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1 Introduction
• Dana Scott and Juri Ershov [late 60’s–70’s]: Scott–Ershov domains with Scott-

continuous functions provide an appropriate framework for higher-type com-
putability and semantics of programming languages.

• Gordon Plotkin [Plotkin 1977]: There are inherently nonsequential functionals
in Scott’s model:

pcondpq,x,yq “

$

’

&

’

%

x if q“ tt,

y if q“ ff,

xX y if q“K.

• Gerard Berry [Berry1978]: If a functional is sequential, it has to be stable (that
is, preserve consistent infima).

• Guo-Qiang Zhang [Zhang 1989–1992]: In order to represent stable domains by
information systems, we have to require linearity (here, “atomicity”): if a formal
neighborhood entails a token, it must do so with a single witness.

• Stability and atomicity are quite relevant to classical [Girard et al. 1989] and
intuitionistic linear logic [Bucciarelli et al. 2009-10].

• Helmut Schwichtenberg and the Munich group [Schwichtenberg, Huber, B.,
Ranzi 2006–] working with nonflat base types, have shown among other things
density, preservation of values, adequacy, and definability, sometimes within
atomic systems alone, sometimes without.

• Why nonflat? (a) Trivially good reasons: injectivity of constructors and nonover-
lapping of their ranges. (b) Deeper good reasons: more degrees of freedom in
the model allow for stronger results.

• Why not nonflat? (a) Trivially good reasons: combinatorial chaos. (b) Deeper
good reasons: flat base types are atomic but nonflat aren’t. But: function spaces
preserve atomicity!
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2 Domain representations and types
• Information system A“ pTok,Con,$q

 

a
(

P Con,
U ĎV ^V P ConÑU P Con,
U P Con^a PU ÑU $ a,

U $V ^V $ cÑU $ c,

U P Con^U $ bÑUY
 

b
(

P Con.

• Coherent information system

@
a,a1PU

 

a,a1
(

P ConÑU P Con. (1)

Write a— b for
 

a,b
(

P Con, and even U —V for UYV P Con.

• Function space AÑ B

xU,by P Tok :“U P ConA^b P TokB,

xU,by —
@

U 1,b1
D

:“U —A U 1Ñ b—B b1,

W $ xU,by :“WU $B b,

where
b PWU :“ D

U 1PConA

`@

U 1,b
D

PW ^U $A U 1
˘

.

Fact 1. The function space of two coherent information systems is itself a coher-
ent information system.

• Atomic information system

U $ bÑ D
aPU

 

a
(

$ b; (2)

Fact 2. The function space of two atomic information systems is itself an atomic
information system.

• Ideal x P Ide
@

UĎ f x
pU P Con^ @

bPTok
pU $ bÑ b P xqq.

Coherent domains (with countable bases) are algebraic bounded complete cpo’s,
where every set of compacts has a least upper bound exactly when each of its
pairs has a least upper bound.

Fact 3. Let pTok,Con,$q be a coherent information system. Then pIde,Ď,Hq
is a coherent domain with compacts given by

 

U |U P Con
(

. Conversely, every
coherent domain can be represented by a coherent information system.

• Approximable mapping r Ď ConAˆConB

xH,Hy P r,

xU,V1y ,xU,V2y P rÑ xU,V1YV2y P r,

U $ρ U 1^
@

U 1,V 1
D

P r^V 1 $σ V Ñ xU,V y P r.
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Fact 4. There is a bijective correspondence between the approximable map-
pings from ρ to σ and the ideals of the function space ρ Ñ σ ; domains (with
Scott continuous functions) and information systems (with approximable map-
pings) are categorically equivalent [Scott 1982]. Moreover, the equivalence is
preserved if we restrict ourselves to the coherent case [B 2013].

• Base types ι

B“
 

tt,ff
(

,

N“
 

0,S0,SS0, . . .
(

,

D“
 

0,1,S0, . . . ,B01, . . . ,BS0B01, . . .
(

,

and higher types ρ Ñ σ .

• Partiality at base types ι is not a distinguished token but a distinguished nullary
constructor ˚ι : the base types are already nonflat:

B“
 

˚,tt,ff
(

,

N“
 

˚,0,S˚,S0,SS˚,SS0, . . .
(

,

D“
 

˚,0,1,S˚,S0, . . . ,B˚1, . . . ,BS˚B01, . . .
(

.

• The information system induced by D:

˚,0,1 P Tok,
a P TokÑ Sa P Tok,
a,b P TokÑ Bab P Tok,

a— ˚^˚ — a,

a— a1Ñ Sa— Sa1,

a— a1^b— b1Ñ Bab— Ba1b1,

U $ ˚,

U $ aÑ SU $ Sa, for U ‰H,

U $ a^V $ bÑ BUV $ Bab, for U,V ‰H,

U $ bÑUY
 

˚
(

$ b,

where BUV :“
 

Bab | a PU,b PV
(

.

Fact 5. Let ι be an algebra given by constructors. The triple pTokι ,Conι ,$ιq is
a coherent information system.

• Our technical motivation draws from the following.

Inconvenience 6. The systems B and N are atomic but D is not:
 

B0˚,B˚1
(

$

B01 but
 

B0˚
(

& B01 and
 

B˚1
(

& B01.

Inconvenience 7. At base types antisymmetry holds for tokens, but neither for
neighborhoods (e.g.,

 

B0˚,B˚1
(

„
 

B01
(

and
 

S0,S˚
(

„
 

S0
(

) nor, conse-
quently, at higher types.
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3 Neighborhood mappings
• Let ρ , σ be types. A mapping f : Conρ Ñ Conσ is compatible, monotone, and

consistent if

U1 „ρ U2 Ñ f pU1q „σ f pU2q,

U1 $ρ U2 Ñ f pU1q $σ f pU2q,

U1 —ρ U2 Ñ f pU1q —σ f pU2q,

respectively.

Lemma 8. Let f : Conρ Ñ Conσ be a neighborhood mapping.

1. It is monotone if and only if it is compatible with equientailment and f pU1Y

U2q $σ f pU1qY f pU2q for every U1,U2 P Conρ with U1 —ρ U2.

2. If it is monotone, then it is also consistent.

• The idealization f̂ of a neighborhood mapping f : Conρ Ñ Conσ is the token set

f̂ :“
 

xU,by P TokρÑσ | D
U1,...,UmPConρ

´

U $ρ

m
ď

j“1

U j^

m
ď

j“1

f pU jq $σ b
¯

(

.

Proposition 9. Let ρ , σ be types, and f be a neighborhood mapping at type
ρ Ñ σ . Then f̂ is an ideal if and only if f is consistent.

• Not all ideals are induced by neighborhood mappings: e.g., at type NÑ N take
 

x0,Sn˚y | n“ 0,1, . . .
(

. Neighborhood mappings are those approximable maps
r for which rpUq is covered by a finite collection V1, . . . ,Vm P Conσ for every
U P Conρ .

4 Normal forms at base types
• Let ρ be a type. A neighborhood-mapping f : Conρ Ñ Conρ is a normal form

mapping (at type ρ) if it preserves information and identifies equivalent neigh-
borhoods, that is,

f pUq „ρ U,

U1 „ρ U2 Ñ f pU1q “ f pU2q.

Every normal form mapping is monotone (so by Lemma 8 also compatible and
consistent).

• Deductive closure. Define

U :“
 

b P Tok |U $ b
(

.

The mapping U ÞÑU is a normal form mapping at base types.
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• Supremum. For a,b P TokD, define suppa,bq by

suppa,˚q “ supp˚,aq “ a,

suppSa,Sa1q “ Ssuppa,a1q,
suppBab,Ba1b1q “ Bsuppa,a1qsuppb,b1q.

For a neighborhood U P ConD define suppUq P Tok by

suppHq :“ ˚,

supp
 

a1, . . . ,am
(

q :“ supp¨ ¨ ¨suppa1,a2q ¨ ¨ ¨ ,amq.

The neighborhood mapping U ÞÑ
 

suppUq
(

is a normal form mapping at base
types.

• Path reduced neighborhood. Define the paths in D, Tokp
D, by

˚,0,1 P Tokp
D,

a P Tokp
DÑ Sa P Tokp

D,

a,b P Tokp
DÑ Ba˚,B˚b P Tokp

D.

Lemma 10. Let ι be a base type.

1. Comparability: If a P Tokp
ι and b1,b2 P Tokι , then

a$ι b1^a$ι b2 Ñ b1 $ι b2_b2 $ι b1.

2. Downward closure: If a P Tokp
ι and b P Tokι , then

a$ι bÑ b P Tokp
ι .

3. Atomicity: If U P ConιzH, and b P Tokp
ι , then

U $ι bÑ D
aPU

 

a
(

$ι b.

A path reduced neighborhood is an inhabited neighborhood whose every token
is maximal and a path.

Proposition 11 (Path normal form). There exists a normal form mapping nfp :
Conι Ñ Conι , such that nfppUq is path reduced for every U P Conι .

5 Normal forms at higher types
• Some notation. Let W “

 

xU1,b1y , . . . ,xUm,bmy
(

P ConρÑσ . Let

LpW q :“
m
ď

i“1

Ui “
 

a PUi | i“ 1, . . . ,m
(

,

RpW q :“
 

bi | i“ 1, . . . ,m
(

.

These finite sets are not necessarily consistent! Also, write

xU,V y :“
 

xU,by | b PV
(

.
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• An eigen-neighborhood of W is a neighborhood H “ xU,V y, where U PConLpWq
(a subset of LpW q which is consistent) and furthermore

U “UXLpW q^V “WUXRpW q.

Write H P EigW . The eigenform of W is given by the neighborhood mapping

eigpW q :“
ď

UPConLpWq

@

UXLpW q,WUXRpW q
D

,

that is, it is the union
Ť

EigW of its eigen-neighborhoods.

Proposition 12 (Eigenform). Let ρ and σ be types, and W,W1,W2 P ConρÑσ .

1. The eigenform mapping is information preserving, that is, W „ρÑσ

eigpW q, and idempotent, that is eigpeigpW qq “ eigpW q.
2. It is

W1 $ρÑσ W2 Ø @
H2PEigW2

D
H1PEigW1

H1 $ρÑσ H2,

W1 —ρÑσ W2 Ø @
H1PEigW1

@
H2PEigW2

H1 —ρÑσ H2.

(At base types we let eigpUq :“U by convention.)

• The mapping eig is not a normal form mapping!

• Write Eig 0
W for the inhabited eigen-neighborhoods of W . Call W P ConρÑσ

eigen-maximal if W “ eigpW q, and each H P EigW is either empty or maximal,
that is, if H P Eig 0

W , then for all H 1 P EigW with H 1 $ρÑσ H, it is H 1 „ρÑσ H.

An eigen-maximal neighborhood is “flat”, in the sense that the inclusion diagram
of its eigen-neighborhoods forms a flat tree.

Lemma 13. Let ρ , σ be types. There exists a neighborhood mapping emax such
that for every W P ConρÑσ the neighborhood emaxpW q is eigen-maximal and
W „ρÑσ emaxpW q.

• The mapping emax is (again) not a normal form mapping!

• Write Finρ for all (not necessarily consistent) finite token sets at type ρ . If
f : Conρ Ñ Conρ and g : Conσ Ñ Conσ , define their eigenproduct x f ,gy :
ConρÑσ Ñ FinρÑσ by

x f ,gypW q :“
ď

HPEig0
W

x f pLpHqq,gpRpHqqy .

Proposition 14. Let f and g be normal form mappings at types ρ and σ respec-
tively. Then their eigenproduct is a normal form mapping at type ρ Ñ σ , when
restricted to eigen-maximal neighborhoods.

• As a corollary we obtain the following.

Theorem 15 (Inductive normal forms). Let f and g be normal form mappings
at types ρ and σ respectively. Then the mapping x f ,gy ˝ emax is a normal form
mapping at type ρ Ñ σ .
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6 Linearity
• There are two ways to work atomically in our setting, the implicit and the explicit

way. Both are facilitated by the use of normal forms.

• Implicit atomicity. Call a type implicitly atomic when every neighborhood has
an equivalent one which is atomic.

All base types are implicitly atomic, since there are normal forms for every
neighborhood which are atomic, like the closure and the supremum.

Theorem 16. Let ρ be an arbitrary type. There exists a neighborhood mapping
atρ : Conρ Ñ Conρ , such that atρpUq is atomic and equivalent to U for all U P

Conρ .

Witness. atρÑσ pW q :“ xid,atσ ypW q.

• Explicit atomicity. Fact 2 bluntly suggests the following strategy: render your
base type information systems in an atomic manner and you’re done. The prob-
lem is that in restricting ourselves to atomic base types, we want to obtain essen-
tially the same ideals.

• Write ρ – σ if the ideals of ρ and the ideals of σ are in a bijective correspon-
dence.

Theorem 17. Let ι be a finitary base type. There exists an atomic-coherent
information system η , such that η – ι .

Proofsketch. Given a finitary base type ι , define the path subsystem of ι , ι p, by
letting

Tokι p :“ Tokp
ι ,

Conι p :“ Conι XP f pTokι pq,

$ι p :“$ι XpConι p ˆTokι pq.

The triple ι p is a coherent information system and it is ι p – ι .

To see that it is atomic, let U P Conι p and b P Tokι p be such that U $ι p b. Since
b is a path, by Proposition 10.3 there is an a PU with

 

a
(

$ι b. But a is itself a
path, so

 

a
(

$ι p b.
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• Further applications of neighborhood mappings: study of Fin, finite density, de-

finability etc.

• What is “atomicity” in formal topological parlance? What are “eigen-
neighborhoods”?

• What are the consequences of working on the basis of Theorem 17? For example,
do we obtain naturally a model for linear logic?
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