
Towards a Formal Theory of Computability:
a Case Study

Basil A. Karádais
(joint work with H. Schwichtenberg and S. Huber)

Institute of Mathematics
Ludwig-Maximilian University of Munich

April 29, 2010

Intro

I We aim at a constructive formal theory of computability
TCF+, where the functionals are studied together with their
finite approximations.

I The attempt is guided by the semantics of coherent, non-flat
Scott information systems, induced by free algebras given by
constructors; in this setting, the latter are injective and have
disjoint ranges.

I We present here a case study, namely, an adaption of
Plotkin’s definability theorem:

“A functional is computable
if and only if

it is definable by a term in the language”.

Scott Information Systems

A (Scott) information system is a triple (T,Con,`) where T is a
countable set of tokens, Con ⊆ Pf (T) is a collection of consistent
sets or (formal) neighborhoods and ` ⊆ Con× T is an entailment
relation, which obey the following:

1. ∀a∈T {a} ∈ Con,

2. U ∈ Con ∧ V ⊆ U → V ∈ Con,

3. U ` U (where U ` V :⇔ ∀b∈V U ` b),

4. U ` V ∧ V ` c→ U ` c,
5. U ∈ Con ∧ U ` b→ U ∪ {b} ∈ Con.

Ideals

I An ideal or object is a set u ⊆ T which is consistent and
closed to entailment in the following sense:

∀
U⊆fu

U ∈ Con ∧ ∀
U⊆fu

(U ` a→ a ∈ u) .

Denote the empty ideal by ⊥ and the collection of all ideals by
Ide.

I The (deductive) closure of a consistent set U ∈ Con is defined
by

U := {a ∈ T | U ` a} .

It is U ∈ Ide for every U ∈ Con.

Function Spaces

Let α = (Tα,Conα,`α) and β = (Tβ,Conβ,`β) be information
systems. Their function space α→ β = (T,Con,`) is defined by

T := Conα × Tβ ,

{(Ui, bi)}i∈I ∈ Con :⇔ ∀
J⊆I

.
⋃
j∈J

Uj ∈ Conα → {bj}j∈J ∈ Conβ ,

{(Ui, bi)}i∈I ` (U, b) :⇔ {(Ui, bi)}i∈I U := {bi | U `α Ui} `β b ,

One can prove that α→ β is again an information system.

Scott Topology

I The cone over a neighborhood U is the set
{u ∈ Ideα | U ⊆ u}; the collection of all cones in an
information system forms the basis of a topology on Ide, the
Scott topology.

I The (Scott) continuous functions f : Ideα → Ideβ are in a
bijective correspondence with the ideals u ∈ Ideα→β:

|u|(v) :=

{
b ∈ Tβ | ∃

U⊆fv
(U, b) ∈ u

}
,

f̂ :=
{

(U, b) | b ∈ f(U)
}
.

The assignments are inverse to each other, i.e.,

|̂u| = u and |f̂ | = f .

Algebraic Information Systems

Consider an algebra given by three constructors, a nullary 0, a
unary S, and a binary B. We induce an information system
(T,Con,`) as follows (write C for either constructor):

I It is Cab ∈ T if a, b ∈ T ∪ {∗}, where ∗ means least
information and a or b may be empty; a token is called total if
it is ∗-free; so 0, B∗∗, B(S0)(SS∗) ∈ T , but ∗ 6∈ T .

I For a finite U , it is U ∈ Con if (a) all tokens in it start with
the same constructor, U = {Ca1b1, . . . , Canbn}, and (b)
every component set is consistent, in the sense that
{b1, . . . , bn} − {∗} ∈ Con (similarly for ai’s); so
{SB0∗, SB∗0} ∈ Con but {SB0∗, S0} 6∈ Con.

I For n > 0, it is {Ca1b1, . . . , Canbn} ` C ′ab if (a) C = C ′,
and (b) each component set of the entailer entails the
corresponding argument of the entailed, i.e., {a1, . . . , an} ` a,
etc., where U ` ∗ is defined to be true; so {B0∗, B∗0} ` B00
but {B0∗, B∗0} 6` S∗.

Coherence

An information system is coherent when

U ∈ Con↔ ∀
a,b∈U

{a, b} ∈ Con ,

for all finite U ’s. Write a � b for {a, b} ∈ Con.

I Coherent information systems correspond to coherent
domains, coherent precusl’s, and coherent Scott-Ershov formal
topologies.

I Algebraic information systems and their function spaces are
coherent.

Injectivity and Range Disjointness of Constructors

Every constructor C induces a Scott continuous function in the
function space, defined by

C̃ :=
{

(~U,C~a) | ~U ` ~a
}
,

where (~U, b) := (U1, · · · (Un, b) · · ·) and ~U ` ~a :⇔ ∀i Ui ` ai.
I For an argument ~u, it is C̃(~u) =

{
C~a | ∃~U⊆f~u ~U ` ~a

}
.

I If C̃(~u) = C̃(~v) then ~u = ~v.

I If C and C ′ are distinct, then C̃(~u) 6= C̃ ′(~v).

I So constructors are injective and have disjoint ranges—not so
in the flat case due to strictness, e.g.,
B̃(⊥, v) = ⊥ = B̃(u,⊥) and S̃(⊥) = ⊥ = S̃′(⊥).

Algebraic Information Systems with at most Unary
Constructors

I The tokens and entailment of the algebras N = {0, S} and
B = {tt, ff} can be depicted like this:

• ∗@
@@
•0

�
��
• S∗@

@@
•S0

�
��
• SS∗@

@@
•SS0

�
��

..
.

• ∗@
@@
•tt

�
��
• ff

I Comparability Lemma. If an algebra is given by at most
unary constructors, then every two consistent tokens are
comparable:

a � b→ ({a} ` b ∨ {b} ` a) .

Partial Continuous Functionals

I Let ι denote either the algebraic information system N or B.
The ideals Ideρ→σ of a function space built on ι’s are the
partial continuous functionals of type ρ→ σ.

I A functional u ∈ Ideρ is computable when its set of tokens is
recursively enumerable.

I A number x ∈ Ideι is total if it is of the form C~z, with ~z total;
a functional f ∈ Ideρ→σ is total if for any total argument
z ∈ Ideρ, the value f(z) ∈ Ideσ is also total.

I Equivalence of total ideals is defined simultaneously with the
above: it is x ≈ι y if both are of the form C~zi, and ~z1 ≈~ι ~z2;
it is f ≈ρ→σ g if ∀z∈Gρ f(z) ≈σ g(z).

I Theorem (Longo & Moggi, 1984). If x ≈ρ y then
f(x) ≈σ f(y).

Computable Functionals

We build (object) terms from variables and constants by
application and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ .

I Every defined constant D is given by computation rules
D~Pi(~yi) = Mi, i = 1, . . . , n, where ~Pi(~yi) are constructor
patterns.

I Gödel’s primitive recursion operators R of type
N→ ρ→ (N→ ρ→ ρ)→ ρ have computation rules
R0fg = f and R(Sn)fg = gn(Rnfg).

I The least fixed point operators Y of type (ρ→ ρ)→ ρ have
the computation rule Y f = f(Y f).

Denotational Semantics

For every closed term λ~xM of type ~ρ→ σ we inductively define a
set [[λ~xM]] of tokens of type ~ρ→ σ.

Ui ` b
(~U, b) ∈ [[λ~xxi]]

(V),
(~U, V, c) ∈ [[λ~xM]] (~U, V) ⊆ [[λ~xN]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D we have

~V ` ~b∗

(~U, ~V ,C ~b∗) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x,~yM]] ~W ` ~P (~V)

(~U, ~W, b) ∈ [[λ~xD]]
(D),

with one such rule (D) for every computation rule D~P (~y) = M .

Denotational Semantics (continued)

I Theorem. For every term M , [[λ~xM]] is an ideal.
Furthermore, if a term M converts to M ′ by βη-conversion or
application of a computation rule, then its value is preserved,
i.e., [[M]] = [[M ′]].

I For a term M with free variables among ~x and an assignment
~x 7→ ~u of ideals ~u to ~x let

[[M]]~u~x :=
⋃
~U⊆~u

[[M]]~U~x :=
⋃
~U⊆~u

{
b | (~U, b) ∈ [[λ~xM]]

}
.

Then by (A) we have continuity of application:

c ∈ [[MN]]~u~x ↔ ∃
V⊆[[N]]~u

~x

(
(V, c) ∈ [[M]]~u~x

)
.

Definability Theorem: prerequisites

I Assume that the base types ι are generated by at most unary
constructors (hence, that the Comparability Lemma applies).

I Use total (i.e., ∗-free) tokens of TN as indices. Write n ∈ N
for Sn0 ∈ TN; then n is a total ideal of type N.

I Fix enumerations (en)n∈N of tokens and (En)n∈N of
neighborhoods for each type.

I We need the following special functionals: pcond, ∪#, and
�#.

Parallel Conditional pcond

I The parallel conditional pcond of type B→ ρ→ ρ→ ρ is
defined by the clauses

U ` tt→ V ` a→ (U, V,W, a) ∈ pcond,

U ` ff →W ` a→ (U, V,W, a) ∈ pcond,

V ` a→W ` a→ (U, V,W, a) ∈ pcond.

We also need the least-fixed-point axiom. It is easy to see
that pcond is an ideal.

I Properties of pcond:

tt ∈ z → pcond(z, x, y) = x,

ff ∈ z → pcond(z, x, y) = y,

a ∈ x→ a ∈ y → a ∈ pcond(z, x, y).

Continuous Union ∪#

I The continuous union ∪# has type N→ N→ N; its defining
clauses are

U ` en → V ` n→ U ` a→ (U, V, a) ∈ ∪#,

{en} ` a→ V ` n→ (U, V, a) ∈ ∪#,

and again we require the least-fixed-point axiom; ∪# is an
ideal.

I Properties of ∪#:

∀a∈x(a � en)→ x ∪# n = x ∪ en,
en ∈ x ∪# n.

Continuous Consistency �#

I We define �# of type ρ→ N→ B by the clauses

U ` En → V ` n→ (U, V, tt) ∈ �#,

a ∈ U → b ∈ En → V ` n→ a 6� b→ (U, V, ff) ∈ �#.

Again we require the least-fixed-point axiom; �# is an ideal.

I Properties of �#:

tt ∈ x �# n↔ x ⊇ En,

ff ∈ x �# n↔ ∃
a∈x,b∈En

(a 6� b).

Definability Theorem

I A partial continuous functional Φ of type ρ→ ι is recursive in
pcond, ∪#, and �# if it can be defined explicitly by a term
involving the constructors of ι’s, the fixed point operators, the
parallel conditional, the continuous union and the continuous
consistency.

I Definability Theorem. A partial continuous functional is
computable if and only if it is recursive in pcond, ∪# and �#.

Definability Theorem: Proofsketch

I For the left direction: the constants involved are defined in
such a way that their denotations are clearly recursively
enumerable, i.e., computable. The right direction is the
nontrivial one.

I Let Φ be a computable functional of type ρ→ ι; then its
tokens (Efn, egn) are enumerated by primitive recursive
functions f and g on indices.

I For an arbitrary argument φ of type ρ define a term wφ of
type (N→ ι)→ N→ ι by

wφψx := pcond(φ �# fx, ψ(Sx) ∪# gx, ψ(Sx)) .

I Show that Φφ = Y wφ0.

Definability Theorem: Proofsketch (continued)

In the proof, among others, we made heavy use of the following:

I basic definitions and properties of information systems and of
the involved special functionals;

I induction over indices, ex falso quod libet, decidability of
membership, consistency and entailment in base types;

I continuity of application, Comparability Lemma.

Syntax: TCF+

I TCF+ addresses computable functionals plus their finite
approximations, i.e., their tokens and neighborhoods.

I Its development so far draws not only from the definability
theorem, but also from an adaption of Berger’s proof of
Kreisel’s density theorem [Berger 1993, Schwichtenberg 2006].

TCF+: types

I We have object types, ρ, σ ::= ι | ρ→ σ, as already explained.

I We also have token types: Tokρ for tokens, and LTokρ for
lists of tokens, for every object type ρ.

I Both tokens and neighborhoods of a base type are generated
inductively as expected.

I For tokens of a function type ρ→ σ we have pairing (U, b) of
LTokρ and Tokσ, along with projections π1, π2. Consistency
and entailment in function types are defined as expected.

TCF+: token functions

We allow token functions, i.e., primitive recursive functions on
token types; in particular, we define

I membership of a token in a neighborhood by
∈̇ι: Tokι → LTokι → TokB;

I equality of tokens by =ι: Tokι → Tokι → TokB;

I entailment by `ι: LTokι → Tokι → TokB;

I consistency by Conι : LTokι → TokB; write a � b for
Conρ(a ::ρ b ::ρ nilρ);

I totality by Gι : Tokι → TokB; we use total tokens of TN as
indices, and write n ∈ N.

Finally, we fix enumerations (en)n∈N of tokens and (En)n∈N of
neighborhoods for each type, through appropriate Gödel
numbering, so that we primitive recursively obtain epaq = a and
EpUq = U .

TCF+: ∆-formulas

I For each object type ρ, we have token variables a for tokens
of Tokρ and list variables U of LTokρ. We build token terms
from variables, constructor symbols and token function
symbols.

I Prime ∆-formulas, or decidable prime formulas, are of the
form atom(p) (for simplicity p), p of type TokB; these are
decidable, in the sense that for each closed token term we can
prove either p =B tt or p =B ff, e.g., a � b, a ∈̇ U , U ` a.

I ∆-formulas are built from prime ∆-formulas by →, ∧, ∨ and
bounded quantifiers ∀a∈̇U and ∃a∈̇U .

TCF+: Σ-formulas and formulas

I We have set variables x for each type ρ and we build (object)
terms from the variables as well as constants by application
and abstraction, as explained. In particular, we have the
constants [[λ~xM]] of type ~ρ→ σ, pcond of type
B→ ρ→ ρ→ ρ, ∪# of type ρ→ N→ ρ, �# of type
ρ→ N→ B.

I Prime Σ-formulas are prime ∆-formulas (i.e., decidable ones)
or have the form a ∈ρ x, with a a token variable or constant
of type Tokρ.

I Σ-formulas are either (a) prime Σ-formulas, or (b) of the form
A0 → B, for A0 a ∆-formula and B a Σ-formula, and (c)
they are closed under ∧, ∨, bounded quantifiers, and
existential quantifiers over token variables.

I Furthermore, prime formulas are either prime Σ-formulas or of
the form Gρx or x ≈ρ y, for object variables x, y.

I Formulas are built from prime formulas by →, ∧, ∨, and all
kinds of ∀ and ∃.

TCF+: axioms and properties

I The theory is based on intuitionistic logic.

I Adapt the axioms of Heyting arithmetic to indices.

I Assume ordinary induction schemes for arbitrary formulas A.
E.g.,

A(∗)→ A(0)→ ∀
a

(A(a)→ A(Sa))→ A(a)

is needed to prove the Comparability Lemma.

I Assume clauses of all inductive definitions of [[λ~xM]], pcond,
∪#, �#, Gρ, ≈ρ, together with the corresponding
least-fixed-point axioms.

TCF+: axioms and properties (continued)

I For object types, assume Σ-comprehension:

∃
x
∀
a

(a ∈ρ x↔ A) ,

where A is a Σ-formula. Write x = {a | A} for terms defined
by Σ-comprehension.

I Define r ∈ρ t, for r of type Tokρ and t of type ρ, by

r ∈ρ {a | A(a)} :⇔ A(r) ,
r ∈ ts :⇔ ∃

U⊆s
(U, r) ∈ t ;

the latter formalizes continuity of application.

Future Work

I Explain TCF+ in a rigorous and systematic way; test it
against further case studies (e.g., computational adequacy).

I Implementation on a theorem prover, which would allow for
handling functionals and finite approximations alike (e.g.,
minlog, http://www.math.lmu.de/~minlog/).

http://www.math.lmu.de/~minlog/

References

I U. Berger, Total Sets and Objects in Domain Theory, Annals of
Pure and Applied Logic 60, 1993.

I S. Huber, B. A. K., H. Schwichtenberg, Towards a Formal Theory
of Computability, to appear in R. Schindler, ed.: Ways of Proof
Theory (Wolfram Pohler’s Festschrift).

I G. Plotkin, Gordon, LCF considered as a programming language,
Theoretical Computer Science 5(3), 1997.

I H. Schwichtenberg, Recursion on the partial continuous functionals,
in C. Dimitracopoulos et al., eds.: Logic Colloquium ’05, Lecture
Notes in Logic, vol. 28, ASL, 2006.

I D. Scott, Domains for denotational semantics, in Nielsen, E. and
Schmidt, E. M., eds.: Automata, languages, and programming,
Volume 140 of Lecture Notes in Computer Science, Springer, 1982.

I V. Stoltenberg-Hansen, E. Griffor, I. Lindström, Mathematical
Theory of Domains, Cambridge University Press, 1994.

	Intro
	Semantics: Scott Information Systems
	Ideals
	Function Spaces
	Scott Topology
	Algebraic Information Systems
	Coherence
	Injectivity and Range Disjointness of Constructors
	Algebraic Information Systems with at most Unary Constructors
	Partial Continuous Functionals

	Computable Functionals
	Denotational Semantics
	Definability Theorem: Prerequisites
	Special Functionals
	Definability Theorem

	Syntax: TCF+
	TCF+: object types and token types
	TCF+: terms and formulas
	TCF+: axioms and properties

	Outro
	References

