Similarly Chow theorem is named after Wei-Liang Chow who proved it in 1939, but Petr Kon-
stanovich Rashevskii proved it independently in 1938. (cf. The Arnold principle)

6.1 Diffeomorphisms built with flows of vector fields

Most of the results of this chapter are based on local diffeomorphisms built with compositions of
flows of vector fields. We start with a proposition computing the differential of such a map.

Proposition 6.1. Let M be a smooth n-dimensional manifold and X1, ..., X, be linearly indepen-
dent vector fields at a point qo € M. Then the map

¥ R" — M, V(t,. .. tn) =110 oetnXn(gp),

is a local diffeomorphism at 0. Moreover we have, denoting t = (t1,...,ty),
0 X,
9% 4y = <611X1 . eil*lXHXi) (W(1)). (6.1)
ot;
Proof. The map 1 is clearly smooth. It is easy to compute the differential of the map at ¢t = 0.
o d d X,
—2(0) = — 0= — ki =X; 2
ot 0= gy _ 000500 = | e ¥ilan) = Xilao) (6.2)
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Hence the partial derivatives of v are linearly independent, thus v is a local diffeo. For ¢ in
a neighborhood of 0 it is less trivial to compute the differential. First let us observe that by
definition of the map v we have that

e tiXi o e X1 (¥(t)) = elitiXit1 o et”X”(qg) (6.3)
Hence we have
o d
b —— o ti st
atz( ) ds s:(]w( 1 A n)
- i 1 X1 o g etits)Xi o o otnXn (q0)
ds s=0
- i e X1 o o eliXigesXi g etitiXit1 | o et"X"(qo)
ds|,_g
and using (6.3))
o d thX tXi . sX; X
—(t) = — e X1 o oeliXigesXig e tiXi | o et Xi(y(t
=%l (1)

X X
(%0 X (1)) = (%1 ¥ ) ().
where in the last identity we used ([5.6)) and the fact that the differential of a composition is the
composition of differentials. Notice that e/X X = X for every X. O

6.2 Rectification of vector fields

As a direct consequence of the previous result, every vector field locally around a point which is
not singular can be “rectified”, in the sense that its flow in coordinates is given by straight lines.

Corollary 6.2 (Rectification of a vector field). Let X be a vector field on M and qo € M such
that X (qo) # 0. Then there exists coordinates (x1,...,x,) defined by ¢ : U C M — R™ on a
neighborhood U of qo such that v, X = 0/0x.

Proof. Let X1 := X be the first element of a family of vector fields Xy, ..., X,, that are linearly
independent at gy € M. Notice that the existence of such a family is guaranteed by Exercise

Let now ¢ : R™ — M be the map build in Proposition [6.1] associated with Xi,...,X,. Let
V C R™ be the neighborhood of gy where v is a local diffeomorphism on U = (V). Notice that

the identity (6.1]) for i = 1 gives

oY
g(t) = X1(¢(1)). (6.4)
1
It follows that 5
= = X1.
(U ot 1
Using ¢ = ¢ ™' : U Cc M — V C R" as a coordinate map we have ¢, X1 = 9/0t;. O
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Another consequence of Proposition [6.1] is a characterization of families X, ..., X, of vector

fields that can be simoultaneously “rectified”, i.e., if they appear as a family of coordinate vector
fields.

Theorem 6.3. Let M be a smooth n-dimensional manifold and X1, ..., X, be linearly independent
vector fields at a point qo € M. Then there exists local coordinates ¢ : U C M — R" in a
neighborhood U of qu such that

0

X; =
(P* (2 8.%'1’

i=1,...,n, (6.5)

if and only if [ X;, X;] =0 for everyi,j=1,...,n.

Proof. (i) If a local coordinate map ¢ : U — R" satisfying (6.5]) exists then

0 0 o 0
X, X, —1 -1 1
[Xi, X * Ox T Ga:j} * [83;1-’8;10,-] 0

since the coordinate vector fields commute.
(ii). Let us consider the map 1 associated to Xy, ..., X,, and defined by

P R" — M, Y(t1, ... ty) =110 oelnXn(qy),

which is a local diffeomorphism at 0. For ¢ = (¢1,...,t,) small we have
o X
o (t) = (en¥r el ) (). (6.6)
(2

Remember that [X,Y] = 0 implies /XY =Y (cf. Lemma [5.17). Hence if we assume [X;, X;] =0
for every 7,5 = 1,...,n, then we have

o
3 (8) = Xa(¥(?))- (6.7)
and the statement is proved using ¢ = 1. O

Example 6.4. Let us consider X = 20, + y0, and find coordinates that rectify X around (1,0).
Notice that Y = —y0, + x0j is linearly independent from X at (1,0).
Following the construction a map that rectify X is the inverse of the map

YiR2 o M, Y(tt) = "N o€V (1,0)
It is easy to compute
e'2Y(1,0) = (costy,sints), e X (z0,y0) = (e z0, eMyp)

Hence

@D(tl, tg) = (etl COS tQ, etl sin tz)
One might check that ¢,0/9t; = X. It also holds 1,0/0ts =Y. This last fact is a consequence of
[X,Y]=0.
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6.3 Frobenius theorem
In this section we prove Frobenius theorem about vector distributions.

Definition 6.5. Let M be a smooth manifold. A wvector distribution D of rank m on M is a family
of vector subspaces D, C T,M where dim D, = m for every q.

A vector distribution D is said to be smooth if, for every point qo € M, there exists a neighbor-
hood U of ¢y and a family of vector fields X1, ..., X,, defined on U such that

D, = span{X1(q),..., Xm(q)}, VqgeU. (6.8)

Definition 6.6. A smooth vector distribution D on M is said to be flat if for every point ¢y € M
there exists a neighborhood U of gy and a local diffeomorphism ¢ : U — R"™ such that ¢, 4(Dg) =
R™ x {0} for all ¢ € U.

Example 6.7. Let us consider in R? the distribution D = span{X,Y} spanned by the two vector

fields 5 5 5 5
_ 9 Y9 _ v, *r9
Ox 207 Y 8y+282

Let us show that this distribution is not flat. If D is flat, there exists a local diffeomorphism
¢ : R? — R? around the origin (playing the role of the inverse of () which satisfies

0 0
Yoo =X, ¢*%—Y

Writing explicitly this condition one obtain the system of first order PDEs

81#1 81/)1
ox 0y
an 81/)2
Ox 0y
oy __gp | _ 0
or 2 oy 2
2 2
which has no solution since from the last lines we obtain the contradiction 043 # 043 .
Oxdy * Oyox

In general it can be quite complicated to establish existence or non existence of solution of PDEs.
Frobenius theorem reduces the flatness of a distribution to the following computable property.

Definition 6.8. A smooth vector distribution D (of rank m) on M is said to be involutive if for
every point gy € M, there exists a neighborhood U of ¢y and a family of vector fields {X7,..., X;,}

satisfying such that

m
(X, Xil = afX;,  Vik=1,...,m. (6.9)
j=1

for some smooth functions af’j on M.
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Example 6.9. The distribution D = span{X,Y} in R? spanned by the two vector fields
_ 2 yo  y_9 20
or 20z oy 20z

is not involutive since

0
0z

which is linearly independent on X and Y at every point.

(X, Y] =

Exercise 6.10. Prove that a smooth vector distribution D is involutive if and only if for every
point go € M there exists a neighborhood U of gy and for every family of vector fields { X7, ..., X,,}
satisfying we have
m
[Xi, Xi] = afX;,  Vik=1,...,m. (6.10)
j=1

for some smooth functions afj on M.
Now we can state the main result of this section.
Theorem 6.11 (Frobenius Theorem). A smooth distribution is involutive if and only if it is flat.

To prove Frobenius theorem we first need a lemma.

Lemma 6.12. Assume that D is involutive and locally spanned by X1,...,X,,. Then for every
k=1,...,m, we have eXX*D = D.

Notice that this means that for every k =1,...,m and ¢ € M we have
eiXk (Dq) = Deth (q)
Proof of Lemma[6.12 Let us define the time-dependent vector fields
VA1) 1= et¥e X,

Using ((6.10) and (5.13)) we compute

YE(t) = elXF[X;, X3 =

Ms

J=1

j=1
k

where we set afj (t) = a;; © e Xk, More explicitly, this means that for every g € M

m

d

%(eiX’“Xi)(q) =Y afi(e7 ™ (g)) (e X;)(g),
j=1
Notice that for every fixed ¢ € M and k € {1,...,m} this is a system of non-autonomous linear

differential equations in the vector space T, M of the form

k
t) = Z aij(t)x;(t)
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Thus denote by A¥(t) = (ai?j (t))i%=, and consider for every k the unique solution to the matrix
Cauchy problem

M(t) = A¥(t)M(t),  M(0) = 1. (6.11)
which we denote by M¥(t) = (mfj(t));"]:l Then we have
V() =D mi (0} (0),
j=1
since ij(O) = X}, this implies for every i,k =1,...,m,

m
eiXkXi = Z mfj (t)X;,
j=1

which proves the claim. O

Proof of the Frobenius Theorem. The statement is local, hence it is sufficient to prove the statement
on a neighborhood U of an arbitrary point gy € M. We can assume the vector fields are complete.

(i). Assume first that the distribution is flat. Then there exists a diffeomorphism ¢ : U — R"”
such that D, = @;;(Rm x {0}). It follows that for all ¢ € U we have

_ 0
D, = Span{X1(Q)a e 7Xm(Q)}> where X,(q) = 90*,; <a$) .

and we have for i,k =1,...,m,

_ 0 _ 0 4]0 0

(ii). Let us now prove that if D is involutive then it is flat. As before, it is not restrictive to
work on a neighborhood U where

Dy = span{X1(q), ..., Xm(q)}, VqgeU. (6.12)
and are satisfied. Complete the family X1, ..., X,, to a basis of the tangent space
TyM = span{Xi(q), ..., Xm(q); Zm+1(q), ..., Zn(q)},
in a neighborhood of gy and set ¢ : R® — M defined by
V(t1s - sty Smals - -5 5n) = 15X 0 o elm&m o gsmarZmir o | o eSnZn(gq).

By construction ¢ is a local diffeomorphism at (¢,s) = (0,0) and for (¢, s) close to (0,0) we have
that (cf. Proposition foreveryi=1,...,m

Z;f@, o) = (XL e X) ((t, ),

These vectors are linearly independent and, thanks to Lemma belong to D. Hence

0 0
Dq:¢* (Span{atla"-aatqn}>7 q:dJ(t,S),

and the claim is proved by considering ¢ := 1~!. O
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Reformulating Frobenius theorem in terms of submanifolds, one immediately obtains the fol-
lowing corollary.

Corollary 6.13. Let D be an involutive distribution of rank m on a smooth manifold M of dimen-
sion n > m. Then, for every q € M, there exists a (locally defined) submanifold S of dimension m
passing through q and that is tangent to D at every point, i.e., T4S = Dy for every g € S.

Proof. Since D is involutive we can consider the map % built in the previous proof. In coordinates
we consider the m-dimensional submanifold

R™ x {0} = {Smy1 = ... = 5, = 0},

and by setting S = ¥(R™ x {0}), since ¢ is in particular an immersion, one has at every point
qge S
0 0
T,5 = 1, — e, — = D,.
=Y (Span { ot Ot }) ‘

This in particular says that if we move from a given point gy € M only with curves that are
tangent to D, then we are confined in a m-dimensional submanifold S of M.
The converse (integrability implies involutivity) is also true thanks to the following lemma.

O]

Lemma 6.14. Let N C M be an embedded submanifold and X,Y in Vec(M) be vector fields
tangent to N, i.e., X(q),Y (q) € TyN, for every g € N. Then [X,Y] is tangent to N.

Proof. A vector field X in M is tangent to N if and only it is i-related to a vector field on N,
i.e., there exists V' such that X|y = i,V for V' € Vec(IN) where here i : N — M is the canonical
inclusion. If X |y = 4.V and Y|y = ixW then [X,Y]|n = [iV, s W]|n = (i[V, W])|n = ix[V, W]
hence [X, Y] is also tangent to N. O

6.4 Rashevski-Chow theorem: local version

We now state a theorem about “totally non integrable” distributions, and we start by introducing
bracket-generating families of vector fields.

Definition 6.15. Let M be a smooth manifold and D a smooth vector distribution. D is said
bracket generating if for every local basis in a neighborhood U of ¢ we have

D, = span{X1(q),..., Xm(q)}, VqgeU. (6.13)

and
span{[X;,,...,[Xy,_,, Xi;])(¢) : 1 <ig <m,£<j,j e N} =T, M (6.14)

We denote the left hand side by
Liqu = Span{[Xiu RS [Xij_pXin(q) 01 < ié < mug < j7] € N}

these are all possible Lie brackets of the basis evaluated at q.
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Exercise 6.16. Show that Lie,D is well defined, i.e., does not depend on the choice of the basis.
A direct consequence of Lemma, is the following

Corollary 6.17. Let N C M be an embedded submanifold and D be a smooth vector distribution
such that Dy C TyN for every q € N. Then for every g € N we have dim Lie,D < dim N.

We can now prove the main technical lemma, of this section

Lemma 6.18 (Rashevski-Chow lemma). Let M be an n-dimensional manifold and D locally
spanned by X1,..., X be a bracket generating distribution of rank k.

Then for every qo € M and every neighborhood V' of the origin in R™ there exist 7 = (71,...,T,) €
V', and a choice of n vector fields X;,,...,X;,, such that T is a reqular point of the map

YR — M, w(tl,...,tn):etnxino---oetlxil(QQ).

Remark 6.19. Observe that, if & < n, then 7 # 0. Indeed, the image of the differential of 1) at t =0
is

im0 = spang, {X;; [j=1,...,n} Cspan, {X; [i=1,...,k} = Dy,

and the differential of ¢ cannot be surjective if Dy, # Ty, M. In particular, in the choice of
Xiy, ..., X;,, the same vector field is allowed to appear more than once.

in s
The following proof indeed works for any family of vector fields F = {X1,..., Xy} such that
Lieq F = T, M, without necessarily asking that the vector fields are linearly independent.

Proof of Lemma[6.18 We prove the lemma by steps. Let F = {X3,..., X}

1. There exists a vector field X;, € F such that X; (qo) # 0, otherwise all vector fields in F
vanish at ¢op and dim Lieg, F = 0, which contradicts the bracket-generating condition. Then,
for |s| small enough, the map

s1X

¢1: 51 e (q),

is a local diffeomorphism onto its image ;. If dim M = 1 the Lemma is proved.

2. Assume dim M > 2. Then there exist t% arbitrarily close to 0, and X;, € F such that, if we
denote by ¢1 = et Xiy (qo), the vector X;,(q1) is not tangent to X;. Otherwise, by Lemma
dim Lieg F = 1, which contradicts the bracket-generating condition. Then the map

51X

ba : (s51,82) > e%2%i2 0 5101 (gp),

is a local diffeomorphism near (¢1,0) onto its image 5. Indeed the vectors

0¢2
951 {11 ,0)

0
€ Tfhzlv 8;252 = Xiz(‘]l)a
2 1(t1,0)

are linearly independent by construction. If dim M = 2 the Lemma is proved.
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3. Assume dim M > 3. Then there exist (¢3,t3) arbitrarily close to (¢1,0), and X;, € F such
that, if ¢ = el3Xis o el2Xiy (go) we have that X;,(g2) is not tangent to Xy. Otherwise, by
Lemma [6.14} dim Lieg, D = 2, which contradicts the bracket-generating condition. Then the

map

@3 : (51,82, 83) > €35 02X 0 1% (¢p),

is a local diffeomorphism near (t3,¢3,0). Indeed the vectors

993 d¢s3 €T, ¥, O3
q2 ’

s a - X’ig (q?):
951 {200 9521 13.2,0) 933 |(13,12,0)

are linearly independent since the last one is transversal to Ty,Y2 by construction, while the
first two are linearly independent since ¢3(s1, s2,0) = ¢a(s1, s2) and ¢g is a local diffeomor-
phisms at (t3,¢2) which is close to (¢},0).

Repeating the same argument n times (with n = dim M), the lemma is proved. O

Corollary 6.20. The map {D\: R™ — M defined by

~

V(b1 tp) = e TN o0 e ™ Xin o ah(ty, .. ),
s a diffeomorphism from a neighborhood W of T € V to a neighborhood of {ZJ\(T) = qp.

Here 7 = (711,...,7,) is a point one obtains from the previous Lemma.
Thanks to Lemma there exists a neighborhood V' C V' of s such that 1 is a diffeomorphism
from V to (V). We stress that in general gy = ¥(0) does not belong to 1 (V), cf. Remark

Corollary 6.21. Let M be a smooth manifold and D be a bracket generating distribution.
Then D is totally non-integrable, i.e., there is no submanifold N of M such that Dy =Ty N for
every q in a neighborhood of a point.

This means that if we move from a given point ¢ with curves that are tangent to D, then we
can reach an open neighborhood in M.

We have that D bracket-generating implies D non-integrable. The converse in full generality is
not true.

Example 6.22. Let us consider the smooth function

eil/tQ, t#0
0, t=0

This is a C*° function that vanish at ¢t = 0 with all derivatives equal to zero at that point.
Consider the rank 2 distribution D in M = R? given by D = span{X,Y} with

X = 0Oy, Y =0y + ¢(x)0.

It is easy to see that
[Xv Y] = ¢/($)827 [Yv [Xa YH =0
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while, more in general,

Hence the structure is not bracket generating on the plane P = {z = 0}. However, D is totally
non integrable since if N C R? is an integral manifold then it should be contained in P = {x = 0}.
But if x = 0 then X is not tangent to P.

So non-integrable does not imply bracket generating at every point. One can prove the following
partial converse

(a) if D is non integrable then D is bracket-generating on an open dense set of M
(b) if M and D are analytic, D is non-integrable implies D bracket-generating at every point.

Exercise 6.23 (Sphere rolling on a plane).
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Chapter 7

Tensors and Differential forms

Duality in mathematics is not a theorem, but a “principle”.
Duality in Mathematics and Physics, 2007.
Sir M.F. Atiyah (1929-2019)

7.1 Cotangent space

Covectors are dual object to vectors, i.e., linear functionals defined on the tangent space. The space
of all covectors at a point ¢ € M, is called cotangent space.

Definition 7.1. Let M be a n-dimensional smooth manifold. The cotangent space at a point
q € M is the set
;M = (T,M)* = {\: T;M — R, X linear}.

If X € T; M and v € T;M, we will denote by (A, v) := A(v) the evaluation of the covector A on the
vector v.

Covectors are not just abstract object but corresponds to differential of scalar functions.

Example 7.2. Let f: M — R be a smooth function and ¢ € M. The differential f,,: T,M — R
of the scalar function f at ¢ will be denoted d, f or df o it satisfies

d

<dqfa U> =

Gl 6. ve, (71)

t=0

where v is any smooth curve such that v(0) = ¢ and §(0) = v, is an element of T,/ M.
Recall that if (U, ¢) is a chart and (x1,...,x,) is the associated coordinate system if

then ([7.1) satisfies




1

where f: fop " and = = ¢(q). If we choose as function f the coordinate function z; and as a

9
_ 9
q a$j

vector v the vector z7-| we have
J
xTr; = 5ij
which proves that dyx1, ..., dgz, is a basis of T/ M that is dual to the coordinate basis of Ty M.

q

q
0
<dq$i, 875[)]

Remark 7.3. Let T : V. — W be a linear map. The dual map is T* : W* — V* defined by duality
(T*n,v) = (n,T(v)). If T* is invertible, its inverse is (T*)~! : V* — W*. Fix a basis {e1,...,en}
for V and {f1,..., fm} for W. Show that T is represented by the matrix A with respect to these
basis, with A invertible, then (7%)~! is represented by (A?)~! with respect to the dual basis.

Exercise 7.4 (Change of coordinates for covectors). Given two coordinate sets (U, {x;}) and
(U’ {z}}) with ¢ € U N U’ show that if A € T/ M writes as

n n
A= Zpidxi‘q = Zp;dx;-‘q.
i=1 j=1

then . )
ox’,
p— — Iy
pl ' 811:1 pj
J=1
ox'.
Here, if ¢, ¢’ denotes the coordinate maps, the quantity i is the jacobian of ¢’ o 1),
ox;

The differential of a smooth map yields a linear map between tangent spaces. The dual of the
differential gives a linear map between cotangent spaces.

Definition 7.5. Let F': M — N be a smooth map and ¢ € M. The pullback of F at point F(q),
where g € M, is the map

defined by duality in the following way
(F*\,v) := (\, Fyv) VoeTyM, VA€ Tp,N.

Notice that we can also write F*\ = Ao F,.

The cotangent bundle

The cotangent bundle is defined as the disjoint union

"M = ] T;M
qeEM

endowed with the natural projection
m:T*"M — M, m(A) =¢q, fXeT M
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Proposition 7.6. T*M has the natural structure of smooth vector bundle of rank n = dim M.

Proof. The proof is similar to the argument for TM, Given charts {(U;, ¢;)} on M, then 7=1(U;) is
an open set of T*M and the reunion of these sets is an open cover of T*M. We define coordinates

;- 7T_1(Ui) — gOz(Uz) x R™
as follows
Ez()‘) = (5617 cee sy Ty PLy e apn)
if m(\) = ¢ with ;(q) = (z1,...,x,), and moreover

A= pidri,
=1

Notice that if U; N U;j # 0 then 7= 1(U;) N 7= 1(U;) # 0 and
©D; o@;l : ij(Ui N Uj) x R"™ — ;(U; N Uj) x R"
where @; oaj_l(x,p) = (2/,p') if (cf. with Exercise |7.30))

B A(pi o w;t)
x/:(piocpj 1($), p:ij/

which completes the proof. O
Corollary 7.7. Let F': M — N be smooth. Then F* : T*N — T*M is smooth.

Differential 1-forms

Definition 7.8. A differential 1-form on a smooth manifold M is a smooth section of T*M i.e., a
map
w:g—w(q) € Ty M,

that associates with every point ¢ in M a cotangent vector at q. We denote by A'(M) the set of
differential forms on M.

In coordinates a differential form is written as follows, where w; are smooth functions

n
w = g w;dx;.
=1

Since differential 1-forms are dual objects to vector fields, it is well defined the action of w € A*(M)
on X € Vec(M) pointwise, defining a function on M.

(w, X) 1 q = (w(q), X(q))- (7.3)

Exercise 7.9. Prove that a differential form w is smooth if and only if, for every smooth vector
field X € Vec(M), the function (w, X) € C*°(M).

Definition 7.10. Let F': M — N be a smooth map and g : N — R be a smooth function. The
pullback F*g is the smooth function on M defined by

F*g=goF, q€ M.
If w is a 1-form on N. The pullback F*w is the 1-form on M defined by
FFw=wofF,
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The differential of a function

The differential of a function automatically defines a 1-form. We want to find the expression in
coordinates, i.e. the functions w; such that

i=1

[ O\ _Of
wi <df’ 393]'> Oy

where the last element of the identity is written in coordinates. Then

df =) P, dz;
i=1

Remark 7.11. We might think to our background in calculus and to the gradient formula

Vi=> of 9 (7.4)

izl sz- 8%‘

but this quantity indeed is not well-defined. Show that ((7.4) is not invariant by change of coordi-
nates.

By definition of dual basis

Some properties of differential and pullback.

Proposition 7.12. Let F : M — N be smooth, n € QY(N) and g € C®°(N), then

F*(gn) = (g0 F)F™n (7.5)
F*dg=d(go F)=dF*g (7.6)

where we recall that we have set F*g=go F.

Proof. The first property is just linearity of F*. Thanks to (i) and the fact that every 7 is locally
written as n = Z;n:l n;dy; it is sufficient to check (ii) for g = y; a coordinate function. In this case

< OF;
Frdy; = o i = dF; = d(y; o F)
i=1 "
by denoting F; = y; o F' the j-th component of F' in coordinates. Another way is to observe that

d(go F) =dgo F, so that (F*dg, X) = (dg, F.X) = dg o F.(X). O

Remark 7.13. Combining the above formulas we get that if F': M — N is smooth and 7 € Ql(N)
is written in coordinates .
n= Z n;idY;
j=1

m m

F*n =Y (njo F)F*dy; = > (n;o F)dF;
j=1 j=1

then

where again [} := y; o I' denotes the j-th component of F' in coordinates.
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Exercise 7.14. Let F : R? — R? be the function F(z,y,z) = (z2y,ysinz) and w = udv + vdu in
QY(R?). Compute F*w.

7.2 Tensors and tensor fields

Definition 7.15. A (covariant) k-tensor on a vector space V' is a multilinear map

T:Vx---xV =R,
N———

k times

The space of all such tensors is denoted T#(V). Basic examples are: linear maps (1-tensors),
bilinear maps (2-tensors), determinant on R™ (n-tensor).

We introduce the tensor product as follows: let 11,72 € V* = TH(V) we define the two tensor
N1 ® 12 as follows
men:VxV-=R o m@n(v,w) = mnv)n(w)
Note that the operation is not commutative in general, since 171 ® 12 # 12 ® 11, but it is associative

since (71 ®@12) @n3 = M @ (N2 ®@n3). As a consequence one can define the tensor product 71 ®... Q@
of k elements in V* = T'(V) and this is an element of T*(V").

Let V be a vector space and ey, ..., e, be a basis of V and ej, ..., e} its dual basis. We notice

that every bilinear form B : V x V — R can be written in an unique way as follows

n
B = ZBijef®e;

1,j=1

where Byy = B(eg, e¢). Indeed applying the right hand side to (eg,ey) one gets

n n n
Z Bij ef &® 6; (ek,eg) = Z Bz’j (6;k &® 6;) (ek,eg) = Z Bij(sikéjg = By
4,j=1 t,j=1 t,j=1

This unique decomposition shows that T%(V) has dimension n? and a basis for T%(V) is given by
the family {e; ® e; | 1 <i,7 <n}. More in general we have the following property.

Lemma 7.16. Let V be a vector space with basis e1,...,en. Let €], ..., e, be its dual basis. Then
the family of elements T*(V)
{e:1®®e;kk | 1 Sila-'wik Sn}a

is a basis for the vector space of k-tensors T*(V). In particular dim T*(V) = n*.

The proof is a consequence of the observation that every 7' € T*(V') can be written in a unique
way as

T= > Ty e @ Q¢ (7.7)
1<in,eip<n
where T;, ;, = T(es,, - ,e€;, ). These are called the components of the k-tensor 7. In coordinates

a tensor is represented by a sort of generalized matriz with k indices.
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Exercise 7.17. Prove that if T satisfies ([7.7]) and it is also written as

_ / * *
T= Z Tj1---jk fj1 Q- ® fjl€ (7.8)
1<in,...,ig<n
with respect to another basis fi,..., f, satisfying e; = Z;?Zl aij f;, then we have
/ .. .
Tj1...jk = Z El...ikalljl o qtkIE
1<in,...,ik<n

where we denoted by a”/ the elements of the inverse of the matrix, namely > j aijaﬂ = §;. with
respect to a basis eq,...,e,

One can define the tensor product 7} @ Ty of Ty € T*(V) and Ty € T!(V'), as follows
Tl & TQ(’Ul, s U, W1, - ,'lU[) - Tl(?)l, ) Uk)TQ(’LUl, s 7wl)

Clearly T} ® Ty € TFt(V). Again, the tensor product just introduced is associative but not
commutative. One can then consider ® as a product for the associative (but not commutative)
graded algebra

(V) =P 1THV).

k>0

A graded algebra is an algebra (A, -) which can be decomposed as A = P, AF and for which the
internal product respect the grading, i.e., it satisfies A* - Al C AFH.

Tensor product of vector spaces
Following the previous construction we have seen that the space T%(V) is generated by elements of
the form ej ® - ®e] so that it is suggestive to write
T"V)=V*® .- @V* (7.9)
—_—
k times

even if we still have not defined the tensor product of vector spaces V*® ---® V*. If we accept the
identity ([7.9)) for a moment, using the canonical isomorphisms between the vector space V' and its
bidual V** given by

B:V—=VE o Bl =nl), neV’
one can similarly build the set of contravariant [-tensors
L(V) =TV =V"® - aV*>2Vg .-aV.
Formally, T € T;(V) is just a multilinear map

T:V*x---xV" =R
| —

[ times

Pushing this idea, we can define also mized tensors of type (k,1) as follows

TFV) =V*'®..9V'V® -0V

~~

k times [ times
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as the set of multilinear maps

T:Vx - xVxV*x...xV* =R

k times | times
IfT e le(V) then we can write along a basis ej, ..., e, of V and the corresponding dual basis

1< g <n 1<j1,ji<n

where TZ{ 1.'.'.;3: are the components of the tensor.

Remark 7.18. This is a good point to use the “physicists convention” about the position of indexes
by using upper indices on vectors for dual elements and writing the dual basis as {e, ..., "} instead
of {e},...,e:} (notice the corresponding position for components). So, with this convention, a
vector and a covector should be written in components as follows

n n

7 7

v = E v €4, n= E e
i=1 =1

or, even more shortly using Einstein summation, v = v'e; and 7 = n;e’. Formula (7.10]) then
simplifies to o

T=T) e ® e e @ Bej.
We will not always use this convention in the following, but it is important to get used to this
notation to read the literature.

Finally, we can also define the space of all tensors on V.

T(V):= P T (V).

k>0

Notice that (T'(V),®) becomes a non-commutative associative algebra (only now the product of
elements of the space belong to the space). It is a graded algebra in the sense that the product is

compatible with the grading as follows. If T € T}(V) and S € Tjf (V) then T® S € TF1F (V).

On tensor product of spaces

Similarly to the previous construction, one could also define tensor products of different vector
spaces V ® W, which are bilinear maps V* x W* — R, or also V*® W, bilinear maps V x W* — R,
etc.

Remark 7.19 (An abstract way to define V' ® W). Consider the free vector space R (V' x W) over
V x W, i.e. the vector space where every element (v,w) € V x W is an element of a basis. Then
we introduce the equivalence relation (where k is an arbitrary element of a field of scalars)

k(v,w) ~ (kv,w) ~ (v, kw),
(v1 4+ v2, w) ~ (v, w) + (ve, w),

(v, w1 + wa) ~ (v,w1) + (v, w3).
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Then we set V@ W :=R(V x W) / ~ and we denote by v ® w the equivalence class [(v,w)].. We
have automatically satisfied
E(v@w)=kv®@w=vQ kuw,
(MN+v2)Qw=v1Qw+1v2 W
v® (w1 + w2) = v @ w + v ws.

Notice that by definition every element of V ® W is a linear combination of elements of the form
v ® w, but it is not true in general that every element of V' ® W is equal to v ® w for some v, w.

Exercise 7.20. Let e,...,e4 be a basis of R:. Prove that e; ® ez + e3 ® e4 cannot be written as
v ® w for some vectors v, w.

Exercise 7.21. Prove that there is a unique isomorphisms between (V@W)® Z and V@ (W ® Z)
sending (v @ w) ® z and v ® (w ® z). In particular we can write V@ W ® Z.

As a final example let us prove.
Lemma 7.22. Let V,W be finite dim vector spaces. Then V* @ W is isomorphic to Hom(V, W)

Proof. Let us build a linear isomorphisms L : V* ® W — Hom(V, W). Of course it is enough to
define it on elements of the form n ® w for n € V* and w € W.

We set L(n ® w) € Hom(V, W) as follows L(n ® w)[v] = n(v)w. Then it is very easy to show
that this map is injective. Indeed if L(n® w) is the zero map then we want to show that n®w = 0.
This means that either w = 0 or n = 0. But if L(n ® w) is the zero map then n(v)w = 0 for every
v. If w # 0 then this implies n(v) = 0 for all v and the statement is proved. O

Remark 7.23. More in general an element of

TFV)=V'®..0V'eVe -V

k times [ times

can also be thought as a linear map V& — V® where V¥ .=V ®@.-.-@ V.
—_—
j times
Symmetric and Alternating tensors
We focus again on tensors in T%(V), for a given k. Given a permutation o € S}, we set
T (X1, Xi) = T(Xo),- - » Xow)
Definition 7.24. Given a tensor T € T*(V') we say that
o T is symmetric if for every o € S, we have T =T7,
e T is alternating (or skew-symmetric) if for every o € Sy, we have T' = sgn(o)T.
Given T € T*(V) we can define its symetrization and skew-symetrization as

Sym(T) — % SOTO, AT = % S sen(o)7°.

" oEeSy €Sk
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Exercise 7.25. Prove that, given a tensor T' € T*(V'), then
e Sym(T) is symmetric, Alt(7') is skew-symmetric,
e T is symmetric if and only if 7' = Sym(T)
e T is alternating if and only if 7" = Alt(7T).
It is meaningful to speak about symmetric tensors S¥(V') and alternating tensor A*(V/).
Lemma 7.26. A tensor T € T*(V) is alternating if and only if one of the following holds true
(a) T(X1,...,Xk) =0 whenever Xi,..., Xy are linearly dependent.
(b) T(X1,...,Xk) =0 whenever two elements are equal

Given T and S in T%(V) we define their alternating product, also called wedge product

(k +1)!
ll!

For instance we have, given elements v, w of V

TAS=

AT ® S) (7.11)

2 (1
VAW = — 5(v®w—w®v) =VRQUW—-—wWRV

so that the strange constant in ([7.11)) is chosen in order to simplify constants in the wedge product.
We warn the reader that this convention is not standard in all textbooks.

Denoting A¥(V) the set of alternating tensors in T%(V) and then

A(V) =P Akv)

k>0
we have that A defines a product in the graded algebra A(V') thanks to the following
Lemma 7.27. We have the following properties in A(V)
(i) N is R-bilinear
(i) TNS =(=1)""SAT if T,S of order r,s
(i) (TANS)ANR=TAN(SAR)
Notice that (ii) follows from the identity
MAANAD=(=1)"PAN A AN
Notice also that to prove (iii) one has to prove that
Alt (AT ® S)® R) = Alt (T @ Alt(S ® R))
so there is something to check. If that is true then we have well-defined

(k+1+7r)!

TASANR= " —=Al(T © S @ R)

83



Lemma 7.28. Given covectors A\i,..., A\, and vectors vy, ...,v then
M A A )\k(vl, cee ,Uk) = det(()\i,vﬁ)

Proof. Recall that if M = (m;;){;_; is a matrix then we have the expansion for the determinant

n

det(M) = ) sgn(o) [ [ mioq)

oESy i=1

We use (iii) and

k!
ALA = AXg(ur, s vk) = 50 D sgn(0)Ae(1) @ - @ Ag(ry (U1, -+, vi)
’ €Sk
= > sgn(0) Aoy v1) -+ (Ao Vi)
og€ESy,

::det(<Au1%>2j=1)
0

Lemma 7.29. The space A*(V) is a vector subspace of T*(V), with dim A*(V') = (}). A basis of
AR (V) is given by
{6;/\“'/\6:}6‘1§i1<...<ik§n}. (7.12)
Proof. If two elements are repeated in e; A --- Aej then this is zero since alternating. If we
exchange position, we have a minus sign by (ii). Hence the only elements which might be lin.ind,
up to reordering, are those listed in (7.12]). The proof that they are linearly independent follows
by noticing that
* * J
€iy /\'“/\eik(ejlf” ’ejk) = 51
where 5§ is the Kronecker delta for multindex I = (i;,...,i) and J = (ji1,...,jr) which is equal

to the sgn(o) if J = o(I) for some permutation o, and zero otherwise.
O

Tensor fields

To give a concrete content to this theory let us consider tensor fields. We define the tensor bundle

THM) = | THT,M).
qeM

We have clear identifications
TOM = M x R,

ToM =T*M,  TYM =TM.

These are vector bundles. We can consider smooth tensor fields, i.e., smooth sections of these vector
bundles which are denoted by T,*(M) or also I'(T}F(M)). If

o: M — TF(M)
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is a smooth tensor field we can write locally in coordinates {z1,...,z,} on an open set U

. . 0 0
— J1---J . - . Ce
o= E E o i AT @ @day, ® az;, ®--® oz

1<iy,ig<n 1<g1,.051<n

We recover smooth functions for (k,1) = (0,0), differential 1-forms for (k,l) = (1,0) and vector
fields for (k,1) = (0,1).

Exercise 7.30 (Change of coordinates for tensor fields). Given two coordinate sets (U, {z;}) and
(U, {z}}) with ¢ € U NU’ show that if

o= Z Z ol d$i1®‘-'®dmk®87®-~®am
1< ,yig <N 1<, 1< s Tl
and 9 9
_ Nhi...hy / /
o= Y Y @ dde e edg e e et
1<y, by <n 1<hy . )ly<n ha ha
Prove that , ,
(J/)hlmhl . Z Z G101 8%2‘1 o 81:% 8$h1 o éhchl
Zl...ék - ’Lllk / / . .
1<, ig < 1<j1, i <n Oxy, Oy, Oy Oy,

From now on we focus on tensors of the form (k,0), with special emphasis on alternating ones.
The following lemma should be now well understood, but we invite the reader to check details.

Lemma 7.31. Let M be smooth manifold and o : M — T*(M) a smooth tensor field. Then o is
smooth if and only if one of the following equivalence conditions is satisfied

e in every coordinate charts the coefficients o;,. 4, are smooth functions,
e for every smooth vector fields X1,..., X, we have that
o(Xi1,..., Xk)(q) = 0¢(Xilg, - - - Xklq)
is a smooth function.

Given two tensor fields o and 7 and f € C°°(M) then fo and o ® T are also tensor fields.
Exercise 7.32. Write the coordinate representation of fo and ¢ ® 7 in terms of the ones of o, 7.

If F: M — N is a smooth map we can pull-back tensors and tensor fields of type (k,0)

F*: TF(TpyN) — TF(T, M)
by applying duality to every element for tensors
(F*T)(v1,...,v;) = T(Fyvi, ..., Fuuy)

and tensor fields
(F*O')(Xl, .. -;Xk)‘q = O'(F*Xl, e 7F*Xk)’F(q)

Some properties which we leave as exercises.
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Proposition 7.33. We have the following properties for F: M — N a smooth map
(i) F* is R-linear on sections
(ii) F¥*(c @T)=F*0c @ F*1

(i1i) F*(go) = (go F)F*o

Notice that in general there is neither push-forward nor pull-back of mixed tensor fields through
smooth maps (but if F' is a diffeomorphism one can define both).

7.3 Differential forms

Consider the set of alternating tensors of type (k,0) on T, M and build the vector bundle

AF(M) = | AT, M)
qeEM

We set QF(M) the smooth sections of A¥(M), called differential k-forms. In coordinates w € QF (M)
writes as

n
w = Z wil...ikdxh VANAN dac,-k

i1y yip=1

where wj, . ;, are smooth functions on M.

Proposition 7.34. Suppose F': M — N is smooth. We have the following properties
(i) F*: QF(N) — QF(M) is R-linear
(i) F*(wAn)=F*wAF*n

(111) F*(gw) = (9o F)F*w

Remark 7.35. In particular we have a formula to compute the pull-back: if on N with coordinates
{y;} we have
n
w = Z wjl.,,jkdyjl VANPIRAN dyjk
Jiyenji=1

where wj, . ;, are smooth functions on N. Then we get

n

F*u = Z (Wjy..jp © F)d(yj, o F) N ... ANd(yj, o F),
j17""jk:1

which means, denoting F} the j-th coordinate of F’

o= Z (wjlmjk OF)dFjl VANPIS /\dij,

J1e--Jk
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Exercise 7.36. Consider the map
F :]0, 400[x]0, 27[— R, F(r,0) = (rcosf,rsinf)
Prove that F*(dz A dy) = rdr A df

Notice that Q™(M) on an n-dimensional manifold has dimension 1, hence every top dimensional
form is a smooth multiple of dx1 A ... A dx,, in coordinates.

Proposition 7.37. Let F': M — N is smooth map between n-dimensional manifolds.
F*(gdy1 A ... Ndyp) = (go F)(det DF)dxy A ... AN dzy,

where DF is the Jacobian matriz of F in the corresponding coordinates.

Proof. By the previous result
F*(gdyy A ... Ndyy) = (go F)dFy A ... NdF,
so it is enough to prove
dFy N ... NdF, = (det DF)dzq A ... \dxy,

It is enough to check the last identity on a basis. But from Lemma

dFy N ... NdF, i,...,i =det | dF; i = det DF.
0z Oxy, Ox;
so that dFy A ... ANdF, = (det DF)dz1 A ... A dxy,. O

Exercise 7.38. Let {z;} and {2} be two set of coordinates. Prove that

/

ox'.
da:'lA.../\da:;L:det<8 J>dx1/\.../\d:cn.

T

Exterior derivative.

We introduce the exterior derivative d. This is a linear map d : QF(M) — QFFL(M) for every
k > 0. Recall that Q°(M) = C(M).

Theorem 7.39. There exists a unique linear map d : QF(M) — QFY(M) for every k > 0 such
that

(i) if f € Q°(M) = C®(M), then df € Q1 (M) is its differential,
(ii) if w € QF(M) and n € QY (M),
d(wAn) =dwAn+ (=1)Fw A dny,
(iii) dod =0,
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Moreover
(i) d is local: if w=w' on U C M then dw = dw' on U,
(v) d commutes with restrictions dw|y = d(w|y),

(vi) d in coordinates express as

dw = Z dwil...ik A dxil VANPIRAN d-'Ifik = Z a‘*;;zk dacj A dxz-l VANPIRAN dxik. (7.13)
J

ik i1,
We denote by dxy = dxi, A... ANdx;, if I = (iy,..., i) increasing multiindex.

Proof. Assume M has only one chart. Then use the formula ([7.13]) to define d. Clearly d is linear,
local and commutes with restrictions and satiesfies (i). We have to check only (ii) and (iii).

First notice that d(fdzr) = df A dxy for every multiindex I, even if I is not increasing. Then
to check (ii) by linearity it is enough to check for w = fdx; and n = gdx; for I,J increasing
multiindex. We have

d(wAn) = d(fgder Adzxy)
= (fdg + gdf) Ndxr Ndxy
= (=¥ fdx; Adg Adxy +df Adzgp A gday
(=1)*w Adn +dw A .

For (iii) since
d(dw) = > d(dwi,..,) Adaiy A A d,,
i1
it is enough to prove that d(df) = 0. We have

n-a(3 o) - 3 7L

i,7=1

dz; N dx;
Ox;z; J !

2
= Z 8afd1'j Adz; = 0.

XX 5
1<i<j<n ¥

Let us now prove that if there exists an operator D satisfying (i)-(iii) then in coordinates it satisfies
(vi). From this everything follows. (We leave other details to the reader.)
Let D be such an operator and apply to a k-form in coordinates, from property (ii)

Dw = Z th---ik ANdxi, Ao A da:ik—i—
i1in

+ 3 Wiy, AD(dwi, A A dag,)

110k
The first line is (vi) since D = d on functions. The second line is zero since by (ii)
D(dl‘il VANAN da:zk) = Dda:il A\ (dl‘iQ AN d$zk) — d$i1 VAN D(d.ﬁ,’Z VAN d.l‘lk)

and Ddx;, = DDz;; =0 by (i), and the other terms is also zero iterating same argument. O
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Exercise 7.40. The differential of an arbitrary 1-form in R3. If a, b, ¢ are smooth functions and
w=adr+bdy+cdz

then we have
dw=daNdx+dbANdy+dcNdz

dc  Oa ob  Oa dc 0b
dw_<8x_8z>dx/\dz+<6x_8y>dx/\dy+<8y_8z>dy/\dz

that is

Remark 7.41 (An algebraic comment). If A = @, A" is a graded associative algebra (not necessarily
commutative), a linear map D : A — A has degree m if D(A*) c A**™ for each k. It is a derivation
(resp. antiderivation) if

D(xy) = (Dx)y + z(Dy), (resp. D(zy) = (Dx)y + (—1)Fz(Dy) )

whenever z € AF and y € AL
We can summarize the above properties of the differential d on C°°(M) saying that it extends
to a unique antiderivation on Q(M) of degree 1 and such that d squares to zero.

Proposition 7.42. Let F': M — N be smooth and w € Q¥(N). Then
F*(dw) = d(F*w)

Proof. For k = 0 setting F*f = f o F this is item (i) in Proposition For k > 1 we reduce to
it. Since d is local it is sufficient to prove the formula in local coordinates. Since in coordinates

w = Zwilmikd‘ril A - Ndzg,

it is sufficient to prove for w of the form fdxz; A --- Adx;,. But F*(wAn) = F*w A F*n so it is
enough to prove for w = fdg. We have since d? = 0

dw = df Ndg + fd*g = df Adg

and
F*(dw) = F*df N F*dg =dF*f N F*dg =d(f o F) A\ F*dg

On the other hand
d(F*w) =d((fo F)F*dg) =d(fo F) AN F*dg+ (f o F)dF*dg = d(f o F) A F*dg
where we used Proposition and dF*dg = ddF*g = 0 since d? = 0. O
Exercise 7.43. Consider the map
F :]0, +00[x]0, 27 [— R?, F(r,0) = (rcosf,rsinf)

We proved that F*(dz A dy) = rdr A df. On the other hand
1 1,
de Ndy =d Exdy—yda: , rdrANdf =d 57 do
and F*(xdy — ydz) = r2df.
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7.4 Lie derivatives of tensors and differential forms

Definition 7.44. Let X € Vec(M) and w € A*M, where k > 0. We define the Lie derivative of T
covariant tensor with respect to X as the operator

Lo THO) = THM),  Lxr= 0| (@¥)r (7.14)
t=0
Notice that p .
_ t X\ * — T - tX \ % .
Lxr= t:o(e )’ = lim - ((e ) (Terx () Tq)

We define the Lie derivative of w € QF(M) with respect to X as the operator

d
Lx : A*(M) = A*(M),  Lxw= o (™) *w. (7.15)
t=0

We stress that the Lie derivative of a k-form along a vector field defines a new k-form.

For k = 0 this definition coincides with the Lie derivative of smooth functions, Lx f = X f, for

feC>®(M).

Lemma 7.45. We have the following properties of the Lie derivative:
(i) Lx (w1 Awz) = (Lxwi) Awa +wi A (Lxwa),
(ii) Lx(fw) = (X )+ fLxw

(iti) Lxod=doLx

Property (i) can be also expressed by saying that Lx is a derivation of the exterior algebra of
k-forms.

Proof. (i) and (ii) follows differentiating at ¢ = 0 the following identities

(€M) (w1 A wa) = (M) *wy A (€M) *wsy (7.16)
()" (fw) = () f - () 'wa = (f o ™) () w (7.17)
(iii) follows since d commutes with F™* and is linear. O

Given a k-form and a vector field, one can also introduce their inner product, defining a (k—1)-
form as follows.

Definition 7.46. Let X € Vec(M) and w € QF(M), with & > 1. We define the inner product of w
and X as the operator ix : QFM — QF 1M, such that

(ixw)(Y1,..., Y1) =w(X,Y1,..., Y1), Yi€ Vec(M). (7.18)
We have the following property, whose proof is left to the reader.
Proposition 7.47. The operator ix is an anti-derivation, in the following sense:
ix(wi Awg) = (ixwi) Awg + (—DFwi A (ixws), wieQNM, i=1,2. (7.19)
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We end this section proving two classical formulas, usually referred as Cartan’s formulas.
Proposition 7.48 (Cartan’s formula). Let X € Vec(M). The following identity holds true
Lx =ixod+doix. (7.20)

Proof. Set Dx :=ix od+ doix. It is easy to check that Dx is a derivation on the algebra of
k-forms, since ix and d are anti-derivations. Let us show that Dx commutes with d. Indeed, using
the fact that d?> = 0, one gets

doDxy =doixod=Dx od.

Since any k-form can be expressed in coordinates as w = Y wj, i, dz;, ...dx;, , it is sufficient to
prove that Ly coincide with Dx on functions. This last property is easily verified, since

Dx f=ix(df) +d(ixf) ={df,X) = X[f=Lxf o
=0
Corollary 7.49. Let X,Y € Vec(M) and w € A'M, then
dw(X,Y) =X (w,Y) Y (w,X) — (w, [X,Y]). (7.21)
Proof. On one hand Definition implies, by Leibniz ruleﬂ
d t X \*
<£quy>q = % —o <(6 ) W7Y>q
_d tX
=X (wY)—(w[X,Y]).

On the other hand, Cartan’s formula ([7.20) gives
<£Xw, Y> = <ix(dw), Y> + (d(ixw),Y>
=dw(X,Y)+Y (w,X).

Comparing the two identities one gets ((7.21]). O

Exercise 7.50. Prove that for a k form w we have

Ly (w(X1,..., Xk) = (Lyw)(Xq, ..., Xp) +w(Ly X7, ..., X)
+ ...—|—w(X1,...,£ka)

which also means

(Lyw)(X1,. ., Xp) = Y(w(X1, ..., X)) — w([Y, X1, ., X)
o —w(Xe Y X))
Let f(x,y) be a function of two variables. Then

d _of of _d
a tzof(t7t) - %(070) + @(070) - %

f(t,O)-l—i

R

t=0

t=0
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Exercise 7.51. Prove the following Leibniz rule formula: for X € Vec(M), w € A*M, and
fec=(M)
,Cfxw = fLxw+df Nixw (7.22)
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Chapter 8

Orientation, Integration on manifolds

Stokes’ theorem, first appeared in print in 1854.

George Stokes had for several years been setting the Smith’s Prize Exam at Cambridge,

in February, 1854, examination, question #8 is the following: [a version of Stokes’ theorem]
V. Katz, The History of Stokes’ Theorem

Mathematics Magazine, Vol. 52, No. 3 (May, 1979)

8.1 Orientation

Let V be a vector space. An orientation of V' is an equivalence class of ordered basis. Two basis
e1,...,en and €}, ..., e, belong to the same equivalence class if the matrix of the change of basis
has positive determinant.

n
e = Zaijej, det(a;j) >0
j=1

Of course this is an equivalence relation and we have two equivalence classes.
We can think to a orientation also as a choice of an “orthogonal vector” to the vector space
“up” or “down”. It is better formalized as follows.

Lemma 8.1. Let V' be a vector space of dim n > 1. A non zero element  of A"(V') defines an
orientation for V: all ordered basis ey, ..., e, such that Q(ey,...,e,) > 0.

The same can be done on manifolds, with top dimensional differential forms.

Definition 8.2. Two charts (U, ) and (U, ¢') are equioriented if det D(¢' o ™!) > 0 on p(UNU").
An atlas is oriented if every pair of charts are equioriented. A manifold M is orientable if M admits
an oriented atlas. An orientation of M is a choice of an oriented atlas of M.

Lemma 8.3. If M is covered by two charts (U, ) and (U', ") with U NU’ connected, then M is
orientable.

Proof. Notice that by assumption det D(¢’ o ~1) is not zero since it is a local diffeo, hence its sign
is constant on every connected set, hence on U N U’. If det D(¢’ o =) > 0 ok, otherwise choose
¢ and p = (21, ..., Ty, Tn—1) which then are equioriented. d
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Corollary 8.4. S™ is orientable for every n > 1.
For n > 1 it is given by the previous Lemma [8.3] For n = 1 one can check it explicitly.

Exercise 8.5 (The Mobius band is not orientable). Let us consider the Mobius band M as the
infinite strip M := R x [0, 1]/ ~ with the identitication (z,0) ~ (—z, 1), endowed with the quotient
topology. We denote by [z,y] = 7(z,y) the image of a point under the canonical projection.
Consider on M the two open sets

Uy = m(Rx]0,1]),  Us = (R x [0,1/2[U]1/2, 1))

Define the charts

- (=), 0<y<1/2
eille,y)) = (@), w([w])—{(_x,y_n, 1>y>1/2

It is easy to see that g is well defined on M since pa([x,0]) = (x,0) = @a([—x,1]). These are
homeomorphism onto their images and the change of charts satisfies

_ z,1), O0<y<1/2
P2 007 (2,y) = (z.9) /
(—z,y—1), 1>y>1/2

with det D(g20¢p7!) =1>00n0<y < 1/2 and det D(pa0 ;') =—-1<0onl>y>1/2.

This is a not oriented atlas. Indeed all atlas need to show this behaviour. To be more formal, let
(Ui, ¢i)ier be an oriented atlas on M. Define a “sign” function o : [0,1] — {—1,1} as follows. For
y € [0,1] we consider some i = i(z) such that [0,y] € U; and set o(y) = sgndet D(p; ' o 7)(0,).
It is easy to check that o is well-defined and locally constant, hence constant on [0, 1] which is
connected. On the other hand the identification [z,y] = [—x,y + 1] imposes o(0) = —o (1), which
gives a contradiction.

Exercise 8.6. Let F' : M — N be a local diffeomorphism between oriented manifolds. Then F
preserves orientations if and only if for every pair of oriented charts (U, ) and (V,4) such that
F(U) C V we have det(DF) > 0 on ¢(U), where as usual F =)o Fop~!,

Definition 8.7. A volume form on a n-dimensional smooth manifold M is a non vanishing n-form

ve Q' M).

Notice that given a volume form every other n-form w is written as w = fr with f € C*°(M).
If f # 0 then w is also a volume form.

Lemma 8.8. For a volume form v and a change of charts

O I g (%Y, (0 o
\oa 0l ) T T By ) U\ O
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Proof. In coordinates v = fdazy A ... Adx], for some f # 0. Hence it is enough to prove

/

Ox
d:c’l/\.../\dac;l—det<ax7>dx1A...Adxn (8.1)

But this is a consequence of the formula

=3
=1

and Lemma [T.28 O

Proposition 8.9. A smooth manifold M is orientable if and only if M admits a volume form

Proof. Fix a volume form v € Q"(M), never vanishing. We build the atlas A of all positive charts,
i.e., charts (U, ¢) such that U connected and (notice that the sign is constant on a connected U)

v i i >0
Ory’ " Oz '

The atlas A is oriented since for any two charts (U, ¢) and (U’ ¢') we have that property

2 0N g (%N, (0 o
or'’ ozl ) 0x; ox1’ 7 Oz,

hence every change of charts must have positive determinant since v is positive on oriented frames..
Conversely given an atlas A of equioriented charts we take a partition of unity {1} subordinated
to it and we set

V:Z¢ad:n§‘/\.../\dx%

This is well defined on all M (the sum is finite at every point). We have to show that v is never
vanishing. But this follows from the formula (8.1)). Fix a point ¢ and a chart (U, ¢) containing that
point. In a neighborhood we read

Ox¢
szwadet ((%) dey A ... Ndz,

Notice that all terms are > 0 an at least one is > 0. Hence v does not vanish. O

Example 8.10. We know that S™ is orientable. We can find a volume form on S™ as follows.
Consider in R"*! the n-form
n —
W= Z(—l)imidxo/\.../\d:ci/\.../\dxn
i=0
where the “hat” stands for removing the corresponding term. The restriction of this n form to S™
is still a n-form which is never vanishing since for every vy, ...,v, € T,S™ we have

Wy (V1, ..., vn) =det(x,v1,...,0,) #0

interpreting  and the v; as elements of R"*! (check as exercice!). For instance in S? this gives the
volume form in coordinates (x,y, z) in R3

w=xdy Ndz — ydx N\ dz + zdx A dy
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Exercise 8.11. Let ' : M — N be a smooth map between manifolds of the same dimension,
and let w be a volume form on N. Prove that if F*w is a volume form on M then F is a local
diffeomorphism.

Recall that a manifold M is said paralelizable if T'M is trivial.
Proposition 8.12. Every paralelizable manifold is orientable

Proof. Let Xy,...,X, be n vector fields that are linearly independent everywhere. Consider the
dual basis 1, ...,n, of differential 1-forms. Then  := n; A ... A n, is a never vanishing volume
form. O

Corollary 8.13. FEvery Lie group G is orientable.

Proof. Every Lie group is paralelizable since T'G is diffeomorphic to G x g hence to G x R"™ where
n = dim G. In other words one can choose v1,...,v, in g and build n left-invariant vector fields
Xi,..., X, where X;(g) = Lg«v; that are automatically everywhere linearly independent. The dual
basis 11, ..., m, satisfies Lyn; = n; for every i = 1,...,n. Hence Q2 =m A... An, satisfies Ly = Q
for every g. O

Proposition 8.14. The projective spaces P™ are orientable if and only if n is odd.

Proof. We prove that P" cannot be orientable if n even. We consider P" as the quotient of S™ with
the group {1,7} where 1(z) = x and i(z) = —z. If we denote by p : S™ — P" the covering. Assume
we have a volume form v for P” then n = p*v is a volume form for S™. Hence n = p*v = fw where
w is the volume form of the Example [8.10] and f is a never vanishing function.

Notice that p o i = p hence p* = *p*: applied to v this gives i*n = 1. But we have also
i*w = (—1)""w = —w if n even. So

n=in=1i"(fw)=—(foi)w

This shows that n changes sign, and being smooth it vanishes at some point. Contradiction.

To compete the proof one can either (a) prove by hand that the altlas is orientable if n odd (b)
prove that the form w we have defined on the sphere descends to a volume form on the projective
space for even dimensional spaces (cf. the more general Exercise . O

Exercise 8.15. Let M be manifold and G discrete subgroup acting properly and smoothly on M.
let p: M — M/G. If w is a differential form on M such that g -w = w for every g € G then there
exists on M /G a unique differential form n such that p*n = w. If w is a volume form then 7 is a
volume form as well.

8.2 Integration on manifolds

Given a function f: M — R smooth, assuming that f has compact support in a chart (U, ¢), one
might think to define its integral as follows through the chart
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where the second integral is computed in R™. This is actually not well-defined since if the support
is also contained in a second chart (U, ¢’) then we should have also

/Ufz L,(U)fO(w’)ldw

which is not possible: indeed by the change of variable formula in R"
/ g(z)dxr = / g(®(x))| det DP(z)|dx
(V) 1%
applied to g = fo (¢')7!, @ =¢' op~t and V = ¢(U), one get that
/ 1daz—/ fow tdet D(¢' o 1) (x)|dx
o' (U

and in general there is no reason for having | det D(¢’ o ¢~ 1)(z)| = 1 everywhere. Thinking from a
computational point of view, we have to integrate not functions, but the correct object in order to
absorb the determinant into the change of charts.

Integrating differential forms. The correct operation is integrating n-forms on open sets of
R™, as follows. Let U C R™ open and n = f(z)dzi A ... A dx, be a n-form with compact support

in U. Then we set
/n:/f(x)d:nl/\.../\dq:n:/f(x)dm
U U U

where dr denotes here the Lebesgue measure.
Let now M be a manifold of dimension n and assume (U, ¢) is a chart with w € Q"(M) with
compact support in U. It would be natural to set (recall that ¢ : U C M — ¢(U) C R")

/I]w:L(U)(w‘l)*w

with the right hand side a well-defined integral of the n-form 7 = (¢~!)*w with compact support
in ¢(U). is this definition well posed? Let w be a n-form with compact support in the intersection
UNU' of two charts (U, ¢) (U',¢’). On one side we are setting

/W—/ (!
U oU)
/w:/ (Splfl *
U ' (U)

We claim that we have equality between the two definitions if and only if the charts are equioriented.
Indeed let us write

while on the other one

(0w = fla)dz, (¢ w=g(y)dy
then writing F(z) =y (i.e., we are setting F := ¢’ o p~1) we have by Proposition m

f(z)dz = F*(g(y)dy) = (g o F) det(DF)dx
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by our previous considerations. On the other hand the change of variable formula says

| sy = [ (o Faplaet(DP)jas
with the absolute value! It works if and only if the charts are equioriented. We have proved

Proposition 8.16. Let M be smooth manifold oriented and w an n-dim form with compact support.
Let (U, ) (U',¢") two equioriented charts such that the support of w is contained in U NU'. Then

/ (so/‘l)*a)—/ (¢~ H*w
o (U") o(U)

In particular the integral is independent on the chart and we can set on an oriented manifold

/w ::/ (cp_l *
U o(U)

Proposition 8.17. Let M be smooth manifold oriented and w an n-dim form with compact support.
Let {(Ui, p;)} be an oriented atlas and {1;} partition of unity subordinated to it. Then the quantity

%/wz

is well defined and independent on atlas and partition of unity.

Proof. Since supp(w) is compact and the {1;} partition of unity then the sum is finite at every
point and every form v;w has compact support in his U;. If we take two partition of unity {;}

and {1} we can compare
S [ e 2 [ e

€N jeN

since both sums can write as

> [ vl

1,7EN

and each terms has support in U; N U ! hence independent by previous results. O

Definition 8.18. The integral of w € Q" (M) on M is then defined as follows

[

where {1;} is an arbitrary partition of unity.

Remark 8.19. It is easy to see that if M is oriented and if we denote by M the manifold M oriented
with the opposite orientation then for every volume form w we have

fio=-f

Moreover if M is oriented with the orientation induced by the volume form v, then

/V>0.
M
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Remark 8.20. Given a volume form v it makes sense to define

it

If v is the orientation of M sometimes we write by abuse of notation | v [+ In particular if M is
compact vol, (M) = [, v.

Another immediate consequence of our construction we have the following version of the change
of variable formula.

Proposition 8.21. Let F : M — F(M) C N be an orientation preserving diffeomorphism of M
onto its image F(M). Then
/ w :/ F*w
F(M) M

It is enough to consider differential forms with compact support in one chart and then one is
reduced to the case of differential forms in R™ where this is the change of variable formula for the
Lebesgue integral. Concretely this is what one does.

Proposition 8.22. Let M be a smooth oriented manifold. Suppose the support of w is contained
m U;U; with U; compact and let V; be compact domain in R™ with F; : V; — U; parametrizations
such that

o I;(Vi) =U; and F; preserves the orientation (in the interior of the compact sets)

e U; and U; intersect only on the boundary

/szzi:/viFiw

Exercise 8.23. Let us compute the integral over S? of

Then we have

w=xdy Ndz — ydx N dz + zdx N dy
This is the volume of the sphere and gives 4w. Let us consider the parametrization
F(¢,0) = (sinp cos §, sin ¢ sin 6, cos p)

defined on the (open) rectangle D = (0,7) x (0,27). We have that the chart F is positively
oriented with respect to w (or that F preserves the orientation if we orient D C R? with standard
orientation). It is enough to check at one point: for instance F'(7/2,0) = (1,0,0)

OJ(17070) = dy Adz
and p p
F@elran) = | Fr/2440)= G| (0costt), —sin(t) = (0.0,-1) =
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d d .
E@0lro) = gg| FOr/2,0) = 35| (cos(t),sin(t),0) = (0,1,0) i=vs

and
dy N\ dz (v1,v2) = 1.

We have also
F*w =sinpdp A df

and (removing a zero measure setﬂ)

T 27
/ w:/F*w:/ / sinp dfdp = 41
52 D 0 0

Notice that we can integrate n-forms on n-dim manifolds, but for every n!. Hence in an n-
dimensional manifold we can integrate k-forms on k-dimensional submanifolds. But we need to
speak about orientation of submanifolds.

Remark 8.24. If M is not orientable one can still integrate densities. These are not tensors but
they behave well (with absolute value) under change of charts. See [?].

The Hairy Ball theorem

We end with an important application of the integration theory, known as Hairy Ball theorem. The
proof we present here is due to J. Milnor.

Theorem 8.25 (Hairy Ball theorem). There exists no never vanishing smooth vector field on S™
when n is even.

Proof. Let us think to S™ as subset of R"*!. Then a vector field on S” is a map X : R*t! — R+!
such that = - X(x) = 0 where the dot denotes the scalar product in R"*!. Assume there exists
a never vanishing vector field. Then we can consider X (x)/|| X (z)| and assume without loss of
generality it has norm equal to 1 everywhere.

Let us consider the following family of maps for € > 0

fe:8™(1) = S™M(V1+e2), fe(z) =z +eX(x)
We first need an auxiliary lemma.

Lemma 8.26. For ¢ > 0 small enough the map f. is a global diffeomorphism.

Proof of the Lemma. Let us consider the n-form in R"*! (which we recall it restricts to a volume

form on every sphere)
n

w:Z(—l)iwid:co/\.../\d/a?i/\.../\dxn
i=0

Lone can prove using a change of charts that zero-measure set are well defined on a manifold and that S 4w for
every zero measure set A in M and w volume form.
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and let us consider ffw the pull-back on S™(1) of the restriction of w to S™(r) with r = V1 + 2.
Using the formula
flw= Z(—l)"(mz o fe)d(xzoo fo) A . ANd(xio fe) Ao . ANd(xy 0 fz)

1=0

it is not difficult to see that fXw is a polynomial with respect to ¢ of degree < n + 1 and being fy
equal to the identity map we can indeed write

ffw=w+en.

where 7). is a family of smooth n forms which is polynomial with respect to € fo degree < n. In
particular, since we speak about volume forms, there exists a family of functions g. such that
Ne = gew and

fflw=(14+¢eg:)w

Since spheres are compact, this implies that for € > 0 small enough ffw is a volume form on S™.
In particular f. is a local diffeomorphism for € > 0 small enough thanks to Exercise [8.11]

Let us show that for € > 0 small enough the map f. is also injective. If this is not the case
we would have a sequence ¢, — 0 and sequences of distincts points zx,yr € S™(1) such that
fer () = fe, (yr) which can be rewritten as

Th—Yk X(z) — X(y)

- k
[ [k — il

This is a contradiction since the left hand side has norm 1, while the norm of the right hand side
tends to zero thanks to the inequality

1X () = X (yi) || < Cllzg -yl

which hold&ﬂ since X is a smooth vector field and S™(1) is compact.

We have proved that for € > 0 small enough the map f. is an injective local diffeomorphism.
For such ¢ > 0 it is a local diffeomorphism, it is an open map and f-(S?(1)) is open. Since the
source space is compact, then f.(S%(1)) is closed. Hence the image f.(S?(1)) is open and closed
and, by connectedness, f. is surjective. A bijective local diffeomorphism is by construction a global
diffeomorphism. E| O

To end the proof, let us now compute in two different ways the integral

|
sn(r)

One one hand using the change of variables y = F(z) = rz we have that F*w = r"*!w and

/ w:/ w:/ F*wzr"“/ w = cpr" Tt
S (r) F(sm(1) S (1) sm(1)

2one can take C = sup{||DX (z)|,z € S™(1)}

3Recall that any proper continuous map f : X — Y between smooth manifold is closed. If X is compact,
every continuous map f : X — Y is proper. Indeed in Y, compact sets are closed (assuming Y is Hausdorff). f
is continuous, so the inverse image of a closed set is closed. But a closed subset of a compact (Hausdorff) space is
compact. So the inverse image of a compact set is compact.
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On the other hand using f. as a change of variables (recall that r = /1 + £2)

/ w:/ w:/ fiw = P(e)
S (r) fe(Sm(1) Sm(1)

where P is some polynomial in €. This implies for € > 0 small enough

n+1

cn(l+e) 2 =Ple)
which is a contradiction for n even. O

Remark 8.27. Notice that on odd dimensional spheres there always exists a non vanishing vector
field. Indeed consider for n > 1 the vector field in R2"

X = .’Egaml — xlﬁm + ...+ 1:2”8902”_1 — I‘Qn,la;mn

It is easy to see that this vector field is never vanishing and is tangent to (i.e., restricts to a well
defined vector field on) the sphere S?"~1 C R?",

The Haar measure on compact Lie groups

Corollary 8.28. If G is a compact Lie group there exists a unique left-invariant volume form
such that fG Q =1, called the Haar measure on G.

A Lie group G is called unimodular if all left-invariant volume forms {2 are also right-invariant.

Remark 8.29. Some consequences: S™ is not paralelizable (and T'S™ is not trivial) for n even, . In
particular there cannot exists a Lie group structure on S™ for n even. Indeed one can prove that
the only spheres which carry a Lie group structure are S* and S? (together with S° ~ Z).

Proof. 1t is enough to take any volume form v and then set Q = ¢~ 'v with ¢ = |, o V- Notice that c
is finite since G is compact. 0

We stress that on non compact Lie groups it is possible to speak about Haar measures (plural!)
for left invariant volume forms, but there is not the possibility of fixing a normalization in general
since the volume might be infinite.

8.3 Manifolds with boundary

A manifold with boundary is a space which is locally modeled by open sets of R” and open sets of
the half-space (open being understood in the subspace topology). We denote the half space in R™

H" = R? := {z € R" | z,, > 0}.

Notice that OH"™ = {x,, = 0}, understood as topological boundary.

A boundary chart for a topological space M is a pair (U, ¢) where U C M open and ¢ : U — V
homeomorphism on an open set V of H"™ with the subspace topology H™ C R™. In other terms
V = ANH" for some open set A in R"™.
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Repeating all the theory and replacing “charts” with “boundary charts” we have a definition
of smooth manifold with boundary. This is a topological space M which is second countable and
Hausdorff, locally homemorphic at every point to an open set of H".

The boundary OM of a manifold with boundary M is the set of points ¢ of M for which there
exists a chart (U, @) with ¢ € ¢~ (OH" N p(U)). This is well defined in the sense that if, for a given
q € M, there exists a chart (U, ¢) such that ¢ € ¢~ (OH" N ¢(U)), then q € (¢')"1(OH" N ¢'(U’))
for all other charts (U’, ¢') containing q. We invite the reader to check it.

Lemma 8.30. If M is a n-dimensional manifold with boundary then OM is a (n — 1)-dimensional
manifold without boundary.

The property just stated of the boundary says 9(0M) = (), hence we can say 9 o d = 0. As the

exterior derivative d, the operator 0 squares to zero. The Stokes theorem will add one more reason
to feel that d and O are related one to each other (in a suitable sense, they are dual operators).

Exercise 8.31. Let f : R — R be a smooth function. Assume that 0 is a regular value for f,
hence f~1(0) is a smooth (n — 1)-dim manifold. Prove that M = {x € R" | f(z) > 0} is a manifold
with boundary M = f~1(0).

For instance B"™ = {z € R" : ||z|| < 1} is a manifold with boundary of dimension n and
OB™ = S~ ! which is correctly a (n — 1)-dimensional manifold without boundary.

Induced orientation on the boundary

A first result is a result about orientation of hypersurfaces. Recall that given a n-form w on M and
a vector field X we can define a (n — 1)-form

in(Yl, e ,Ynfl) = w(X,Yl, e ,Yn)

Given a hypersurface S C M, we say that a vector field is transverse to S if X(q) + 1,5 = T,M
for every q € M

Proposition 8.32. Let M be an oriented smooth n-dim manifold and S be an hypersurface of M.
Let X be a transverse vector field to S.

(a) there exists a unique orientation on S induced by X and compatible with M, in the sense that
Yi,..., Y, 1 is positive on S if and only if X,Y1,...,Y,_1 is positive on M.

(b) this orientation is induced by the volume form ixw|s, where w is an orientation for M.

Example 8.33. S™ is an hypersurfaces of R"*! which can be oriented compatibly with the standard
orientation of R™*! induced by the transverse vector field

= 0
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This orientation is the one induced by ixw where w = dx1 A ... A dx,, hence

Ixw = ix(dx() VAN da:n)
= Z(—l)idxo A Nixdz A A day,

1=0

3 |

(=1)'zidzg A... Adzi A ... Adzy
0

7

which is exactly the volume form we used before on the sphere.

Not every smooth hypersurface admits an everywhere transverse vector field (this is indeed
equivalent to the existence of a nonzero section of a suitably defined normal bundle!). But we have
the following important result.

Proposition 8.34. Let M be a smooth oriented manifold with boundary. Then there exists a
smooth transverse vector field X to OM.

Proof. Let ¢ € OM. We say that v € T; M is inward pointing if v is the tangent vector to a curve
v :[0,e] — M that is contained in M, outward pointing otherwise (that is if —v is inward pointing).
In charts these vectors are exactly those with x,, > 0 (resp. x,, < 0).

Cover now a neighborhood of 9M by smooth boundary charts {(U;,¢;)}. In each chart fix
N; = —0/0xy,. Then set with a partition of unity

X =il

€N

This is a smooth vector field on OM. Let us check it is outward pointing. Fix a point ¢ and a chart
(Y1, --,Yn) at this point. Each N; defined at ¢ is outward pointing hence dy, (N;) < 0. Hence we
have

dyn(X)|q = Z¢Z(Q)dyn(Nz)|q <0
€N

because all terms are < 0 an at least one is < 0. O

Corollary 8.35. Let f : R™ — R be a smooth function. Assume that 0 is a regular value for
f, hence f~1(0) is a smooth (n — 1)-dim manifold. Then f~1(0) = OM is orientable, where
M ={x eR"| f(z) > 0}.

This could also more easily be done via some Riemannian metric defining a transverse vector
field.

Definition 8.36 (Stokes orientation of the boundary). Let M be oriented smooth manifold. Then
OM is orientable and the orientation induced by any tranverse vector field outward pointing is
well-defined. This is called the Stokes orientation of OM.

We have to consider these three main examples

e The case of a domain € in R? and its boundary.
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e The sphere S™ is the boundary of the ball B™. Its Stokes orientation is exactly the one already
considered.

e The boundary OH" of H". Notice that N = —0,,, is an outward pointing vector. Hence the
boundary is positively oriented by the chart (z1,...,z,-1) — (z1,...,2,-1,0) only if the
family of vectors

(=02, 02150, 1)

is positively oriented in R™, which gives (—1)", in the sense that, the induced orientation by
the standard chart coincides with the Stokes orientation only if n is even, and its opposite if
n is odd.

8.4 Stokes theorem

We can now prove the main theorem of the chapter.

Theorem 8.37. Let M be a smooth oriented n-dim manifold with boundary and let w be a compactly
supported smooth (n — 1)-dim form on M. Then

/ dw:/ w.
M oM

Here OM is understood with the induced orientation given by M. If M has no boundary then
the right hand side is zero.

Proof. We split the proof into three part (i) M = H" (ii) M is covered by a single chart (iii) the
general case.
(i) The fact that w has compact support means that

n
w:Zwidacl/\.../\d:Ei/\.../\dajn
i=1

with supp(w) contained in a rectangle A := [~ R, R]"~! x [0, R]. We have

n
dw:Zdwi/\dajl/\.../\dsni/\.../\dfcn
i=1

hence
n

dw = Z(—l)i‘lg‘;?dml A ANdz AL A dg,
i=1 v

We start the integration over H" and we do it in such a way that (a) we split the part of the sum
which goes normal to the boundary with the others

n—1
- Ow;
/ dw:/ > (—1)2‘18—de1/\...Admi/\...Adxn
n 7Li:1 A

Own,
—i—/n(—l)”_la(:d:cl/\.../\dqri/\.../\dxn
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and (b) we integrate first along the variable z; in the first addend of the sum, and wrt z, in the

last one
n—1 R /R R
- Ow; —
dw = (—1)2_1/ / ( ld:l?l> dry...dx;...dx,
R R
R Ow,
1)”—1/ / ( wdxn> day ... dzn_1 (8.2)
-R ~r\Jo Ozn
The first addend of the sum is zero since for every i =1,...,n — 1
g(:z dzr; = wi(R) —w;i(—R) = 0.
Slmllarly, the last one gives fo 8“’" da:n = —wp(x1,...,24-1,0) since at z,, = R it vanishes. Thus

reduces to

/ dw— — / / Wn xly-- y Tp—1, )d.%'l d.’En 1

(Notice that this term is zero in the case the support of w does not intersect the boundary). The
other side of the equality is

/ w—z xl,...,xn_l,O)dwl/\.../\d/a;i/\.../\dxn
OH" aHn
Since x,, is constantly equal to zero on 0H" all the terms containing dx,, vanish, and only the i = n

term survives
/ w:/ wp(x1, .o Tp—1,0)dzy Ao A dxp—
OH™ OH™

Considering the fact that the coordinates (z1,...,z,_1) are positively oriented on OH" if n is even
and negatively if n odd we have

R R
/ W= (_1)n/ / wn(a:l,...,afn_l,O)d:cl...da;n_l
OH" —-R —-R

which proves the statement if M is the half space.
(ii) If M is covered by a single chart (U, ¢) (which we assume to be an oriented chart). We have
M = p(U) and OM = ¢~ (OH" N p(U))

/ dw —/ dw—/@(U) d(e™H*w

now we use the result in H"” and we have (notice dp(U) = ¢(U) N 0H")

/dw:/ (cp_l)*w:/ w:/ w
M 2p(U) e~ (OH"Np(U)) oM
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(iii) Assume now that supp(w) is compact in M and cover it with finitely many oriented charts
{(Ui, )} and let 1; a subordinate smooth partition of unity, with Zfi 1 ¥i = 1. Then we have

N N
/aMw:; aMw:;/Md(wiw)

N
-X [ i no+ e

:/Md<§;¢i>/\w+/M (éw) dw:/de

Remark 8.38. The assumption of compact support for w can clearly be removed if M is compact.
If M is non compact the theorem does not hold for arbitrary non compactly supported forms, as
there can be evident integrability issues for both terms of the equality to be defined. Even if both
terms are defined, they can be different. For instance if M = [0,+occ[ and f = 1 is a O-form (a
function) then [, df =0 while [, f=—1.

There are some special cases. For instance in R? on a region D we have the following

O]

Corollary 8.39. (Green formula in R?) Let D be a reqular domain in R? and w = Pdx + Qdy.

Then
0Q OP

— — — | dxdy = Pdx + Qd
/D<a$ 33/) Y aD Qdy

As a particular case if D is a region enclosed by a curve v oriented in the counter clockwise sense

1
Area(D) = 5 / xdy — ydx
g

Remark 8.40. Notice that if D is a region enclosed by a curve v : [0, 1] — R? oriented in the counter
clockwise sense and we define in R? the vector field X (z,y) = (Q(z,y), —P(x,y)) we can rewrite
as a divergence Theorem (check the next chapter)

/ div(X)dxdy = /X-l/
D Y

There are similar result in R3. The reader is invited to write down explicit formulas and find
back calculus formulas.

Another example: the Curl Theorem. The line integral of a vector field over a loop v is equal
to the flux of its curl through the surface S whose boundary is 95 = ~.

/(VxF)dA: F-ds
S oS

where dA is the area element on S and ds is the lin element on v = 05. Recall that V x F' = curl(F)
is equal to

V x F' = det
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Remark 8.41. Exactly as one can define smooth manifolds with boundary by locally modeling
topological spaces (with suitable assumptions) on open sets of H", one can define “manifold with
corners” by locally modeling on open sets of

R = {(21,..., ) | 7 > 0},

There holds a version of Stokes theorem for manifold with corners. In particular this allows for
curves that are piecewise smooth.

Line integrals

We can integrate 1-forms w € Q(M) along smooth curves v : [a,b] — M. By definition of integral
we can use -y as a chart and we have
/ w = / v w.
v [a,0]

Recall that if in coordinates w = > 1" | widx; then v*'w = > 7" | w;i(y(t)) (dxi, 5(t)) hence we get the
following explicit formula for the integral

A o= / (3 (0) d. (8.3)

Clearly the integral is linear and independent on the parametrization. If v : [a,b] — M is piecewise
smooth we can extend the definition (8.3]) by adding the pieces

Proposition 8.42 (Fundamental theorem of calculus). Let f : M — R andy : [a,b] — M piecewise
smooth. Then

l/#th@ﬁ—ﬂ%@)
Y

Proof. Indeed we have

b b
[ar= [ i@y = [ (om0 = 60D - fota)
2l a a
which can be also seen as a consequence of the Stokes theorem. O

Notice in particular that the value of the integral f,y df is independent on the path joining
x =7(a) and y = ~y(b). In particular if the curve v is closed but non trivial, the integral is always
zero. We can be more precise.

Proposition 8.43. Let w € QY(M). The two following properties are equivalent
(a) fvw =0 for every closed curve v in M,
(b) w=df for some smooth f: M — R. (i.e., w is exact)
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Proof. Only (a) implies (b) is needed. Fix an arbitrary point ¢y € M, we want to prove that the
function f satisfying is
q
fla) = / w
d0

where the integral is computed along any curve joining go with ¢ (well-defined thanks to (a)).
Notice that if we replace go by any other point ¢; in M we get a different function f, which differs
by a constant, hence df = df. Hence it is sufficient to prove that in coordinates we have

of
o (@) = wi(a)

Notice that if w = df then in coordinates

n 9f
W = ZEl(.U Xz Wy = 7

Hence

80.21' an 62f _ aw]'

8([3]' N al'Jal‘z N 61’183}] N 8131

This means that w is closed. Hence exact implies closed. Closed differential 1-forms are not
necessarily exact.

Example 8.44. Let us consider the 1-form in R?

xdy — ydx
2+ y?

This is closed but not exact on R? \ {0} since the integral over the circle of radius 1 parametrized
as t — (cost,sint) is 27 (the length of the circle!). It is exact on every ball not containing zero
since w = df where 0 = arctan(y/x).

On closed and exact forms

Definition 8.45. We say that a differential k-form w € QF(M) is closed if dw = 0, we say that w
is ezact if w = dn for some 1 € QF~1(M).

Every exact form is closed since if w = dn then dw = d?n = 0. The converse is not true.

Corollary 8.46. Let M be a compact smooth manifold without boundary. Then the integral over
M of an exact form is zero.

Proof. If w = dn we have since M = ()

/w:/dn:/ n=20
M M OM

109



Hence we have a way to check whether a closed form is exact or not by restating the previous
results.

Corollary 8.47. Let M be a smooth manifold and w be a closed k-form. If there exists S compact
submanifold without boundary such that fsw % 0 then w is not exact.

Example 8.48. Let us consider the 1-form in R? \ {0}

xdy — ydx
w=— -
2 + y?

This 1-form is not exact on R? \ {0} since the integral over the circle of radius 1 parametrized as
t — (cost,sint) is 27 (it is the length of the circle!). The form w is closed since

|0 Y 0 x B
o= [0y (1’2+y2> +3w<x2+y2>}dm\dy—0

Corollary 8.49. Let M be a compact smooth manifold with boundary. Then the integral over OM

of a closed form is zero.
/ w= / dw=20 O
oM M

Example 8.50. The circle of radius 1 is not a boundary in R?\ {0}! Indeed if you want to see it
as a boundary in R?\ {0} you must consider it as a connected component of the boundary 9D of
an annulus type domain D.

Proof. If dw = 0 we have

Homotopy invariance

Definition 8.51. Two smooth paths o, : [0,1] — M are smoothly homotopic if there exists a
smooth map H : [0,1] x [0,1] — M such that H(0,t) = vo(t) and H(1,t) = v (t).

Thanks to Stokes theorem (version with corners!) we have

Theorem 8.52. Let w be a closed 1-form on a smooth manifold M, i.e., dw = 0. Let ~1,v2 be two
smooth homotopic path with the same endpoints. Then

Y0 71

Proof. Since w is closed we have
/ d(H*w) = H*dw =10
[0,1]2 [0,1]2
On the other hand by Stokes theorem (version with corners!)

/ d(H*w) = / H*w
[0,1]2 8[0,1]2
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and

4
H'w = w
Jroas =2

HOFi

where I'; for i = 1,...,4 are counter clockwise parametrization of the 4 edges of the square [0, 1]2.
Analyzing the terms two of them are zero since the image under H are constant curves, then we

have
4
i=1 HoT; Hol'1 Hol'g Yo Y1

Remark 8.53. One can adapt the proof to just a continuous homotopy between two curves that are
piecewise smooth.

O]

The difference between closed and exact forms is topological, hence global. In the same spirit
we have this important result, which we will only sketch for the moment.

Theorem 8.54 (Poincare Lemma for 1-forms). Let U C R™ be open starshaped, then any closed
1-form w s exact on U.

Proof. Fix xy € U and defines f(x) as the line integral of w along the line segment from z¢p € U
to x. Using the fact that w is closed (and differentiation under the integral sign) one shows that
df = w. O]

Indeed the same is true for k-forms.

Theorem 8.55 (Poincare Lemma for k-forms). Let U C R™ be open starshaped, then any closed
k-form w s exact on U.

This means that closed is equivalent to locally exact. We end this chapter by defining the de
Rham cohomology groups

Definition 8.56. Let M be a smooth manifold, let Z*(M) be the set of closed k-forms and B* (M)

the set of exact k-forms. We set
ZH(M)
BF(M)

where wy ~ wo in Z¥(M) if w; = wy + dn for some n € QF1(M).

H§R(M) =

Thanks to the Poincaré Lemma we can conclude that

HipR") =R,  Hip[R")=0, k=1

Exercise 8.57. Prove that if F': M — N is a smooth map then F™* maps closed forms into closed
forms and exact forms into exact forms. Hence induces a well-defined map F* : HXo(N) — HE(M).
Prove that two diffeomorphic manifold have isomorphic de Rham cohomology groups

More in general we have
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Proposition 8.58. If M is connected, then HC(I)R(M) ~ R. If M is a connected, orientable and
compact manifold. Then Hjp(M) ~ R.

Indeed the de Rham cohomology groups are not only preserved by diffeomorphisms but also
homotopies. The de Rham theorem states that these groups coincide with the singular cohomology
groups that one can define with algebraic topology approach. These results goes beyond the scope
of these lecture notes and we invite the interested reader to have a look at further results in this
directions.
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Chapter 9

Riemannian manifolds

The investigation of this more general kind would require no really different principles [...]
I restrict myself, therefore, to those manifolds in which the line element

is expressed as the square root of a quadratic differential.

Ueber die Hypothesen, welche der Geometrie zu Grunde liegen, 1867

Bernhard Riemann, 1826 — 1866

A (covariant) 2-tensor T': V x V' — R on a finite dimensional vector space V is said to be
non-degenerate if T(v,w) = 0 for all w € V implies v = 0. This is equivalent to ask one of the
following two equivalent conditions:

e the map L :V — V* given by L(v) = T'(v,-) is an isomorphism,
e for every basis ey, ..., e, of V the matrix (T'(e;, €;))i j=1,..n is invertible.

Endowing a vector space with a non-degenerate 2-tensor hence defines a natural isomorphism
V — V* induced by T. This is what happens for instance given an inner product on V', which
can be thought as a non degenerate symmetric (and positive) 2-tensor (-,-) : V. x V. — R. The
above isomorphism is just a finite dimensional version of the so-called Riesz representation theorem
x €V = ¢V — R such that ¢,(v) = (v, w).

Extending this idea to manifolds, every non-degenerate 2-tensor field 7" on M will induce a
natural isomorphism from 7'M to T*M producing a one to one correspondence between differential
one forms and vector fields.

9.1 Riemannian structure

A Riemannian metric on a smooth manifold M is a covariant 2-tensor field g (i.e., a section of the
tangent bundle of covariant 2 tensor on M) that is symmetric and positive definite. This means
that for every ¢ € M we have

g:TyM xTyM — R,

which is a symmetric and positive definite bilinear form, i.e., an inner product. Sometimes the
inner product is also denoted by (v |w), (or simply (v|w) when the notation is clear), the vertical
bar distinguishing the inner product of vectors from the duality product of a covector on a vector.

113



This permits to define norm of vectors and angle between vectors as in Euclidean spaces

. g(v,w)
lv][* = g(v,v),  cos(vw) = :
[[ol[{fwll

A Riemannian metric in coordinates on a chart (U, ) is written as
n
9=y gij(x)dz; ® da;, (9.1)
ij=1

where (g;j(x)) is a symmetric and positive definite matrix whose entries are smooth functions
gij € C*°(U). It is very common to use also the notation without the tensor product symbol

n
g= Z gij () dzidz;,
ij=1

which can be formally deduced from (9.I) by setting da;da; = Sym(dz; ® dx;) = 3(dw; @ daj +
dxj ® dx;). Notice that in terms of the standard basis induced by coordinates we have the identity

of functions
_. (92 9
gl_] - .g axl7 ax] N

Notice that R™ admits the standard Riemannian (Euclidean) metric g defined by
n
g=da?+.. . +da? :de?.
i=1

Proposition 9.1. Every smooth manifolds admits a Riemannian metric.

Proof. Take a covering of the manifold {U,, p} and a partition of unity {,} and set
g = Z Yaga
«

where g, = ¢, g is the pullback in U, of the Euclidean metric on R™. It is an easy check that all
conditions are satisfied. O

Given a Riemannian metric g on a smooth manifold M we say that (M, g) is a Riemannian
manifold.

Example 9.2. Let F : U C R¥ — R" be an immersion describing an immersed (locally) submani-
fold S = F(U) C R™. Then we can consider the metric induced by R™ on S that is the pullback
g = F*g. Indeed this means for v, w in T,R* their inner product is the Euclidean inner product on
the image

g(v,w) = g(Fv, Fuw)

To compute let us consider
n n n
F* (Z dg;?) = dF} =) dF, ®@dF,
i=1 i=1 i=1
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which is computed by writing

N\~ (OF OF; B OF; OF;\ ,
F*g = Z <aujdu]) ® <8u duk> = Z (Z au, (‘)uk) duj & duy

1,5,k=1 Jk=1

which gives g = F*g with metric

Z OF; OF; _ [ OF OF

8u] 8uk Ou;’ Ouy, [ g

Example 9.3 (Surfaces in R3). Notice that specifying the previous example to the case of a
parametrized regular surface F : U C R? — R? in dimension 3, and denoting (u,v) coordinates in

the R2 we have that
OoF OF OF OF
= e — :E = _— — =
g1 <6u’8u>3 J g22 <8v’8v>3 G

L [P OPN
g12 = g21 = ou’ v .

so that the metric g = F*g agrees with the so called first fundamental form of Gauss
g = Edu® + 2F dudv + G dv*.

The metric g, thought as a non degenerate bilinear form on 7;M, induces an isomoprhism
between tangent and cotangent spaces

I:TyM — T; M, v g(v,-).

In the standard basis induced by coordinates the matrix associated to I is computed as follows

()~ mo

and it is easy to see that a;; = g;; by applying both sides to ai

Remark 9.4. The isomorphisms
I:T,M — T M, IV TEM — Ty M,

which are represented respectively by G = (g;;) and G™! = (¢g%) in coordinates, are also called
musical isomorphism because using proper indices notation I(v) = v* lower indices and I~(n) = !
raises indices. Indeed, with Einstein summation notation

L | L gyt
v = vjdx’, Vj = gi;V

v=1"

8;ci ’

. 9 g
n=nda’, 7 Zﬁ’ax‘, ni = g97n;.
1
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Remark 9.5. On a Riemannian manifold (M, g) we can always define locally an orthonormal frame
X1,..., X, of vector fields such that

9(Xi, Xj) = 0ij.
Indeed it is enough to apply the Gram Schmidt algorithm to the smooth family of vectors given

by the frame. In particular given a non vanishing vector field X we can find a local orthonormal
frame X1,...,X, such that X = Xj.

Definition 9.6. Let f € C°°(M), the Riemannian gradient of f is the vector field Vf = I-!(df),
that is the vector field satisfying

g(Vf,v)=df(v), VveTM.

In coordinates it is simple to check that

" Of 0O
v i;l ? 0w 0y

Exercise 9.7. Let X1,..., X, belocal o.n frame for the metric and let 7y, ...,n, be the dual basis.

Prove that
n
9= m®n:
i=1

Prove that the differential of a function f and its Riemannian gradient are written as

df => (Xif)m,  VF=) (Xif)Xi.

i=1 i=1

Definition 9.8. An isometry between two Riemannian manifolds (M, g) and (M, ¢') is a smooth
diffeomorphism F' : M — M’ such that F*¢’ = g. This implies that for every ¢ € M and v, w € ToM

gq(v,w) = g%(q)(F*U, Fow).

Using local diffeomorphisms we can define local isometries. We stress that in this definition
isometries are smooth. Isometries preserves length of vectors and angles between them.

Definition 9.9. A conformal tranformation between two Riemannian manifolds (M, g) and (M’, ¢’)
is a smooth diffeomorphism F : M — M’ such that F*g' = e/ g for some f € C>(M).

Two metrics that are conformal defines the same angles but do not define the same length.
Exercise 9.10. Let 7 : S™ — R" be the stereographic projection from the north pole N € S".
Prove that if ggn is the standard metric on S™ and g the Euclidean metric on R™ then on S™\ {N}

we have ggn = f7*g for some positive f € C°(S™).
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Riemannian volume.

If M is orientable Riemannian manifold we can define a natural volume, called Riemannian vol-
ume on M that is the volume dV, defined by the normalization dVy(Xi,...,X,) = 1 on some
(equivalently, every) positive orthonormal basis.

Proposition 9.11. The Riemannian volume is written in coordinates
dV, = \/det gij dz1 A ... Adzy,.
Proof. Let us write the volume in a coordinate chart
dV = fdx1 A ... Ndxy,

and we look for the function f. Consider a local orthonormal frame Xi,...,X,, and write it in
coordinates as follows

Then we have by Lemma [7.2§]
0 0
1= dV(X1,..., Xn) = det(B)dV, [ ——,..., ) = det(B)f.

Since g(X;, X)) = 6;; we have that
n n n
0 0
dik = g Z bz‘jaixj, bkl% = Z bi;j g1k,
Jj=1 =1 J,l=1
that means the matrix identity BGBT = I. In particular det(B)? = det(G)~!, which completes

the proof. O

Riemannian divergence.

We start by defining the divergence of a vector field with respect to a volume form.

Definition 9.12. Let w € Q"(M) be a volume form. Then for a vector field X on M we denote
by div, X the function such that Lxw = (divy,X)w.

Notice that the divergence can be characterized as follows: given Q C M consider Q; = X (Q)

the image of the set under the flow. Then
/ e = / (div,X)w,
t=0/Q Q

=
t=0JQ dt

so taking an infinitesimal set around a point ¢, the divergence is saying if the flow of X is increasing
or decreasing the volume of the set.

d
VO]w(Qt) = —

dt dt

t=0
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Exercise 9.13. Prove that given f > 0 smooth positive function we have the identity
X
divp, X = div, X + ff
Notice that, if d,f = 0 at some point, then the divergence of X at ¢ is independent with respect to
the volume form.

On a Riemannian manifold we simply write div X for the divergence with respect to the Rie-
mannian volume dVj,.

Exercise 9.14. Prove that the Riemannian divergence of a vector field X = >"" | X; 6%1 is written
in coordinates as

_ . —
div(X) = Toro. kzl A (\/detgu Xk) ;

where we assume orientability such that det g;; > 0.

Exercise 9.15. Let X1,...,X,, be local o.n frame for the metric and let n,...,n, be the dual
basis. Prove that
dVy=mN... ANy

For a vector field Y compute first Ly (dV;) and then div(Y') in terms of a local orthonormal frame
assuming that

n
(X0, X5 = i X
k=1

We can reinterpret the Stokes Theorem for top dimensional forms as the following statement.

Theorem 9.16. Let (M, g) be an orientable Riemannian manifold with boundary OM, let dV, the
Riemannian volume and dS, the surface measure on OM with the Stokes orientation. Then for
every compactly supported vector field X we have
/ (div X)dV, = / g(X,N)dS,
M oM
where N is an outward unit normal vector field to OM.

Proof. Since X is compactly supported also div X is compactly supported and

/(divX)dVg:/ LxdV, :/ d(z’XdVg):/ ixdV,
M M M oM

where we used LxdVy = d(ixdVy) + ixd(dV,) but d(dVy) = 0 since dV}, is a top dimensional form.
The proof is completed by observing that ixdV, = g(X, N)dS,. To prove this last statement
we can write dVj as follows
dVy=nAviN...Avpq

where 1, v1,...,V,_1 is the dual basis of a basis of the tangent space N, X1,..., X,_1, where N is
orthogonal to S and X7,..., X,_1 is a basis for T'S. Due to n(Y) = g(N,Y) for every Y we have
the conclusion. ]

Remark 9.17. Under the same assumptions if f is a compactly supported function we can apply
the statement to fX and get

/ f(divX)dVng/ X fav, :/ Fg(X, N)dS,.
M M oM
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Laplace-Beltrami operator.

One can define the Laplace-Beltrami operator on a Riemannian manifold (M, g) as follows
Af =div(VYf),

where as usual the divergence is compute with respect to the Riemannian volume. From previous
formulae we have that in coordinates

1 & 0 of
Af = det g g = ).
f \/detgkg1 Oxy, ( 99 c'):vl)

Applying the divergence theorem to the vector field V f one gets the Green formula
0
[ sasavy+ [ wrpav,= [ p2las,
M M om " OV

denoting % = g(Vf, N). This shows for instance that:

Proposition 9.18. Let (M, g) be a compact oriented Riemannian manifold without boundary. Let
A denote its Laplace-Beltrami operator. Then

(a) every harmonic function (i.e., Af =0) on M is constant,
(b) if X\ # 0 is an eigenvalue for A (i.e., Af = \f), then A < 0.

In particular the spectrum of A is contained in the interval (—oo, 0].
9.2 The metric space structure
We can introduce the length of a piecewise smooth curve v : [0,T] — M as follows

T
LMZAIWMﬁ

The length is invariant by reparametrization. Indeed let « : [0, 7] — [0, 7"] be a smooth reparametriza-
tion. Then setting J(t) = y(a(t)) we have that |7/ (¢)] = ||/ (a(t))|||e/(t)] and

T’ T’ T
u%=£nﬂmw=%uﬂmmwww=ﬁnﬂﬂw=um

where we have set the change of variable 7 = «a(t). A curve that has finite length can always be
reparametrized by arc lenght parameter s : [0, L(y)] — [0, 7] defined by

0= [ Iaear

Remark 9.19. Differentiating with respect to t the previous formula we get the coordinate expression

ds - dx; dx;
i\ P s

3,j=1

which justifies the historical/classical notation for the metric

n
d82 = Z gz-jdxidacj.
3,7=1
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The Riemannian distance. We can introduce the Riemannian distance for x,y € M

d(x,y) = inf{L(y) | v:[0,T] = M,~(0) = z,7(T) = y}-

Theorem 9.20. Let (M, g) be a Riemannian manifold and d be the induced distance. Then (M,d)
is a metric space whose metric topology coincides with the manifold topology.

The proof needs a lemma comparing length with respect to g and length in coordinates.

Lemma 9.21. Let g be any Riemannian metric on R™. Then for every compact K C R™ there
exists a constant such that
cil|vllrn < lvlly < caflvllrn,

for every x € K and v € T,R™.

Proof. The set of tangent vectors w to R" of Euclidean norm = 1 and based in K is compact, and
the norm associated to g is smooth. Hence there exists constant such that ¢; < [|wl|y < ¢ for every
such (Euclidean) unitary w. Consider now an arbitrary v attached at a point of K. Applying the
inequality to w = v/||v||gn one gets that w is (Euclidean) unitary so that

< co

g

o
1

which implies the conclusion by multiplying every factor by ||v||gn. O
Now we can prove Theorem [9.20]

Proof. The fact that d is non negative follows from the definition.Also d is symmetric since for
every curve v : [0,T] — M joining x to y we can consider 7 : [0,T] — M defined by 7(t) = v(T —t)
joining y to . The fact that we have chosen as class of curves those that are piecewise smooth also
proves the triangular inequality. We have only to prove that x # y implies d(z,y) # 0, and that
the two topologies coincides. We split the two implications.

(a). Lemma says that for every smooth curve  sufficiently short to stay in a single chart
then we can compare its length with the Euclidean length in the chart and

c1Lrn () < Lg(7y) < caLgn (7).

Now let U be open in the manifold topology, fix xy € U and a open set V C U with compact
closure V = K such that the Euclidean ball B(zg,d) C V. If ¢ K then for every curve joining
ro with = we have

Ly(v) > c1Lrn(y) > c16.

Taking the infimum over all curves joining xo with « we have d(xg, ) > € for € = ¢;6. This implies
BI9(zg,e) C V C U. Notice that this part of the argument in particular says that = # y implies
d(z,y) # 0.

(b). The other implication is similar. Consider a point in a metric ball x € BY(xzg,¢) with
x ¢ BY(x0,e/2). Then d(xo,z) > £/2 and since this is an infimum, for every curve joining z
to = we have Ly(y) > /2. By the inequality Lgn(y) > €/2cy so that B(zg,d) C BY(zg,¢) for
0= 6/262. OJ
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Example 9.22. Let us consider the group of positive affine transformation of the real line
f(t)=at+b, a>0,beR
This is a group with the composition as a product, which rewrites as
(a,b) - (a',V) = (ad,ab +b)

Putting coordinates (z,y) = (b,a) we have coordinates on the upper half-plane H? endowed with
the Lie group structure

(z,9) - (' 9) = (x + ya', yy/)
Notice that the neutral element of the group is e = (0,1) and (x,y)"! = (—xy 'y~ !). The
left-invariant vector fields X, Y with coincide with d,, 0, at the identity are

X =yby, Y =y
and the left-invariant Riemannian metric

1
g= ?(dxz + dy?)

which is a model for the hyperbolic plane. Write in complex coordinates z = x + iy

dz? + dy? dzdz
= 2 =4 — 2
y (z—7%2)

Exercise 9.23. Prove that all maps of the form 7" : z — Zjis

are isometries. In particular all such transformations are obtained by composing the following:
translations, dilations of positive factor and inversion (with reflection) with respect to the unit
circle

g

with real coefficients and ad —bc =1

1
Ty :z+— 2+ 0, T, : z— a’z, Ty :z+— +—
z
we have
1

T Tyl :z2+— —————.
bla= = a’z+b
From now on we remove the ¢ in the notation of the length L = L, and balls B(z,r) = BY(z,r).

Definition 9.24. Let v : [0,7] — M such that v(0) = z and «(T) = y, we say that v is a
length-minimizer if d(z,y) = £(7).

Exercise 9.25. Prove that a piece of vertical segment is length-minimizer in the example. What
about a piece of horizontal segment?
9.3 Length-minimizers and geodesics

The existence of length-minimizers is not guaranteed in general. Counterexamples are very easy to
build, such as R? \ {0} with the Euclidean metric.

Theorem 9.26. Let (M, g) Riemannian manifold and assume (M,d) is a complete metric space.
Then for every x,y € M there exists a length-minimizer joining x and y.
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Remark 9.27. A characterization of metric completeness for Riemannian manifolds holds:

(a) (M,d) is complete as a metric space

(b) all closed balls B(x,r) are compact
We need the following version of Arzela-Ascoli theorem in metric spaces.

Proposition 9.28 (Arzela-Ascoli). In a compact metric space, any sequence of curves with uni-
formly bounded lengths contains a uniformly converging subsequence.

Another key property is the semicontinuity of the length-functional: if v, is a sequence of curves
with fixed endpoints which converges uniformly to + then

L(v) < liminf L(,).
n—o0
With these two ingredients we can prove Theorem [9.26

Proof of Theorem [9.26, Consider z,y € M and consider a minimizing sequence 7, of curves parame-
trized by constant speed on [0,1] such that L(vy,) — d(z,y) for n — oo. It is not restrictive to
assume that L(vy,) < d(z,y) + 1 =: R for every n. In particular all curves are contained in the
compact set B(z, R). Since every sequence of curves with uniformly bounded lengths contains a
uniformly converging subsequence, we can assume that v, — - uniformly. By semicontinuity of
the length

L(v) < liminf L(y,) = d(z, y),

n—o0

which implies that ~ is a length-minimizer. O

Necessary conditions

Let us discuss necessary conditions to be minimizer. Recall that every curve can be reparametrized
by constant speed.

Lemma 9.29. Let T > 0 be fized. A piecewise smooth curve v : [0,T] — M s a length-minimizer
and has constant speed if and only if v is a minimizer of the functional

1

T
Be) =3 [ IlPa

Proof. We can assume without loss of generality that + is smooth since the integral is additive. By
the Cauchy-Schwartz inequality we have the general inequality

U(y)? <2B()T. (9.2)

Notice that Cauchy-Schwartz inequality also says that we have equality in (9.2)) if and only if v has
constant speed. The conclusion then easily follows. O

We can now look to minimizers of the energy functional. Let us consider a short curve whose
support is contained in a single chart (U, ) and let z(t) = ¢(7y(t)). In coordinates

T n
OV =3 [ 3 aulal)in(o 0.

i.j=1
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Lemma 9.30. A solution x : [0,T] — R™ to the problem

T n
min % ; Z gij(x(t))x;(t)x;(¢)dt, z(0) =z, z(T) =y, (9.3)
ij=1

satisfies the system of equations

n
T + Z F?j:ﬁ@'i‘j =0, k=1,...,n. (9.4)
i,j=1
where Ffj are smooth functions defined by

kL ok (09im | Ogjm  Dgij
Fij N 2 Z g 81‘j + 69:Z 6.’Em

m=1

Remark 9.31. These equations makes sense only in local coordinates. For the moment no geometric
interpretation of the equation ((9.4]). We will solve this problem later.

Proof. We use the following fact from Calculus of Variation (see Appendix : solutions of ({9.3)
satisfy the Euler-Lagrange equations for the functional

1" : L .
2/ L(x(t), &(t)dt,  L(z, &)=Y gij(x)did;.
0 <
4,j=1
These equations are written as
d 0L oL
—— — — =0, =1,...,n.
dt 0iry, Oz " "
We have a%n = > Gim®; hence

where we used symmetry of the first term. Moreover
oL o i 1892']'

—_—= - Tids.
Oxy 4= 20x, 7
i,j=1

We have

. 1 (0gm  Ogim Ogij\ . .
N E _ =0
Z GimTi + 2 < oz + ox; Oz Tity ’

. Uk (O9im | Ogim  O0giz \ . .
xk+ Z 29 (8.%] + 837@ a&:m .’L‘Z:C]—

myi,j=1
O
Notice that (9.4) can be rewritten as a first-order system in T'M as follows
Ty = Vg,
) . , kE=1,...,n (9.5)
Oy = —17;(x)viv;
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Geodesics.

We call geodesics curves that satisfy the necessary condition, i.e., critical points of the length
functional. It follows from the previous considerations that:

Corollary 9.32. For every q € M and v € T,M there exists a unique geodesic g, : [0, T[— M
defined on some open interval such that v(0) = q and 5(0) = v.

Exercise 9.33. Assuming that both sides of the equality are defined, prove the following homo-
geneity property vq.,(ts) = vg.t0(5).

By standard continuity theorems for ODEs with respect to initial data, there exists an open
subset U in T'M such that for v € TM and g = 7(v) the corresponding solution of the ODE is
defined for T' > 1.

Definition 9.34. We define the exponential map exp : Y — M defined by

exp(q,v) = equ(v) = Yg,0(1)
where ~, is the unique geodesic such that v,,(0) = ¢ and 4,,(0) = v.
The exponential map defines good coordinates in a neighborhood of the base point.

Proposition 9.35. Let ¢ € M. The map exp, : TgM — M is a local diffeomorphism at v =0 and
doexp, : TyM — Ty M is the identity map.

Proof. Tt follows from the computation

exp,(tv) =
t=0

do equ(v) =

dt =0

O]

Coordinates induced by exp, are called normal coordinates. In these coordinates geodesics
starting from g becomes straight lines by construction. We then state two important theorems.

Theorem 9.36. Assume that (M,d) is a complete metric space. Then exp is defined on whole
TM, i.e., all geodesics can be defined on [0, +o0].

Proof. Let qo € M be arbitrary. It enough to show that any geodesic v, (t) starting from gy € M
with initial velocity vy € Ty, M with |lvg|| = 1 is defined for all ¢ € R. Recall that the pair
(x(t),v(t)), coordinates of (yy,(t), Yo, (t)), satisfy the geodesic equation in coordinates.

Let 7y, (t) be defined on [0, 7, and assume that it is not extendable to some interval [0, T + ¢[.
For any sequence t; /T the sequence (7,,(t;)); is a Cauchy sequence on M since

d(v(ti),v(t5)) < [ti — t].

The sequence (7, (%;))jen is then convergent to a point ¢; € M by completeness. Since (¥(t;));en
stays in a compact set, there exists a subsequence (which we denote by the same symbol) such that
(Yoo () 30 (t5)) = (g1,v1). This contradicts the fact that ((t),v(t)) is not extendable by standard
result of ODEs. O
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A crucial property of geodesics is that short arcs are global length-minimizers, even among
piecewise smooth curves.

Theorem 9.37. Let v : [0,7] — M be a geodesic. Then there exists € > 0 such that | o is the
unique length-minimizer among all piecewise-smooth curves joining v(0) and ().

This has the following crucial implication.

Corollary 9.38. Every piecewise smooth curve v : [0,T] — M that is a length-minimizer is of
class C*°.

Proof. Write a proof one day O
This is based on the Gauss Lemma

Lemma 9.39. Let ¢ € M and let v € TyM such that ¢ = exp,(v) is defined. Let w € TyM ~
Ty (TqM) then

g(dyexp,(v), dy exp,(w)) = g(v, w)
Remark 9.40. Notice that exp, : T;M — M is not a local isometry, i.e., not all geodesics in a
neighborhood of ¢ becomes straight lines, but only those passing through ¢!

9.4 Appendix: on the Euler-Lagrange equations

Assume we are interested in minimizing the quantity

T
I(x(t)):/o L(x(t), &(t))dt

Then if z(t) is a minimizer we have I(z(t)) < I(x(t) + €h(t)) for every ¢ > 0 and arbitrary h(t).
Assuming some smoothness we need to have
d

| It +eht) =0

e=0

We have

T .
I(x(t) + eh(t)) = /O L(x(t) + eh(t), i(t) + h())dt

T , oL L .
:/0 L(:p(t),:r(t))dt+6/0 %h(t)—l—%h(t)dt—ko(s)

With an integration by parts
ToL oL TroL doL
[ St + Gty = /0 <€9ac - dt@a‘c) h(t)dt

hence the first order term in ¢ is zero if for every function h(t) we have

T
oL d oL
— — —— | h(t)dt =
/0 <8x dt 83'3) ®) 0
which implies the integrand is zero

oL oL _
dr dtor
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Chapter 10

Connections, parallel transport and
curvature

Nous pensons que, aprées avoir surmonté les difficultés de initiation,

on se convaincra aisement que la généralité [...] contribue non seulement a l’élégance
mais aussi 4 l'agilité et a la perspicuité des demonstrations et des conclusionsm
Méthodes de calcul différentiel absolu et leurs applications, 1900

Gregorio Ricci-Curbastro 1853 — 1925

Tullio Levi Civita, 1873 — 1941

On a manifold, in general there is no canonical way to identify tangent spaces (or, more generally,
fibers of a vector bundle) at different points. Thus, one has to expect that a notion of derivative for
vector fields (or sections of a vector bundle), depends on a certain choice. The additional structure
required to correctly define these notions is the one of connection.

10.1 Affine connections and parallel transport
Recall that we had a way to differentiate vector fields along another one
LxY =[X,Y]

This corresponds to compute for v(t) = X (q) and Y (¢) = Y (y(t))

—tX N
,cXqu:}ir%e* Y(tt) v (0)
—

This seems a good object but it has a drawback:
e the map X — LxVY it is not a tensor, i.e., it is not C°°(M) linear since LxY # fLxY.

In this section M is just a smooth manifold, no metric g at the moment.

!Transl. We think that after having overcome the difficulties at the beginning, one will easily convince himself
that the generality [...] contributes not only to the elegance but also to the agility and the perspicaciousness of the
proofs and the conclusions
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Definition 10.1. A linear connection on TM is V : Vec(M) x Vec(M) — Vec(M) bilinear and
satisfying the following properties

(a) VfX(Y) = fVXY
(b) Vx(g9Y) = (Xg)Y +gVxY

Definition 10.2. Given a local frame Ei,..., E, (not necessary o.n.) we define the Christoffel
symbols of V associated to the frame as the set of functions Ff’j satisfying

n
Vi Ej = erjEk
k=1

As we will see the name is not occasional. The first observation is that VxY is local.

Lemma 10.3. The value VY|, depends only on the value of X at q and on the values of Y on
a neighborhood of q.

Proof. Let Eq, ..., E, local frame (not necessary o.n.) and write

n n
X=> fiE, Y=> gFE
i=1 =1

Here we treat f; and g; as functions defined on a neighborhood of a point q. Then by using the
rules

VxY =) fiVgY (10.1)
i=1
= Z fi(Eig;)E; + fi9;VE,E;
ij=1
= Z (Xgr + fig;T5;) Ex (10.2)
i k=1
O

Thanks to last formula ((10.2)) we can reinforce the previous locality statement

Corollary 10.4. The value of VxY|, actually depends only on the value of X at q and on the
values of Y on a curve that is tangent to X at q.

We can also deduce existence
Proposition 10.5. Every smooth manifold admits linear connection on T M

Proof. The proof combines partition of unity with the following observation: given any local frame
Ei, ..., E, and a set of n? functions Ffj the formula ((10.2)) defines a connection in the open set. [J

Example 10.6. In R" we have a canonical connection V defined as
- 0
VxY =) (XY°
X Z( )33%

i=1

the ordinary differentiation along X of the coefficients of Y (corresponds to the choice Ffj =0).
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Differentiation along curves and parallel transport

Hence given a linear connection V, a regular curve « : [0,7] — M (with 4 # 0) and a smooth
vector field Y defined only along 7, it is well defined the vector field V4;Y along .

Remark 10.7 (coordinate formula). Consider a local frame Ei, ..., E, and write

n

() =D 0By, Y1) =Dyt Ejlye
7=1

i=1
then from the previous formulae we get

n n

ViVl = > o) + DY vi®)y;(OT5 (1) | Erly-

k=1 ij=1
If there exists a smooth vector field X such that X[, = (t) then V4Y = VY on 7.

Definition 10.8. We say that a vector field Y along a smooth curve v : [0,7] — M is parallel
with respect to V if V5Y = 0 along 1.

Proposition 10.9. Given any linear connection V. Let v : [0,T] — M be a smooth curve and
vo € TyoyM. There exists a unique smooth vector field V' along « such that V‘y(o) =y and V
parallel along v with respect to V.

Proof. We have to solve the non autonomous linear system of differential equations
n
gr(t) + > THO Oty () =0, k=1,....n
ij=1

which can be written setting Ay ;(t) = > 1", Ffj (v(t)¥:(t) as
n
ge(t) + > Ar(y; (1) =0,  k=1,....n
j=1

Since the differential equation is linear then the solution is global, i.e., defined on [0, T]. O
The map which associates vy with V\,y(t) is called the parallel transport of vg along ~.

Proposition 10.10. Let v : [0,T7] — M be a smooth curve and let vy € TyoyM. Then the map
P&t :TyoyM — TyyyM defined by vo +— vy := V|, is a linear isomoprhism.

Proof. The fact that P& ; is linear comes from the fact that the flow of a linear (nonautonomous)
equation is linear. ]

Remark 10.11. Similarly we can define P;f . for all s,t and, we have the relations

P}, =1id, Pt'fr o Pgt = PJ

-1
K (Pg,t) = Pt’,ys'
The connection V and the parallel transport P& , are intimately related.
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Proposition 10.12. Let vy : [0,T] — M be a smooth curve v(0) = q and ¥(0) = Xo. For Y wvector

field along v we have
PJ) Y (y(t) -Y
Vi) 1 PV OE) Y@
t—0 t

Proof. Fix a basis vy, ..., v, of tangent vectors at ¢ = v(0), and set V;(t) :=
tion the vector fields V; are parallel along v hence V;V; = 0 Write Y (y(¢)) = >y
have

Py;(vi). By construc-
1 yi(t)Vi(t). We

PoY(v(1) =D wilt)i

We have

g PO Y@ Sl u0), o

t—0 t t—0 =

On the other hand
VY (q) = (Vxoui(t))Vili=o + 4 (0) (Vx, Vi) |t=0 = %:(0)v;

where we used that Vx,y;(t) = 9i(t) O

Covariant derivative

A connection V permits to differentiate tensors T of type (k,[) giving a tensor VT of type (k+1,1).
The formula for tensor of type (k,0) is as follows

VT(X1,...,Xn,Y)=Y(T(Xy,..., X ZT (X1,...,VyXi,..., Xn)

and the general case is similar. Given T" and a vector field X we define the covariant derivative
(VyT)(X1,..., X)) =VT(Xy,...,X,,Y)

Notice that on 0O-tensors (functions) we have Vxf = X f. For a covariant 1 tensor (differential
form) w we have

(Vxw)Y =Vw(Y, X) = Xw(Y) —w(VxY)

while for covariant 2 tensors we have
(VxT)(Y,Z2)=V71(Y,Z,X) = X7(Y,Z) = 7(VxY,Z) - 7(X,VxZ)

Notice that the compatibility with the metric is defined by Vg = 0.

10.2 The Levi-Civita connection

Definition 10.13. A linear connection V on a Riemannian manifold is said compatible with the
metric if

X (Y, 2) = g(VxY, Z) + gV, Vx 2). (10.3)

This is equivalent to ask that ¢ is parallel, i.e., Vg = 0.

130



Definition 10.14. The torsion of a connection is the (2, 1) tensor 7" : Vec(M ) x Vec(M) — Vec(M)
defined by
T(X,Y)=VxY -VyX — [X,Y]

Theorem 10.15. On a Riemannian manifold (M, g) there exists a unique linear connection that
18 compatible with the metric and with zero torsion.

Proof. The proof is based on the following key fact, which is proved by the following algorithm
which we invite the reader to check:

(i) writing three times identity for the ordered triples {X,Y, Z},{Y,Z, X} and {Z, X, Y},
(ii) compute (1) + (2) — (3),
(iii) use the T'= 0 identity VxY — Vy X = [X, Y],
One obtains the following key formula.

Lemma 10.16 (Koszul formula). For a connection V which is compatible with the metric g we
have the identity

2(VxY | Z2)=X (Y |2)+Y (Z|X)-Z(X|Y)
+({X,Y]|2) = ([Y, Z]| X) + ([Z, X] | Y) (10.4)
The Koszul formula says in particular that if V exists it is unique. The existence is guaranteed

by formula ((10.4)) once one proves that the right hand side correctly defines a connection, which is
left as an exercice. O

Definition 10.17. The connection uniquely defined by Theorem [10.15]is called Levi-Civita con-
nection of the Riemannian manifold (M, g).

Remark 10.18. Two particular cases: Koszul formula to a frame that is commuting [E;, E;] = 0
only the first line is non zero.

2VY |Z) = X (Y |2) +Y (Z| X) — Z(X|Y) (10.5)

On the other side, applying Koszul formula to a o.n. frame g(X;, X;) = §; ; then only the commu-
tator shows up.

2(VxY | 2Z) = (X, Y]| 2) = IV, 2] | X) + ([Z, X]|Y) (10.6)

Exercise 10.19. The Christoffel symbols of the Levi Civita connection associated with the frame
) isf
i = o satisty

n

1 09im . Ogjm  09ij
k _ — mk Jm. J
T 2 Z g ( 0z + ox; O0xm,

m=1

These are the symbols found in the previous chapter.

This permits to interpret as geodesics as those curves which the acceleration in the sense of the
Levi Civita connection is zero.
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Proposition 10.20. A smooth curve v : [0,T] — M parametrized by constant speed is a geodesic
if and only if V47 =0

Of course we can also take a local o.n. frame and use it to build a connection.

Lemma 10.21. Let X1,..., X, be a local o.n. frame such that [X;, X;] = cijk Prove that the

Christoffel symbols of the Levi Civita connection associated to this frame Vx,X; = F%Xk are
written as

k

1 . .
k
5 = 5(clj — e + o)

2

In particular we have the property Ffj = ffgk.
Proof. Use the Koszul formula for o.n. frames

2 (VY| Z) = ([X,Y]|2) — (IY, 2]| X) + {2, X] | V) (10.7)
onto the basis X = X;, Y = X; and Z = X. ]

Proposition 10.22. Let v : [0,T] — M be a smooth curve and vo € Ty M. The map P&t :
TyoyM — Ty M defined by vo — V|, with the Levi-Civita connection is a linear isometry.

Proof. Let us rewrite the differential equation in terms of an orthonormal frame
n
ge(t) + > Ak (My; () =0,  k=1,...,n
j=1

setting Ay ;(t) = >0, Ffj (v(t)))%i(t). Since the frame is orthonormal the corresponding symbols
satisfy Ffj = —TI', hence Ay, ;(t) = —A; (t) is skew-symmetric. The flow is defined by an orthogonal
matrix, hence P& , is an isometry. O

Remark 10.23. It follows the geometric interpretation of the parallel transport on a 2D surface: a
field v(t) along a geodesic is parallel if and only if ||v(¢)|| is constant and the angle between v(t)
and 4(t) is constant. If  is not a geodesic we can use approximations.

Exercise 10.24. Compute the Christoffel symbols of the Levi Civita connection associated to the
left invariant frame on the hyperbolic plane. Prove that its geodesics are either vertical lines or
semicircles (centered on y = 0).

Remark 10.25. The Levi-Civita connection of the ordinary R" is the canonical connection V and
acts as

0
8:@-

n
VY = ZXYi
=1

the ordinary differentiation along X of the coefficients of Y (corresponds to I‘fj =0)
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Proposition 10.26. Let (M,g) be an embedded submanifold of Euclidean RN with the induced
metric. Then the Levi-Civita connection V for M is written as

VxY =715(VxY)
where for every x € M we have considered the orthogonal projection
at RN ~ T, RN — T, M
and V is the canonical connection in R™.

Proof. First observe that the formula correctly defines a connection on M (check is left to the
reader) o
VxY =71t(VxY)

To prove that V is torsion free, for every X, Y tangent to M we have
VxY —VyX =1+ (VxY - VyX) = 7-[X,Y] = [X,Y]

since [X,Y] is also tangent to M. The fact that V is metric: for every X,Y,Z tangent to M,
extend them to RY and compute

Xg(Y,Z2) = Xg(Y, Z) =9(VxY, Z) +3(Y,VxZ) (10.8)
but we have for X,Y, Z tangent to M, extend them to RY and compute
g(VxY,Z) = g(ntVxY, 2) (10.9)
=g(ntVxY, Z) (10.10)
=g(mtVxY,Z) +g((1 — mH)VxY, Z) (10.11)
=9(VxY,Z) (10.12)

Corollary 10.27. Let (M,g) a Riemannian manifold which is an hypersurface in RN with the
induced metric. Then a smooth curve v : [0,T] — M parametrized by constant speed is a geodesic
on M if and only if §(t) L Ty M.

Indeed on hypersurfaces of RY the equation V4% = 0 means mt (vﬁfy) = 0, but since Vsy =4
this means 4 L T, ;)M when we see ¥ as a vector of RN,

Exercise 10.28. Let f : M — R be a smooth function. Observe that the covariant derivative V f
of f with respect to the Levi-Civita connection is the Riemannian gradient. Indeed

(VX)) =Vxf=X].
The Riemannian Hessian of a function f is defined as V2f = V(V f). We have

VY, X) = Vx(VHY)) = Vx (Y ) = X(Y f) = (VxY)f
Notice that the Hessian is symmetric if and only if the torsion is zero

VIAXY) = V(Y. X) = Y(X[) = (Vv X)f = X(Y )+ (VxY) [ =T(X,Y)f
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10.3 The Riemann curvature tensor
We first start by observing that the parallel transport (associated with the Levi-Civita connection)
along a closed curve is in general non zero. One can consider for instance a geodesic triangle on

the sphere S2.
We introduce the curvature (3,1) tensor R(X,Y) also called Riemann tensor

R(X,Y)Z =VxVyZ —-VyVxZ — Vix,y)Z- (10.13)

Let us first check that R is indeed a tensor, i.e., the value of R(X,Y)Z at a point depends only on
the value of X,Y, Z at the point itself.

Proposition 10.29. R is skew-symmetric wrt X,Y and C°°(M)-linear in every variable.

Proof. The skew-symmetry is immediate from the formula. Next we prove that R is C°° (M )-linear.
By skew-symmetry, it is sufficient to prove that R is linear in the first argument, namely that

R(fX,Y)Z = fR(X,Y)Z, where f € C°(M). (10.14)
Applying the definition of V and the Leibniz rule for the Lie bracket one gets

R(fX,)Y)=VixVyZ —VyVixZ —Vxy1Z
= [VxVyZ = Vy(fVx)Z = Vxy)-(vHx
= fVxVyZ — (Yf)VXZ — fVyVxZ — fV[X’y}Z + (Yf)VXZ

which proves R(fX,Y) = fR(X,Y). O
Remark 10.30. Another observation proving that R is the (3,1) tensor is that

R(X,Y)Z = (V2Z)(Y,X) — (V?Z)(X,Y). (10.15)
where V7 is the (1,1) tensor (VZ)(X) = VxZ and V2Z = V(VZ).
Proposition 10.31. Let X1,..., X, local o.n. frame. We define the coefficients

R

()

ik — <R(X27 Xj)Xk7 Xl>

we have that
Rij, = Xi(Ti) — X;(Th) + Tialf, — Dol — o,

In particular if Ffj =0 for alli,j,k, then R=0.

Exercise 10.32. Prove a similar formula to the previous one but for the curvature coefficients
(R(0,05)0k, 0;) in terms of the Christoffel symbols of the coordinate frame.
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Flat manifolds

Theorem 10.33. The following conditions are equivalent:
(a) R(X,Y)Z =0 for every X,Y, Z
(b) there exists a local orthonormal frame such that Vx,X; =0
(¢c) there exists a local orthonormal frame such that [X;, X;] = 0.

Proof. The only non trivial fact is (a) implies (b). Indeed (b) implies (c) since the torsion free
condition gives

[(Xi, X;] = Vx, X; - Vx,X; =0
and (c) implies (a) since [X;, X;] = 0 implies cfj = 0 hence Ffj = 0 for all 7, j, k.

To prove (a) implies (b) we do in the case n = 2 (the general case is similar). Do as follows: it
is enough to prove that we can build a frame such that V5, X; = 0 in a neighborhood. Fix X7, X5
as 01,0, at ¢ and build the parallel transport on the segment (x1,0) by parallel transport along
the x1 axis and then at every (z1,z2) by parallel transport along the second.

We have clearly ValXj|(;c1,o) = 0 and V32Xj|($1,$2) = 0 for j = 1,2. The second means
Vi, X; = 0 locally. We do not know if Vg, X, 4, is zero if x5 # 0.

But since 0, 02 is coordinate frame and Vg, Vg, = V5,Vy,. Then

Vo,V Xl (w1,00) = Vo, Vo, Xl (21,20) = V&, 0 =0

Hence Vi, Xj|(z, o) 18 the parallel transport along 2 axis of Vg, Xj|, o), which is zero. O

With this charachterization we have immediately

Corollary 10.34. (M, g) admits a local orthonormal frame such that [X;, X;] = 0, if and only if
1t 1s locally isometric to Fuclidean R™.

It is enough to prove that if there exists a local orthonormal frame such that [X;, X;] = 0 then
we can build the local isometry.
If [X;, X;] = 0 then consider the map

P R" — M, Y(t1, ... ty) =110 oelnXn(gy),

which satisfies since [X;, X;] = 0 (cf. Chapter ?)
0
Y o, i

hence 1 is a local isometry.
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Some curvature identities

The following identity, first discovered by G. Ricci-Curbastro, is known as the first Bianchi identity.

Proposition 10.35 (first Bianchi identity). For every X,Y,Z € Vec(M) the following identity

holds
R(X,)Y)Z+R(Y,Z)X + R(Z,X)Y =0. (10.16)

Proof. We will show that (10.16)) is a consequence of the Jacobi identity for vector fields (5.12)).
Using the fact that V is a torsion-free connection we can write

(X, [Y, Z]] = Vx[Y, Z] = V|y, 71X
=VxVyZ —=VxVzY =V 71X,
Z,[X, Y]] =VzVxY = VzVyX - VxyZ,
Y, [Z,X]] =VyVzX = VyVxZ - V|7 x)Y,
Then, adding these identities and using , one gets
0=[X,[Y,Z]] +[Y,[Z, X]] + [Z,[X, Y]]
=VxVyZ = VxVzY =V 71X
+VzVxY = VzVy X = Vixy)Z
+VyVzX = VyVxZ —Vz 1Y
=R(X,Y)Z+R(Y,Z2)X + R(Z,X)Y.

Exercise 10.36 (second Bianchi identity). Prove that for every X,Y, Z, W & Vec(M) one has
(VxR)(Y,Z,W) + (VyR)(Z, X, W) + (VzR)(X,Y,W) = 0.
(Hint: Expand the identity Vix,v.z)+ vz X))+ 1z x,y)\W = 0.)

Remark 10.37. The relations for the Christoffel symbols implies the following skew-symmetry prop-
erty: for X,Y,Z, W € Vec(M)

where (- | -) denotes the Riemannian inner product.
Let us introduce the notation
R(X,Y,Z, W) = (R(X,Y)Z|W).

Then, the first Bianchi identity (10.16]) can be rewritten as follows: for X,Y, Z, W € Vec(M) one

has
RX,)Y,Z W)+ R(Z X, Y, W)+ R(Y,Z, X, W) =0. (10.17)

Moreover, the skew-symmetry properties of the curvature tensor discussed in Proposition [10.29]and
Remark can be rewritten as follows

R(X,Y,Z,W)=—R(Y,X,Z,W), R(X,Y,Z,W)=—R(X,Y,W,2Z). (10.18)
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Proposition 10.38. For every X,Y,Z,W € Vec(M) we have R(X,Y,Z,W) = R(Z,W,X,Y).

Proof. Using (|10.17) four times we can write the identities

R(X,Y,Z,W)+ R(Z,X,Y,W) + R(Y, Z, X,W) = 0,
R(Y,Z,W,X) + R(OW,Y, Z, X) + R(Z,W,Y, X) = 0,
R(Z,W,X,Y)+ R(X,Z,W,Y) + R(W, X, Z,Y) =0,
R(W, XY, Z) + R(Y,W, X, Z) + R(X,Y, W, Z) =
Summing these identities and using (10.18)), one gets R(X,Z, W,Y) = R(W,Y, X, Z). O

Proposition 10.39. Assume that R(X,Y, X, W) =0 for every X,Y,W € Vec(M). Then
RX,Y,Z,W)=0 VYX,Y,Z,W € Vec(M).

Proof. By assumptions and the skew-symmetry properties (10.18|) of the Riemann tensor we have
that R(X,Y,Z, W) = 0 whenever any two of the vector fields coincide. In particular

0=R(X,)Y+W,Z,Y+W) =R(X,Y,Z W)+ R(X,W, Z,Y). (10.19)

Notice that the two extra terms that should appear developing the left hand side vanish, by as-
sumptions. Then (10.19)) can be rewritten as

R(X,Y,Z,W)=R(Z,X,Y,W).

This means that the quantity R(X,Y, Z, W) is invariant by cyclic permutations of X,Y, Z. But the
cyclic sum of these terms is zero thanks to (10.17)), hence R(X,Y, Z, W) = 0. O

From the properties of the Riemann curvature one obtains the following.
Corollary 10.40. There is a well defined map
R:N*T,M — N*T,M, R(XAY):=R(X,Y).

Moreover R is self-adjoint with respect to the scalar product on /\2TqM induced by the Riemannian
scalar product, namely

(RIXANY)|ZAW) =(XANY |R(ZAW)).

More curvatures and comparison
We define the sectional curvature

R(X,Y,Y,X)
X2V = (X |Y)

Sec(X,Y) =

which indeed depends only on the plane IT = span{ X, Y'}.

Remark 10.41. Indeed one can prove that Sec completely determines the Riemann tensor R.
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We define the Ricci curvature which is a quadratic form computing an average of sectional
curvatures containing a fixed vector

Ric(V) = i Sec(V, X;)
i=1

where X1,..., X, is an orthonormal basis.
This opens the big theory of comparison geometry, for instance let us state one single result.

Theorem 10.42 (Bonnet-Myers theorem, 1941). Let (M, g) be a complete Riemannian manifold
of dimension n whose Ricci curvature satisfies Ric(V) > (n — 1)K||V||? for some K > 0. Then M
s compact and

diam(M) < 7/Vk.

Bonnet proved the version with inequality on all sectional curvatures. Myers weaken the result
at Ricci curvatures.

In the previous theorem the equality case is attained for instance in the case of the sphere S™(r)
of radius r = 1/K. A striking result is the following rigidity result.

Theorem 10.43 (Cheng, 1975). Let (M,g) be a complete Riemannian manifold of dimension n
whose Ricci curvature satisfies Ric(V) > (n — 1)K||V||? for some K > 0. If diam(M) = 7/Vk,
then M s isometric to the sphere S™(r) of radius r = 1/K.

138



Appendix A

Problems and Exercises

The following exercises are taken from exams Academic Years from 2020/21 to 2023/24. Some
solutions are available on the MOODLE page of the course.

Try to do the exercise before looking at the solution

Exercise A.1. Consider the two subsets of R? defined by
H={(z,y,2) eR® | 2?+1* - 22 =1}, E={(z,y,2) e R®|2® +1>+322 =3}
0. Prove that E and H are C* submanifolds of R?
1. Is EN H a smooth submanifold of R3? Is E N H compact? Is E N H connected?

Let now g : R® — R defined by g(z,y,2) = 22 + v + 322 — 3 and let (a,b,c) € R? such that
g(a,b,c) > 0. (Notice that £ = g—1(0)).

2. Let C the subset of points p = (x,y,2) of E such that the affine tangent hyperplane T,E
passes through (a, b, c). Prove that C is a smooth submanifold of R3.

Exercise A.2. Let w be the differential 1-form in R3
w=dz+ a(z,y)dr — b(z,y)dy

where a,b : R?> — R be smooth functions depending only on z,y. Consider the vector distribution
D =kerw (i.e., D, = kerw, for every ¢ = (x,y, 2))

1. Find two everywhere linearly independent smooth vector fields such that D = span{X,Y}.

2. Compute [X, Y] and give a necessary and sufficient condition (C1) on the functions a, b such
that D is integrable.

3. Compute the 2-form dw and give a necessary and sufficient condition (C2) on the functions
a,b such that w A dw is a volume form in R3. What is the relation between (C1) and (C2)?
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Exercise A.3. Let g denote the Euclidean metric in R3. Let F : RT x]0, 7[x]0, 27[— R3
F(p,0,¢) = (psinf cos ¢, psin O sin ¢, p cos 0)

be the map defining spherical coordinates in R3.

1. Compute the tensor F'*g, then deduce that the standard Riemannian metric gg2 on the sphere
S? (which is the restriction of g to S?) is written in the coordinates (6, ¢)

gg2 = df? + sin® fd >
2. compute the length of meridians (curves of the form ¢ = () and parallels (curves of the form
0 = 0y) with respect to the Riemannian metric gg2.

3. compute the Riemannian volume form vol, on S? in the coordinates (6, ¢) and deduce the
volume A of the sphere with respect to vol,

A= / dvol,
S2

Exercise A.4. The sphere S? C R3 described as
S? = {x = (z1,29,23) € R | 23 + 25 + 22 =1}

can be endowed by the atlas A = {(Un,¢n), (Us,ps)} where Up = S? \ {P} for P € {N, S}
the north and south pole N = (0,0,1),S = (0,0,—1), and pp : Up — R? the corresponding
stereographic projection from P on the plane {z3 = 0}.

1. Find the explicit expression for ¢y and ¢g and check the smooth compatibility between
charts. Is it a maximal atlas?

2. Consider the map F': C — C, F(z) = 2> 4 1 thought as a smooth map R? — R2. Consider
the function F : §% — S? defined by

F(.’E) — ¢]:710FOSON(x)7 ‘/E?éN
N, r=N

Is the function F smooth with respect to the C* structure ?

Hint: it may be useful to write oy o <p§1 in complex coordinates.

Exercise A.5. Let w be a differential k-form in U = R™ \ {0}. For ¢t > 0, let H; : U — U be the
map Hi(x) = tx. For p € N, we say that w is p-homogeneous if Hfw = tPw.

1. Express the p-homogeneity of w in terms of its coefficients in coordinates

w= Z Wiy iy, dzgy N oo AN dxg,

1< <. <ig<n
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2. Let X be the vector field X =" :cia%i. Prove that if w is p-homogeneous then L xw = pw.

Exercise A.6. Consider the (2,0) tensor in R? defined by 7 = dz ® dz + dy ® dy — dz ® dz.
0. Define what is a Riemannian metric. Is 7 a Riemannian metric on R3?

1. Let i : H < R3 be the canonical inclusion of the surface
H={(z,y,2) eR3 | 2® + 9> — 22 = -1, 2 > 0} C R,
Prove that i*r defines a Riemannian metric g on H

2. Compute the Riemannian length (with respect to g) of the piece of curve defined by HN{z =
0} and joining the two points P = (0, —1,+/2) and Q = (0,1,v/2).

Exercise A.7. Denote S? the unit sphere of R® and P2(R) the real projective plane. Let F be the
map
F:R3 - R3, F(z,y,2) = (2z2,2yz,1 — 22°)

1. Show that F restricts to a map f from S? to S2. Is f of class C>?

2. Compute the linear map f, : 7,5% — Tf(p)S2 for p = (1,0,0) € S? (you might fix a basis of
your choice in the tangent spaces).

3. Is f a local diffeomorphism? If not, find all critical points and critical values of f.

4. Denote the canonical projection 7w : S? — P?(R). Show that there exists a unique map
h: P2(R) — S? of class C* such that f =hon

Exercise A.8. Let X, Y be two vector fields on a smooth manifold M. Consider the following two
operators acting on differential forms on M

e Lx the Lie derivative of a differential form with respect to a vector field X,
e iy the inner product of a differential form with respect to a vector field Y.
Prove the following identity on differential forms
Lx oiy —iy o Lx =i[xy] (A1)

Hint: start by proving the required identity for a 1-differential form w

Exercise A.9. Let (M, g) be a Riemannian manifold.

1. Recall the deﬁnitign of Levi-Civita connection V defined on M, and then the explicit formula
for VxY, where V is the Levi-Civita connection in the Euclidean space (R",7).
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2. In the Euclidean space R?, compute Vx X where X = 29, — y0,.

3. Prove that VyY = 0, where Y = X|g: and V is the Levi Civita connection on S* considered
with the induced Riemannian metric of R2,

Exercise A.10. Let [, the identity matrix of size n and

(0 I,
1=( %)
The set Sp(2n) of symplectic matrices is the subset of square matrices of size 2n

Sp(2n) := {M € Mo, (R) : MTJM = J} C My, (R).

1. For n = 1, describe explicitly Sp(2) and show it is a submanifold of Ma(R) ~ R%. Of which
dimension?

2. Prove that Sp(2n) is a submanifold of M, (R) and compute its dimension.
3. Compute T7Sp(2n), the tangent space to Sp(2n) at identity.

Hint: consider the map F : Mo, (R) — X, F(M) = MTJM, for a suitable space X such that. ..

Exercise A.11. For which values of a € R the following 2-form  in R3\ {0} is closed?

Q= (2% 4y + 2°)(xdy A dz + ydz A dz + zdx A dy)

Exercise A.12. Consider on R? the operation

(x1,22) - (Y1,92) = (@1 + Y1, Y2 + z26")
1. Prove that (R2,) is a Lie group and find the identity e of the group (i.e., the neutral element)
2. Find the two left-invariant vector fields X, Xy satisfying X;(e) = 0y, for : = 1,2
3. Compute X3 := [X1, X3]. Is X3 left-invariant?
4. Compute the Riemannian metric g for which X;, X» is a global orthormal frame

5. Compute the Riemannian volume associated with g of the unit square @ = [0,1] x [0, 1]

Exercise A.13. Consider the map F : C?> — C x R given by F(u,v) = (2u®, |u|? — |v|?). Consider
53 as a subset of C? ~ R* and similarly S? as a subset of C x R ~ R3.

1. Prove that 7 := F|gs is a well defined map from S3 to S2.

2. Prove that 7 is C* with respect to the smooth structures of S and S2.
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3. Prove that 771(z) is a submanifold of S® for every x € S2. Of which dimension?

Exercise A.14. Consider the sphere S? embedded in R3. Let X be the vector field

X—xg—k g—kzg
- oz yay 0z

1. Show that the restriction of the 2-form ix(dz A dy A dz) to the sphere is a volume form on
S2. We denote this form a.

2. Show that on the complement of the equator {z = 0} N S%, we have

dx N\ dy
o =
z

3. Let oy be the stereographic projection from the north pole N = (0,0,1) from S?\ {N} to
the plane {z = 0}. Write out ¢, and calculate w := (5" )*a.

4. Compute fRQw

Exercise A.15. Let (M, g) be an orientable two dimensional Riemannian manifold. Let X, Xo
be an orthonormal basis for a metric g on M. Assume that for oy, ay € C°(M) we have on M

(X1, Xo] = an X1 + asXo, (A.2)

1. Recall the definition of Riemannian volume. Prove that the Riemannian volume form can be
written as voly = v1 A 1o where 11,15 are dual basis of X7, X».

2. Recall the definition of divergence of a vector field with respect to the Riemannian volume.
Compute the divergence div(X) and div(Y’) with respect to voly in terms of o, .

Exercise A.16. Let f : R” — R be a C* function and let M be its graph
M ={(z, f(z)) e R"™ =R" xR | € R"} ¢ R""!
1. Show that M is a smooth orientable manifold specifying an atlas and the dimension.
2. Is M an immersed/embedded submanifold of R"+1?

3. Let i : M — R™"! be the canonical inclusion. Compute g := i*g the induced Riemannian
metric on M, where g is the Euclidean metric in R"*1,

4. Compute 2p; the Riemannian volume form of M
5. Compute [;; Qp for the special case n = 2, f(z) = [|z|* and U = {(z, f(z)) € M | ||z[|* < 1}.

Hint: one might use the formula det(I + voT) = 1+ ||[v||?, for v € R™ seen as a column vector,
where we denote I the identity matriz and v7 the transpose of v.
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Exercise A.17. Consider the 2-sphere S? C R? endowed by the standard atla&ﬂA ={(Un,¢n),(Us, ¢s)}.

1. for P € S? describe TpS? as a subset of TpR3 and compute the linear map (px )« : TpS? — R?

2. Compute explicitly X; = (¢p5')+Y; defined on Uy = S2\ {N}, where Y; = 0, for i = 1,2 is
the constant vector field on R?, with coordinates (u1, us).
Hint: Solve the linear equation (o)« X; = Y; with unknown X; tangent to S2.

3. Prove that X; can be continuously extended to a C* vector field X; on S?

4. Compute the Lie bracket [X1, Xo].

Exercise A.18. Consider the set AL(R?) of affine lines in R2. Given a line £ of equation az+by = c
we define the sets Uy = {¢ € AL(R?) | a # 0}, Uy = {¢ € AL(R?) | b # 0} and the charts
i U — R? defined for i = 1,2 by

p1(l) = (b) - w0=(55)

The atlas {(U;, ;) }iz1.2 gives the structure of smooth manifold to AL(R?).

1. Let o be the origin of R2, for every affine line £ € AL(R?) define f(¢) := dist?(o,¢), where
dist denotes the Euclidean distance in R? from a point to a line. Prove that the function f is
C* with respect to the smooth structure of AL(R?) .

2. Find all critical points of f given at point 2. Discuss their nature.

Exercise A.19. Consider F : R™\ {0} — R™ given by F(x) = z/||z].
1. For xg # 0 and v € R"™ compute DF(xg)v. Determine the rank of F' and ker DF(x).
Let now g : R™ — R of class C* and M = {z € R" | g(z) = 0}. Assume that

(a) (Vg(z),x) # 0 for every x € M, where (-,-) is the Euclidean inner product.

(b) for all y € R™\ {0} there exists unique r > 0 such that ry € M.

2. Prove that M is a C*° embedded submanifold of R” \ {0}. Of which dimension?

3. Prove that the restriction of F' to M, regarded as a map G := F|y : M — S"! is an
injective immersion. Is G a local diffeomorphism?

Exercise A.20. Consider in R? the differential 2-form w = xdy A dz — ydx A dz + zdx A dy and
the vector field X :xa%—i—ya%—i—z%.

Ythis is A = {(Un,¢n), (Us,ps)}, Up = S*\ {P}, N = (0,0,1),S = (0,0, —1) where ¢p : Up — R? is the
corresponding stereographic projection from P onto {z3 = 0} ~ R2.
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1.
2.

3.

Does there exist a differential 1-form v in R? such that w = dv?
Compute Lxw and ix(dw), where Lx denotes the Lie derivative and ix the interior product.

Compute the integral fE Lxw, where E = {(z,y,2) € R3 | 22 + y? + 422 = 4}.

Exercise A.21. Consider the subsets of R? given by

M ={(z,y,2) eR® | 2? + > +1=222>0}, N={(z,9,2) eR® |z +y+4=4z},

. Is M a smooth manifold? Is MNN an embedded smooth manifold of R3? Of which dimension?
. Let C = M N N. Compute the tangent spaces T,M and T,C for ¢ = (0,0, 1).

. Find two vector fields X, Y tangent to M such that 7, X = 9, and 7,Y = 0, where 7 : R3 —

R? is the projection onto the first two coordinates. Compute their Lie bracket [X,Y].

. Let g be the Riemannian metric induced on M by the restriction of the Euclidean metric g

in R3. Compute VxY and Vy X, where V is the Levi Civita connection of (M, g).

Exercise A.22. Let us denote by P!(R) the real projective line (points on P!(R) are denoted
[z : y])

1.

2.

Recall the standard differential structure (i.e., the atlas) on P}(R). Is P}(R) orientable?

Establish an explicit smooth diffeomorphism between P!(R) and S!.

. Show that the projection 7 : R? \ {0} — P!(R) defined by n(z,y) = [z : y] is of class C°°.

. Let P(x),Q(x) be two real polynomials with no real root in common. Prove that the following

map is smooth

(58 :1] i Q(x) £0

: 1 ) =
F:R—>P(R), F(z) {[1:0] £ Qo) 0

Give an example, for some choice of non constant P(z) and Q(z), such that F' is an immersion
and an example when F' is not an immersion.

. Show that G : PY(R) \ {[1 : 0]} — P!(R) defined by

G(lx: 1)) = F(a)

admits a continuous extension to G : PL(R) — P!(R). Prove that G is smooth. Give an
example, for some choice of non constant P(z) and Q(z), such that G is a diffeomorphism.

Exercise A.23. Let f : R — R be smooth and consider the 1-differential form in R? where we
denote points (z,y, z)

w= (1= f(z))dy — (1+ f(z))d=.
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l.a. Find necessary and sufficient conditions (V) on f under which w A dw is a volume form on
R3.

1.b. Assume conditions (V) holds. Findﬂa smooth vector field Z such that izw = 1 and izdw = 0.
1.c. For the vector field Z computed in 1.b., then compute Lzw.

2. Find necessary and sufficient conditions (C) on f in such a way that the distribution D = kerw
is involutive. Assuming (C), find the integral manifold through the origin.

Exercise A.24. Consider f : R —]0, +oo[ smooth positive and the subset of R? given by
M ={(z,y,2) e R® | 2 +¢* = f*(2)}
1. Prove that M is an embedded smooth manifold. Of which dimension?

2. Let i : M — R3 be the canonical inclusion. Compute g = i*g the restriction of the Euclidean
metric g in R3 to M.

3. Compute the length (with respect to the Riemannian metric g) of the curve 7. given by the
intersection of M and the plane {z = c}.

4. For which ¢ € R the curve ~, is a geodesic?

Exercise A.25. Consider the map F : R* — R defined by

F(x,y,z,t) = 22 + % 4 22 — 12

1. Prove that M := F~!(1) is a regular submanifold of R%.
2. Let 7 : R* = R3 be the map 7(z,y, z,t) = (z,y, 2). Is w5 : M — R? a submersion?
3. Prove that M is diffeomorphic to the product S? x R.

4. Does there exists a smooth vector field on M which is never vanishing?
(If yes, show an example. If not, justify your statement.)

Exercise A.26. Let Q = {(z,y,2) € R? | 22 + 4% # 0} C R? and w the 1-form on Q defined by

w= —
22T 24y

2d:c + zdz

Moreover let i : R?\ {(0,0)} — Q defined by

, B u v 9 9
i(u,v) = \/u2—|—v2’\/u2+v2’u +v

here ixn (resp. Lxn) denotes the interior product (resp. the Lie derivative) of a differential k-form 7 with
respect a vector field X.
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1. Prove that w is closed
2. For I = [0,2n] and ~ : I — R? given by ~(t) = (cost,sint) compute [;(iov)*w

3. Show that 7*w is not exact

Exercise A.27. Let M = {(z,y) € R? | z > 0} be endowed with the Riemannian metric g such
that the two vector fields X1 = 9, and X2 = 20, define an orthonormal basis for g.

1. Compute the Riemannian metric g and the corresponding Riemannian volume form vol,.

2. Compute the length of the following curves for g > 0, yp e Rand 0 < a < b
A [CL, b] - Ra Vl(t) = (an t)a
Y2 [CL, b] — R, 72(75) - (tay()):

3. Recall the definition of divergence of a vector field X with respect to the Riemannian volume
voly. Compute the divergence div(X) and the divergence div(Xs) .

4. Is v9 a length-minimizer for the Riemannian metric g 7

Exercise A.28. Consider the map F : R?* — R? defined by
F(z,y,2) = (x + % o=+ 2% + 2%)
1. Prove that M := F~%(0,1) is an embedded submanifold of R3.
2. Prove that M is diffeomorphic to S*.

3. Let m: R3 — R? be the map 7(z,y,2) = (2,9). Is 7|y : M — R? an immersion?

o

. Let g : M — R be defined as g(x,y, z) = z for every (z,y,z) € M. Find critical points of g.

Exercise A.29. Consider the following vector fields in R?
X =0, —y0., Y =0y + 20, Z =0,
1. For i = 1,2 discuss whether D; is a flat distribution.
Dy = span{X,Y}, Dy = span{X, Z}.
2. For flat distributions, find an integral manifold through a generic point (zq,yo, 20) € R3.

3. Find a non zero differential 1-form w such that w(X) = w(Y) = 0. Compute Lzw and izdw.
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Exercise A.30. Consider the 2-sphere 5?2 C R3 endowed by the standardlﬂ atlas A = {(Un, ¢n), (Us, vs)}
and the Riemannian metric gg» induced by the Euclidean metric § of R3. Consider the inverse of
the chart goj}l :R?2 — S2\ {N}. After writing explicitly pn and ¢y

1. Compute the Riemannian metric g := (90;71)*952 defined on R?
2. Compute the corresponding Riemannian volume vol, associated with (R?, g). Verify that

du A dv

ly=4—
T T w02

3. Compute the integral [, voly. Comment your result.

Exercise A.31. Consider S' C R? and the map F : S x §' — R? defined for every (x,y) € S x !
Flz,y)=z+y
1. Prove that S' x S! is a smooth oriented manifold of dimension 2.
2. Show that F' is a smooth map.

3. Is F' a submersion? If not, find all critical points of F.

4. Is M = F~1(S') a smooth manifold of S* x S1? Of which dimension? Describe M.

Exercise A.32. Consider the differential one form in M = S! x R? with coordinates (6, x,y)
w = cos 6 dx + sin f dy
1. Find a basis X7, X5 of vector fields of the distribution D := ker w. Is the distribution D flat?

2. Prove that w A dw is a volume form on M.

3. Show that there exists a unique vector field Xy such thatﬂ ix,w =1 and ix,(dw) = 0.

4. For every t € R, compute the flow e!*° of Xy, and show that (e°)*w = w .

Exercise A.33. Let us consider the unit open disk D = {(z,y) € R? | 22 + y? < 1} in the plane
R? with the Riemannian metric

4

2 2
IS a e )

1. Find an orthonormal frame X7, Xo for the Riemannian metric g on D.

3here Up = S*\ {P} for P € {N, S} the north and south pole N = (0,0,1),S = (0,0,—1), and ¢p : Up — R?
the corresponding stereographic projection from P on the plane {3 = 0} ~ R
‘here ix denotes the interior product with respect to a vector field X
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2. Compute the Riemannian volume form € := vol, and then the Riemannian area | pof D.

3. Prove that M = {(u,v,w) € R? | w = Vu2 +v2 + 1} C R? is a smooth manifold and given

F:R\{w=—-1} >R%, F S
Vo= 2B, Fuow) = (1
prove that ® := F|) is a diffeomorphism between M and D. (Hint: write ®~1)

4. Compute the two form F*Q on R?\ {w = —1}. Is ®*Q a volume form on M?

Exercise A.34. In the real projective plane P2(R) consider the subset M given by
M = {[zo, z1, x2] € P*(R) | 22 + 2% — 23 = 0}.
1. Recall the atlas defining the differentiable structure for the real projective plane P?(R).
2. Is M an embedded submanifold of P?(R)? Of which dimension? Is M connected?

3. Prove that the following function F': M — R is (well-defined) and smooth

2 2 2

F([$07$17$2]) = m

4. Is F a submersion? If not find all critical points of F.

Exercise A.35. Let D be the distribution in R3 spanned by the vector fields X and Y

0 2z O 0
X=mtirze Yoo
1. Prove that D is flat and find a 1-form w such that D = kerw.
2. Compute explicitly the flow !X of the vector field X. Is it true that eZXY =Y?
3. Find an integral manifold Sy for D passing through (0,0,0) and give equation(s) for Sj.

4. Find an integral manifold Sy for D passing through (1,1, 1) and give equation(s) for So

Exercise A.36. Let us consider the unit sphere S? and its standard atlas (Uy, ¢n), (Us, ps) given
by the stereographic projectionsE|

1. Write explicitly the chart oy : Uy — R?

2. Compute the Riemannian metric on Uy given by g := (¢on)*g where § = da? + dy? is the
Euclidean metric on R2.

Srecall that Up = S \ {P} for P = N, S the north and south poles N = (0,0,1),S = (0,0, —1)
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3. Prove that there exists ¢ € C>°(Uy) such that g(v,w) = ¥ (v, w)rs, where (v, w)gs is the
inner product of R?. Compute 1. Can ¢ be extended to a smooth function on S2?

4. Compute the length with respect to g of parallels of S\ {N} (i.e., intersections of S? with
the plane z = zg, for —1 < zp < 1) .

Exercise A.37. Let R > r > 0. Let us consider the subset of R? given by

S={(z,y,2) eR¥| (Va2 +y2 - R+ 2* =17)}.
1. Prove that S is an embedded smooth manifold, that is orientable.

2. Consider G : R® — R given by G(z,y,2) = z. Is G|g a submersion?
If not, compute its critical points.

3. Consider F : R? — R? given by F(z,y,2) = (z +y,r —y). Is F|s a submersion?
If not, compute its critical points.

4. Compute the Riemannian metric g := i*g where g is the Euclidean metric on R? and i is the
inclusion i : S — R3. (Hint: introduce suitable angular coordinates on S)

5. Compute the Riemannian volume form = voly and compute |, g Is Q exact?

Exercise A.38. Consider the sphere S? embedded in R? with coordinates (x,%,2) in the usual
way. Let pn : S2\ {N} — R? denote stereographic projection from the north pole, and let X; be
the vector fields in R? with coordinates (u,v)

0 0 0 0
Xl—U%—i—U%, XQ—U%—U/%

1. Compute explicitly the flow €' of the vector fields X; in R?, for i = 1,2. Compute [X7, X>].
2. Consider V; = (¢ )« X; vector field on S? \ {N}, for i = 1,2. Compute Y; and check that

B 0 3} 9, 0
Yl——xzax—yzay—i—(l—z)az

3. Show that Y7 coincides with the ortogonal projection of the vector field Z = % in R? to the
tangent space to S? \ {N}. Describe the flow e of the vector field Y; in S2.

4. Compute Y. Describe the flow e'*2 of the vector field Y5 in S2.

5. Compute the Lie bracket [Y7,Y2]. Discuss the result.

Exercise A.39. Consider R? with coordinates x, v, 2 and R? with coordinates u,v. Consider the
map
F:R?® - R? F(z,y,2) = (2%y + €*,yz — )

and fix p = (1,1,1) in R3.
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. Compute F} (8%‘1;)' Compute F*(du‘F(p))'

. Compute the matrix representing Fi|, : TpR3 — TF(p)R2 with respect to a suitably chosen

basis. Is F' a submersion at p?

. Discuss if F71(0,0) is a smooth submanifold of R3. If yes: of which dimension? is it bounded?

. Consider the 1-dim submanifold of R? given by C = {(z,y, 2) € R3 | 22 + 49? = 1,2 = 0}.

Is the map F|c : C — R? an immersion?

. Given the differential 2-form Q = du A dv in R?, compute w := F*Q. Then compute fQ w,

where Q =10, 1[x]0, 1[x{0} C R3.

Exercise A.40. Consider the following set of matrices

0 b
Gg=( A= 1 ¢]:a>0,b,ceR
01

S O 2

and denote by GL,,(R) the set of n x n invertible matrices with real entries.

1.

2.

N.B.

Prove that GL3(R) is a smooth manifold. Of which dimension?

Prove that G is a subgroup of GL3(R). Prove that G is a smooth manifold of dimension 3.
(Hint: write the group law in coordinates.)

. Let I be the identity matrix. Compute the tangent space T7G.
. Write a set X1, Xo, X3 of linearly independent left-invariant vector fields on G.

. Compute [X;, X;] for i,j =1,2,3.

Questions 3. to 5. can be answered either in coordinates or in matrix notations.

Exercise A.41. Consider R? with coordinates x, v, z, and the sets

S ={(z,y,2) | 2* +9* = 22% 2 > 0}, S'={(z,y,2) | 2 = 2y}

Consider F : S — S’ defined by F(x,y,2) = (z,yz,zyz), for every (x,y,z) € S.

1.

2.

Are S and S’ embedded submanifold of R3? Define an atlas for both S and S’.

Prove that F' is smooth using the atlas introduced above.

. Let p=(1,1,1) € S. Compute Fi[, : T,S — Tp)S'. Is F' a submersion at p? Is F' a global

diffeomorphism?

. Let i : S” — R? be the canonical inclusion. Compute g := i*g the induced Riemannian metric

on S', where g is the Euclidean metric in R3.
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5. Find a basis of orthonormal vector fields X,Y for S’ with respect to g.

Exercise A.42. Prove or disprove the following formula for the Lie derivative:
Lixw= fLxw+df Nixw

where X is a vector field, f a smooth function and w a differential k-form.

Exercise A.43. Consider the vector fields

0 0 0
= —— _ Y e
or Yoz Oy

1. Given a smooth submersion f : R* — R, prove that X is tangent to S = f~%(0) if and only
if Xf =0 at every point of S.

2. Is the distribution D = span{X, Y} a flat distribution ?

3. Does there exists a smooth a smooth submersion f : R? — R satisfying

of _ 9f _
ox yaz_
of | of

Exercise A.44. Consider S' C R? and the map F : S' x R — S? defined for every (x1,x2,y) €
ST xR

Z1 T2 Y
Vity? Vit Vi

where S? is also regarded as a subspace of R?. Fix p = (1,0,v/3) € S' x R.

F(xy,29,y) = (

1. Compute F, at p with respect to a basis of the tangent spaces, which you will specify.
2. Is F' a submersion? Is F' a local diffeomorphism? Is F' a global diffeomorphism?
3. Let C be a great circle of S2. Is F~1(C) a submanifold? Describe it (dimension, topology).

4. Let g = F*gg> where gg2 is the standard Riemannian metric on S? induced by R?. Compute
the length of the curve {y = yo} on S! x R with respect to g.

Exercise A.45. Consider three linearly independent differential 1-forms on a smooth manifold M,
dim M = 3, satisfying

dwy = wo A ws, dwo = w1 A ws, dws = w1 A wo (A3)

First assume M = R3 and wy = dz, wy = dy — zdz.
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1. Find all ws, if any, satisfying the above conditions (A.3]).
Now the general case. Let X1, X5, X3 be the dual basis of vector fields to wy,wo, ws.

2. Compute Lx;ws, for j =1,2,3, where Lx denotes the Lie derivative.

3. Compute [X;, X;] for every i,j = 1,2,3.

Exercise A.46. Let v : [0,7] — M be a smooth regular curve (i.e., §(t) # 0 for all ¢ € [0,7]) and
let X,Y € Vec(M) be linearly independent vector fields. Consider n(t) = e!* (vy(t)).

1. Write a formula to compute 7(t), for every ¢t € [0, T], in terms of X and ~.

2. Compute explicitly in M = R3 the curve n for v(¢) = (¢,0,t) and X = 28, — y9,. Check the
validity of the formula given in 1.

3. Consider the distribution D = span{X, Y}, and assume (t) € D, for every ¢ € [0,T]. Is it
true that 7(t) € D, for every ¢ € [0,T]? Discuss your answer.

Exercise A.47. Let us consider the following subsets of R? x P!(R)
S; = {(z,[z]) € R x PY(R) | = # 0}
Sy = 51 U ({0} x PL(R))
where we denote points as follows x = (z1,72) € R? and [y] = [y1, y2] € P}(R).
1. Show that S is a smooth embedded submanifold of R? x P*(R). Of which dimension?

2. Is S5 is a smooth embedded submanifold of R? x P*(R). If yes, of which dimension?
(Hint: find equations describing S1 and . ..)

3. Consider the two projections onto the two factors
p1 :SQ*)R2, P2 SQ—)Pl(R)

defined by pi(z, [y]) = =z and pa(z, [y]) = [y]. Are p1, p2 submersions?

Exercise A.48. Consider M = {(z,y,2) € R® | 1 + 2? = y? + 22} and the 2-form in R3
w=2%dz ANdy + (z +y)(dz A dy + dz A dz)
1. Find a basis of T),M for every p € M.
2. Is w a volume form on M?

3. Compute [, w
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Exercise A.49. Consider in the Euclidean (R3,3) the Levi Civita connection denoted V. Define
VxY :=VxY +XxY
where x denotes the standard cross product of vectors in R3.

1. Prove that VxY defines a (linear) connection.
2. Compute its Christoffel symbols Fi-“j with respect to the standard basis {8%7 8%’ %}

3. Prove that if V+4 = 0, then + is a straight line.
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