Towards a Formal Theory of Computability: a Case Study

Basil A. Karádais (joint work with H. Schwichtenberg and S. Huber)

Institute of Mathematics Ludwig-Maximilian University of Munich

April 29, 2010

Intro

- ► We aim at a constructive formal theory of computability TCF⁺, where the functionals are studied together with their *finite approximations*.
- The attempt is guided by the semantics of coherent, non-flat Scott information systems, induced by free algebras given by constructors; in this setting, the latter are injective and have disjoint ranges.
- We present here a case study, namely, an adaption of Plotkin's definability theorem:

"A functional is *computable* if and only if it is definable by a term in the language".

Scott Information Systems

A (Scott) information system is a triple (T, Con, \vdash) where T is a countable set of tokens, $Con \subseteq \mathcal{P}_f(T)$ is a collection of consistent sets or (formal) neighborhoods and $\vdash \subseteq Con \times T$ is an entailment relation, which obey the following:

1.
$$\forall_{a \in T} \{a\} \in \mathsf{Con},$$

2.
$$U \in \mathsf{Con} \land V \subseteq U \to V \in \mathsf{Con},$$

3.
$$U \vdash U$$
 (where $U \vdash V :\Leftrightarrow \forall_{b \in V} U \vdash b$),

4.
$$U \vdash V \land V \vdash c \rightarrow U \vdash c$$
,

5.
$$U \in \mathsf{Con} \land U \vdash b \to U \cup \{b\} \in \mathsf{Con}.$$

Ideals

An *ideal* or *object* is a set u ⊆ T which is consistent and closed to entailment in the following sense:

$$\bigvee_{U \subseteq {^f}u} U \in \mathsf{Con} \land \bigvee_{U \subseteq {^f}u} \left(U \vdash a \to a \in u \right) \; .$$

Denote the empty ideal by \perp and the collection of all ideals by Ide.

► The (deductive) closure of a consistent set U ∈ Con is defined by

$$\overline{U} := \{ a \in T \mid U \vdash a \} .$$

It is $\overline{U} \in$ Ide for every $U \in$ Con.

Function Spaces

Let $\alpha = (T_{\alpha}, Con_{\alpha}, \vdash_{\alpha})$ and $\beta = (T_{\beta}, Con_{\beta}, \vdash_{\beta})$ be information systems. Their *function space* $\alpha \rightarrow \beta = (T, Con, \vdash)$ is defined by

$$\begin{split} T &:= & \mathsf{Con}_{\alpha} \times T_{\beta} \ ,\\ \{(U_i, b_i)\}_{i \in I} \in \mathsf{Con} &:\Leftrightarrow & \bigvee_{J \subseteq I} \ . \ \bigcup_{j \in J} U_j \in \mathsf{Con}_{\alpha} \to \{b_j\}_{j \in J} \in \mathsf{Con}_{\beta} \ ,\\ \{(U_i, b_i)\}_{i \in I} \vdash (U, b) &:\Leftrightarrow & \{(U_i, b_i)\}_{i \in I} U := \{b_i \mid U \vdash_{\alpha} U_i\} \vdash_{\beta} b \ , \end{split}$$

One can prove that $\alpha \to \beta$ is again an information system.

Scott Topology

- The cone over a neighborhood U is the set {u ∈ Ide_α | U ⊆ u}; the collection of all cones in an information system forms the basis of a topology on Ide, the Scott topology.
- The (Scott) continuous functions f : Ide_α → Ide_β are in a bijective correspondence with the ideals u ∈ Ide_{α→β}:

$$\begin{split} |u|(v) &:= & \left\{ b \in T_\beta \mid \underset{U \subseteq {}^f v}{\exists} (U,b) \in u \right\} \ , \\ \hat{f} &:= & \left\{ (U,b) \mid b \in f(\overline{U}) \right\} \ . \end{split}$$

The assignments are inverse to each other, i.e.,

$$\widehat{|u|} = u$$
 and $|\widehat{f}| = f$.

Algebraic Information Systems

Consider an algebra given by three constructors, a nullary 0, a unary S, and a binary B. We induce an information system (T, Con, \vdash) as follows (write C for either constructor):

It is Cab ∈ T if a, b ∈ T ∪ {*}, where * means least information and a or b may be empty; a token is called total if it is *-free; so 0, B**, B(S0)(SS*) ∈ T, but * ∉ T.

For a finite U, it is U ∈ Con if (a) all tokens in it start with the same constructor, U = {Ca₁b₁,...,Ca_nb_n}, and (b) every component set is consistent, in the sense that {b₁,...,b_n} - {*} ∈ Con (similarly for a_i's); so {SB0*,SB*0} ∈ Con but {SB0*,S0} ∉ Con.

For n > 0, it is {Ca₁b₁,...,Ca_nb_n} ⊢ C'ab if (a) C = C', and (b) each component set of the entailer entails the corresponding argument of the entailed, i.e., {a₁,...,a_n} ⊢ a, etc., where U ⊢ * is defined to be true; so {B0*, B*0} ⊢ B00 but {B0*, B*0} ⊭ S*.

Coherence

An information system is coherent when

$$U\in \mathsf{Con} \leftrightarrow \bigvee_{a,b\in U} \{a,b\}\in \mathsf{Con} \ ,$$

for all finite U's. Write $a \asymp b$ for $\{a, b\} \in \mathsf{Con}$.

- Coherent information systems correspond to coherent domains, coherent precusl's, and coherent Scott-Ershov formal topologies.
- Algebraic information systems and their function spaces are coherent.

Injectivity and Range Disjointness of Constructors

Every constructor C induces a Scott continuous function in the function space, defined by

$$\tilde{C} := \left\{ (\vec{U}, C\vec{a}) \mid \vec{U} \vdash \vec{a} \right\} \;,$$

where $(\vec{U}, b) := (U_1, \cdots, (U_n, b) \cdots)$ and $\vec{U} \vdash \vec{a} :\Leftrightarrow \forall_i U_i \vdash a_i$.

► For an argument \vec{u} , it is $\tilde{C}(\vec{u}) = \left\{ C\vec{a} \mid \exists_{\vec{U} \subseteq {}^f \vec{u}} \vec{U} \vdash \vec{a} \right\}.$

• If
$$\tilde{C}(\vec{u}) = \tilde{C}(\vec{v})$$
 then $\vec{u} = \vec{v}$.

- If C and C' are distinct, then $\tilde{C}(\vec{u}) \neq \tilde{C}'(\vec{v})$.
- So constructors are injective and have disjoint ranges—not so in the flat case due to *strictness*, e.g.,
 B̃(⊥, v) = ⊥ = B̃(u, ⊥) and S̃(⊥) = ⊥ = S̃'(⊥).

Algebraic Information Systems with at most Unary Constructors

▶ The tokens and entailment of the algebras $\mathbb{N} = \{0, S\}$ and $\mathbb{B} = \{t, ff\}$ can be depicted like this:

Comparability Lemma. If an algebra is given by at most unary constructors, then every two consistent tokens are comparable:

$$a \asymp b \to (\{a\} \vdash b \lor \{b\} \vdash a) \ .$$

Partial Continuous Functionals

- ▶ Let ι denote either the algebraic information system \mathbb{N} or \mathbb{B} . The ideals $\operatorname{Ide}_{\rho \to \sigma}$ of a function space built on ι 's are the partial continuous functionals of type $\rho \to \sigma$.
- A functional u ∈ Ide_ρ is *computable* when its set of tokens is recursively enumerable.
- ▶ A number $x \in \operatorname{Ide}_{\iota}$ is *total* if it is of the form $C\vec{z}$, with \vec{z} total; a functional $f \in \operatorname{Ide}_{\rho \to \sigma}$ is *total* if for any total argument $z \in \operatorname{Ide}_{\rho}$, the value $f(z) \in \operatorname{Ide}_{\sigma}$ is also total.
- ► Equivalence of total ideals is defined simultaneously with the above: it is $x \approx_{\iota} y$ if both are of the form $C\vec{z_i}$, and $\vec{z_1} \approx_{\vec{\iota}} \vec{z_2}$; it is $f \approx_{\rho \to \sigma} g$ if $\forall_{z \in G_{\rho}} f(z) \approx_{\sigma} g(z)$.

▶ **Theorem** (Longo & Moggi, 1984). If $x \approx_{\rho} y$ then $f(x) \approx_{\sigma} f(y)$.

Computable Functionals

We build (object) terms from variables and constants by application and abstraction:

$$M, N ::= x^{\rho} \mid C^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}$$

- Every defined constant D is given by computation rules $D\vec{P}_i(\vec{y}_i) = M_i$, i = 1, ..., n, where $\vec{P}_i(\vec{y}_i)$ are constructor patterns.
- ► Gödel's primitive recursion operators \mathcal{R} of type $\mathbb{N} \to \rho \to (\mathbb{N} \to \rho \to \rho) \to \rho$ have computation rules $\mathcal{R}0fg = f$ and $\mathcal{R}(Sn)fg = gn(\mathcal{R}nfg)$.
- ▶ The least fixed point operators Y of type $(\rho \rightarrow \rho) \rightarrow \rho$ have the computation rule Yf = f(Yf).

(日) (同) (三) (三) (三) (○) (○)

Denotational Semantics

For every closed term $\lambda_{\vec{x}}M$ of type $\vec{\rho} \to \sigma$ we inductively define a set $[\![\lambda_{\vec{x}}M]\!]$ of tokens of type $\vec{\rho} \to \sigma$.

$$\frac{U_i \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{x}} x_i \rrbracket}(V), \qquad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{x}} M \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{x}} (MN) \rrbracket}(A).$$

For every constructor C and defined constant D we have

$$\frac{\vec{V} \vdash \vec{b^*}}{(\vec{U}, \vec{V}, C\vec{b^*}) \in [\![\lambda_{\vec{x}}C]\!]}(C), \qquad \frac{(\vec{U}, \vec{V}, b) \in [\![\lambda_{\vec{x}, \vec{y}}M]\!] \quad \vec{W} \vdash \vec{P}(\vec{V})}{(\vec{U}, \vec{W}, b) \in [\![\lambda_{\vec{x}}D]\!]}(D),$$

with one such rule (D) for every computation rule $D\vec{P}(\vec{y}) = M$.

Denotational Semantics (continued)

- Theorem. For every term M, [[λ_xM]] is an ideal. Furthermore, if a term M converts to M' by βη-conversion or application of a computation rule, then its value is preserved, i.e., [[M]] = [[M']].
- ▶ For a term M with free variables among \vec{x} and an assignment $\vec{x} \mapsto \vec{u}$ of ideals \vec{u} to \vec{x} let

$$\llbracket M \rrbracket_{\vec{x}}^{\vec{u}} := \bigcup_{\vec{U} \subseteq \vec{u}} \llbracket M \rrbracket_{\vec{x}}^{\vec{U}} := \bigcup_{\vec{U} \subseteq \vec{u}} \left\{ b \mid (\vec{U}, b) \in \llbracket \lambda_{\vec{x}} M \rrbracket \right\} .$$

Then by (A) we have continuity of application:

$$c \in \llbracket MN \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \underset{V \subseteq \llbracket N \rrbracket_{\vec{x}}^{\vec{u}}}{\exists} \left((V,c) \in \llbracket M \rrbracket_{\vec{x}}^{\vec{u}} \right)$$

Definability Theorem: prerequisites

- Assume that the base types *i* are generated by at most unary constructors (hence, that the Comparability Lemma applies).
- ▶ Use total (i.e., *-free) tokens of $T_{\mathbb{N}}$ as *indices*. Write $n \in \mathbb{N}$ for $S^n 0 \in T_{\mathbb{N}}$; then \overline{n} is a total ideal of type \mathbb{N} .
- Fix enumerations (e_n)_{n∈ℕ} of tokens and (E_n)_{n∈ℕ} of neighborhoods for each type.
- \blacktriangleright We need the following special functionals: pcond, $\cup_{\#},$ and $\asymp_{\#}.$

Parallel Conditional pcond

▶ The parallel conditional pcond of type $\mathbb{B} \to \rho \to \rho \to \rho$ is defined by the clauses

$$\begin{split} U \vdash \mathsf{t} &\to V \vdash a \to (U, V, W, a) \in \mathsf{pcond}, \\ U \vdash \mathsf{ff} \to W \vdash a \to (U, V, W, a) \in \mathsf{pcond}, \\ V \vdash a \to W \vdash a \to (U, V, W, a) \in \mathsf{pcond}. \end{split}$$

We also need the least-fixed-point axiom. It is easy to see that pcond is an ideal.

Properties of pcond:

$$\begin{split} & \texttt{tt} \in z \to \mathsf{pcond}(z, x, y) = x, \\ & \texttt{ff} \in z \to \mathsf{pcond}(z, x, y) = y, \\ & a \in x \to a \in y \to a \in \mathsf{pcond}(z, x, y). \end{split}$$

Continuous Union $\cup_{\#}$

The continuous union ∪_# has type N → N → N; its defining clauses are

$$\begin{split} U \vdash e_n &\to V \vdash n \to U \vdash a \to (U,V,a) \in \cup_{\#}, \\ \{e_n\} \vdash a \to V \vdash n \to (U,V,a) \in \cup_{\#}, \end{split}$$

and again we require the least-fixed-point axiom; $\cup_{\#}$ is an ideal.

▶ Properties of ∪_#:

$$\forall_{a \in x} (a \asymp e_n) \to x \cup_{\#} \overline{n} = x \cup \overline{e_n}, \\ e_n \in x \cup_{\#} \overline{n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Continuous Consistency $\asymp_{\#}$

 \blacktriangleright We define $\asymp_{\#}$ of type $\rho \to \mathbb{N} \to \mathbb{B}$ by the clauses

$$\begin{split} U \vdash E_n &\to V \vdash n \to (U, V, \texttt{t}) \in \asymp_{\#}, \\ a \in U \to b \in E_n \to V \vdash n \to a \not\asymp b \to (U, V, \texttt{ff}) \in \asymp_{\#}. \end{split}$$

Again we require the least-fixed-point axiom; ≍_# is an ideal.
Properties of ≍_#:

$$\begin{split} \mathbf{t} &\in x \asymp_{\#} \overline{n} \leftrightarrow x \supseteq E_n, \\ \mathrm{ff} &\in x \asymp_{\#} \overline{n} \leftrightarrow \underset{a \in x, b \in E_n}{\exists} (a \not\asymp b). \end{split}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definability Theorem

- A partial continuous functional Φ of type ρ → ι is recursive in pcond, ∪_#, and ≍_# if it can be defined explicitly by a term involving the constructors of ι's, the fixed point operators, the parallel conditional, the continuous union and the continuous consistency.
- ▶ Definability Theorem. A partial continuous functional is computable if and only if it is recursive in pcond, ∪_# and ≍_#.

Definability Theorem: Proofsketch

- For the left direction: the constants involved are defined in such a way that their denotations are clearly recursively enumerable, i.e., computable. The right direction is the nontrivial one.
- Let Φ be a computable functional of type $\rho \rightarrow \iota$; then its tokens (E_{fn}, e_{gn}) are enumerated by primitive recursive functions f and g on indices.
- For an arbitrary argument φ of type ρ define a term w_φ of type (N→ ι) → N → ι by

$$w_\phi \psi x := \mathsf{pcond}(\phi \asymp_\# fx, \psi(Sx) \cup_\# gx, \psi(Sx)) \ .$$

• Show that
$$\Phi \phi = Y w_{\phi} 0$$
.

Definability Theorem: Proofsketch (continued)

In the proof, among others, we made heavy use of the following:

 basic definitions and properties of information systems and of the involved special functionals;

- induction over indices, ex falso quod libet, decidability of membership, consistency and entailment in base types;
- continuity of application, Comparability Lemma.

Syntax: TCF⁺

- TCF⁺ addresses computable functionals plus their finite approximations, i.e., their tokens and neighborhoods.
- Its development so far draws not only from the definability theorem, but also from an adaption of Berger's proof of Kreisel's *density theorem* [Berger 1993, Schwichtenberg 2006].

TCF^+ : types

- ▶ We have *object types*, $\rho, \sigma ::= \iota \mid \rho \rightarrow \sigma$, as already explained.
- We also have token types: Tok_ρ for tokens, and LTok_ρ for lists of tokens, for every object type ρ.
- Both tokens and neighborhoods of a base type are generated inductively as expected.
- ► For tokens of a function type $\rho \rightarrow \sigma$ we have pairing (U, b) of $LTok_{\rho}$ and Tok_{σ} , along with projections π_1 , π_2 . Consistency and entailment in function types are defined as expected.

TCF^+ : token functions

We allow *token functions*, i.e., primitive recursive functions on token types; in particular, we define

- membership of a token in a neighborhood by $\dot{\in}_{\iota}$: Tok_{ι} \rightarrow LTok_{ι} \rightarrow Tok_{\mathbb{B}};
- equality of tokens by $=_{\iota}: \operatorname{Tok}_{\iota} \to \operatorname{Tok}_{\iota} \to \operatorname{Tok}_{\mathbb{B}};$
- entailment by $\vdash_{\iota} : \operatorname{LTok}_{\iota} \to \operatorname{Tok}_{\iota} \to \operatorname{Tok}_{\mathbb{B}};$
- ► consistency by $Con_{\iota} : LTok_{\iota} \to Tok_{\mathbb{B}}$; write $a \asymp b$ for $Con_{\rho}(a ::_{\rho} b ::_{\rho} nil_{\rho})$;
- ▶ totality by $G_{\iota} : \operatorname{Tok}_{\iota} \to \operatorname{Tok}_{\mathbb{B}}$; we use total tokens of $T_{\mathbb{N}}$ as *indices*, and write $n \in \mathbb{N}$.

Finally, we fix enumerations $(e_n)_{n \in \mathbb{N}}$ of tokens and $(E_n)_{n \in \mathbb{N}}$ of neighborhoods for each type, through appropriate Gödel numbering, so that we primitive recursively obtain $e_{\lceil a \rceil} = a$ and $E_{\lceil U \rceil} = U$.

TCF^+ : Δ -formulas

- For each object type ρ, we have token variables a for tokens of Tok_ρ and list variables U of LTok_ρ. We build token terms from variables, constructor symbols and token function symbols.
- Prime Δ-formulas, or decidable prime formulas, are of the form atom(p) (for simplicity p), p of type Tok_B; these are decidable, in the sense that for each closed token term we can prove either p =_B t or p =_B ff, e.g., a ≍ b, a ∈ U, U ⊢ a.
- ► Δ-formulas are built from prime Δ-formulas by →, ∧, ∨ and bounded quantifiers ∀_{a∈U} and ∃_{a∈U}.

TCF^+ : Σ -formulas and formulas

- We have set variables x for each type ρ and we build (object) terms from the variables as well as constants by application and abstraction, as explained. In particular, we have the constants [[λ_xM]] of type ρ → σ, pcond of type B → ρ → ρ → ρ, ∪_# of type ρ → N → ρ, ≍_# of type ρ → N → B.
- Prime Σ-formulas are prime Δ-formulas (i.e., decidable ones) or have the form a ∈_ρ x, with a a token variable or constant of type Tok_ρ.
- ► Σ-formulas are either (a) prime Σ-formulas, or (b) of the form A₀ → B, for A₀ a Δ-formula and B a Σ-formula, and (c) they are closed under ∧, ∨, bounded quantifiers, and existential quantifiers over token variables.
- Furthermore, prime formulas are either prime Σ-formulas or of the form G_ρx or x ≈_ρ y, for object variables x, y.
- ► Formulas are built from prime formulas by →, ∧, ∨, and all kinds of ∀ and ∃.

TCF^+ : axioms and properties

- The theory is based on intuitionistic logic.
- Adapt the axioms of Heyting arithmetic to indices.
- Assume ordinary induction schemes for arbitrary formulas A. E.g.,

$$A(*) \to A(0) \to \bigvee_a (A(a) \to A(Sa)) \to A(a)$$

is needed to prove the Comparability Lemma.

► Assume clauses of all inductive definitions of [[λ_xM]], pcond, ∪_#, ≍_#, G_ρ, ≈_ρ, together with the corresponding least-fixed-point axioms.

TCF⁺: axioms and properties (continued)

For object types, assume *Σ*-comprehension:

$$\exists \bigvee_{x} (a \in_{\rho} x \leftrightarrow A) ,$$

where A is a Σ -formula. Write $x = \{a \mid A\}$ for terms defined by Σ -comprehension.

• Define $r \in_{\rho} t$, for r of type $\operatorname{Tok}_{\rho}$ and t of type ρ , by

$$r \in_{\rho} \{a \mid A(a)\} :\Leftrightarrow A(r) ,$$

$$r \in ts :\Leftrightarrow \exists_{U \subseteq s} (U, r) \in t ;$$

the latter formalizes continuity of application.

Future Work

- Explain TCF⁺ in a rigorous and systematic way; test it against further case studies (e.g., computational adequacy).
- Implementation on a theorem prover, which would allow for handling functionals and finite approximations alike (e.g., MINLOG, http://www.math.lmu.de/~minlog/).

References

- U. Berger, Total Sets and Objects in Domain Theory, Annals of Pure and Applied Logic 60, 1993.
- S. Huber, B. A. K., H. Schwichtenberg, Towards a Formal Theory of Computability, to appear in R. Schindler, ed.: Ways of Proof Theory (Wolfram Pohler's Festschrift).
- ► G. Plotkin, Gordon, LCF considered as a programming language, *Theoretical Computer Science* **5**(3), 1997.
- H. Schwichtenberg, Recursion on the partial continuous functionals, in C. Dimitracopoulos et al., eds.: Logic Colloquium '05, *Lecture Notes in Logic*, vol. 28, ASL, 2006.
- D. Scott, Domains for denotational semantics, in Nielsen, E. and Schmidt, E. M., eds.: Automata, languages, and programming, Volume 140 of Lecture Notes in Computer Science, Springer, 1982.
- V. Stoltenberg-Hansen, E. Griffor, I. Lindström, *Mathematical Theory of Domains*, Cambridge University Press, 1994.