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Algebras

I We consider finitary algebras ι, given by a finite collection of
constructors

C : ι→ · · · → ι︸ ︷︷ ︸
r

→ ι ,

with arity r ≥ 0. We demand that each ι has a nullary
constructor (to ensure inhabitedness) and a nullary
pseudoconstructor ∗ι : ι for partiality.

I Natural numbers N are given by the constructors ∗N : N for
partiality, 0 : N for zero, and S : N→ N for successor.

I Derivations D are given by ∗D : D for partiality, 0 : D for
axioms, S : D→ D for single premise rules and
B : D→ D→ D for double premise rules.



Coherence

I All algebras induce coherent information systems, where
consistency is binary (write “�”): for a finite collection U of
tokens, it is

∀
a,b∈U

a � b→ U ∈ Con .

I Coherent information systems correspond to coherent
domains, coherent precusl’s, and coherent Scott-Ershov formal
topologies [B. 2013].

I Can we have a binary entailment too?



Atomicity

I The algebra N is simple enough to allow for a binary
entailment: {SS0,S∗} ` SS∗ reduces to SS0 ` SS∗.

I Comparability Lemma. Let ι be an algebra given by at
most unary constructors. For tokens a, b, if a �ι b, then
either {a} `ι b or {b} `ι a.

I So if {a1, . . . , al} `N b, then there is an index j = 1, . . . , l, for
which aj is maximal in the set—indeed, equivalent to it—and
we have {aj} ` b.

I Atomicity in general means

U ` b→ ∃
a∈T

(a ∈ U ∧ {a} ` b) ,

although in the case above we have something stronger:

U ` b→ ∃!
a∈T

(a ∈ U ∧ {a} ∼ U ∧ {a} ` b) .



Non-atomicity

I Information systems where atomicity holds in general have
been studied in [Schwichtenberg 2006] and from another
viewpoint in [Bucciarelli–Carraro–Ehrhard–Salibra 2009]. They
behave quite good (they are closed under exponentiation for a
start), but unfortunately not good enough.

I The case of D is not atomic: in the entailment

{B0∗,B∗0} ` B00 ,

no element on the left is redundant (Coquand, MAP2006).

I So the hope of basing the theory on atomic information
systems alone falters; we need to work with entailments of
arbitrary arities.

I Now how hopeless is this really?. . .



Atomicity at the base of entailment

I The non-atomic entailment

{B0∗,B∗0} ` B00

holds because every argument in the right is atomically
entailed by a corresponding argument in the neighborhood
tokens.

I This suggests the following understanding: it is

B

[
0 ∗
∗ 0

]
` B

[
0
0

]
because, row-wise,[

0 ∗
]
`A 0 and

[
∗ 0

]
`A 0

—we write `A for atomic entailment.



Matrices over atomic systems

I A (coherently consistent) matrix over a given algebra ι is
an array of tokens  a11 · · · a1l

...
. . .

...
ar1 · · · arl

 ,

where every row is consistent.

I Consistency and atomic entailment for matrices are defined in
terms of consistency and atomic entailment of their respective
rows. In this way they form an atomic information system, the
matrix system M(ι) of ι.



General entailment
I The application of an r-ary constructor C to an r × l matrix

is defined by

C

 a11 · · · a1l
...

. . .
...

ar1 · · · arl

 := [Ca11 · · · ar1 · · · Ca1l · · · arl] .

I If [
a11 · · · a1l

]
` a1 ,

...[
ar1 · · · arl

]
` ar ,

then define

C

 a11 · · · a1l
...

. . .
...

ar1 · · · arl

 ` C

 a1
...
ar

 .



Matrix representation of a neighborhood

I The idea of applying a constructor to a matrix naturally
extends to applying a whole constructor context to a matrix.
Then we can make sense of the following:

[
BSB0∗∗ BSB∗∗0 BSB∗0∗

]
∼ B(•, •)

[
SB0∗ SB∗∗ SB∗0
∗ 0 ∗

]
∼ B(S(•), •)

[
B0∗ B∗∗ B∗0
∗ 0 ∗

]

∼ B(S(B(•, •)), •)

 0 ∗ ∗
∗ ∗ 0
∗ 0 ∗

 .

I Matrix representation. For every matrix A over ι there exist
a unique constructor context K (in an appropriate normal
form) and a unique nullary matrix M , so that A ∼ K(M).



Characterizations of entailment

I The matrix representation reduces the question of entailment
between neighborhoods to the question of equality between
normal contexts and atomic entailment between nullary
matrices (needs some work to see):

“`ι” is characterized by “=Knf (ι)” and “`AM0(ι)”

I Moreover, every nullary matrix is equivalent to a nullary
vector:  0 ∗ ∗

∗ ∗ 0
∗ 0 ∗

 ∼
 0

0
0

 ,

I Eigentokens. Every neighborhood U in ι is equivalent to a
token e(U), its eigentoken (only for finitary algebras!). In
this way we obtain a characterization of entailment between
neighborhoods by a (trivially atomic) entailment between
tokens.



Higher-type entailment
I Let U1, . . . , Ul, U ∈ Conρ, b1, . . . , bl, b ∈ Tσ, and define

(list-list application)

{〈U1, b1〉, . . . , 〈Ul, bl〉}U := {bi | U `ρ Ui, i = 1, . . . , l} ;

if WU `σ b, then define W `ρ→σ 〈U, b〉.
I Atomicity in higher types, in case we had it, would have

entailment unfold as follows:

{〈U1, b1〉, . . . , 〈Ul, bl〉} `A 〈U, b〉

⇒
l

∃
j=1
{〈Uj , bj〉} ` 〈U, b〉

⇒
l

∃
j=1
{〈Uj , bj〉}U ` b

⇒
l

∃
j=1

(U ` Uj ∧ {bj} ` b) .

I Based on non-atomic algebras, the higher function spaces are
a fortiori non-atomic.



Two remarks

I Two higher-type tokens 〈U1, b1〉 and 〈U2, b2〉 may be
consistent either, so to speak, trivially, when U1 6� U2, or
essentially, when U1 � U2 and b1 � b2.

I Let W = {〈Uj , bj〉 | j = 1, . . . , l} ∈ Conρ→σ, and U ∈ Conρ.
If for some j and k it happens that Uj ` Uk and U ` Uj ,
then, by transitivity of entailment, it is U ` Uk as well, and so
bj , bk ∈WU both.

I These suggest considering sub-neighborhoods with left
consistency and left closure.



Eigen-neighborhoods

I Write argW for the list of left-hand sides of the pairs in W ,
and valW for the corresponding list of the right-hand sides.

I An eigen-neighborhood of W is a sublist E ⊆W which is
left-consistent, that is,

∀
U,U ′∈argE

U � U ′

(therefore, also right consistent) as well as closed under
entailment with respect to W , that is,

∀
U∈argW

(argE ` U → U ∈ argE) .

Write E(W ) for the collection of eigen-neighborhoods of W .



Characterization of higher-type entailment
I Eigen-neighborhoods. Let W ∈ Conρ→σ. It is
W ∼ {E | E ∈ E(W )}. Moreover, if 〈U, b〉 ∈ Tρ→σ, then

W ` 〈U, b〉 → ∃
E∈E(W )

(U ` argE ∧ valE ` b) .

I Eigenform. Any neighborhood W is equivalent to the
neighborhood

{〈arg E, valE〉 | E ∈ E(W )} ,

where we write 〈U, V 〉 for {〈U, b〉 | b ∈ V }.
I A suggestive application of the eigenform is that it gives a

clear-cut way to get conservative extensions of a
neighborhood: Let W ∈ Conρ→σ, and E1, . . . , Em ∈ E(W ).
For any choice of U1, . . . , Um ∈ Conρ and V1, . . . , Vm ∈ Conσ
with the property that Ui `ρ argEi and valEi `σ Vi, for
i = 1, . . . ,m, it is

W ∼ρ→σ W ∪ {〈Ui, Vi〉 | i = 1, . . . ,m} .



Morals

I Atomicity is not enough to model arithmetic for partial
computable functionals as we would wish, but clearly plays a
fundamental role in the general theory that demands
attention.

I At base types, that is, at systems induced by algebras,
atomicity manifests itself through matrices over atomic
systems and leads to the development of a theory with
ramifying technicalities at times, but for the same reason very
illuminating.

I At higher types atomicity appears in a generalized form, on an
intermediate level between tokens and neighborhoods, namely
on the level of eigen-neighborhoods, which play a crucial
role in the operation of application.

I In both cases, atomicity is the key to pinpointing interesting
notions of normal forms.



Outlook

I At base types, the next step is to hone the matrix theory by
utilizing it to help implement the endless first steps of TCF+
(see [Huber–B.–Schwichtenberg 2010]). The canonical proof
assistant to this end would be minlog
(http://www.math.lmu.de/~minlog/).

I At higher types, the first goal is to make systematic use of
eigen-neighborhoods in revisiting old favorites like definability
[Plotkin 1997] and density [Berger 1993]. The hope is to
provide bottom-up proofs, native to the setting of coherent
information systems, and compare them to the well-known
top-down adaptations of similar or more general arguments.

I A mini side-goal already in the agenda is also to study
eigen-neighborhoods formal-topologically. Knowing that in a
formal topological setting tokens are unobservable,
eigen-neighborhoods, being neighborhoods first of all, might
give a way to see atomicity of information in structures with
no tokens of information.

http://www.math.lmu.de/~minlog/
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