Exercise 1. Let A, B be two objects of a category C. Consider the functors

 $h_A = \operatorname{Hom}_{\mathcal{C}}(-, A) \colon \mathcal{C} \to \operatorname{\mathbf{Sets}}, \quad h_B = \operatorname{Hom}_{\mathcal{C}}(-, B) \colon \mathcal{C} \to \operatorname{\mathbf{Sets}}.$

Prove that h_A and h_B are naturally isomorphic if and only if A and B are isomorphic in \mathcal{C} .

Conclude that, if a functor F is corepresentable, then it is represented by a unique object of C up to isomorphisms.

Exercise 2. Let R be a ring and let C_R be the category with a single object * and with $\operatorname{Hom}_{\mathcal{C}}(*, *) = R$.

Prove that the category $\mathcal{H}(\mathcal{C}_R, \mathcal{A}b)$ of the additive contravariant functors $F: \mathcal{C}_R \to \mathcal{A}b$ is isomorphic to the category of right *R*-modules.

Exercise 3. Let \mathcal{C} be a category with a zero object $0_{\mathcal{C}}$. Prove that, for every pair of objects A, B of \mathcal{C} , there is a unique zero morphism $A \to B$.

Exercise 4. Prove that an equalizer (a coequalizer) is a monomorphism (epimorphism). In particular a kernel is a monomorphism and a cokernel is an epimorphism.

Exercise 5. Let (P, \leq) be a partial ordered set and let \mathcal{P} be the category with objects the elements of P and with Hom-sets for every pair p, q of objects of P, defined by $\operatorname{Hom}(p, q) = \emptyset$ if $p \nleq q$ and a unique morphism if $p \leq q$.

Prove the product of two objects $p, q \in P$ is their greatest lower bound $p \wedge q$ (if it exists), and their coproduct is the least upper bound $p \vee q$ (if it exists).

Exercise 6. Let $A \xrightarrow{f} B$ be a morphism in a category C.

Prove that $B \xrightarrow{h} C$ is a cokernel of f if and only if C corepresents the functor

$$\operatorname{Ker} f^* \colon \operatorname{Hom}_{\mathcal{C}}(B,-) \xrightarrow{\operatorname{Hom}(f,-)} \operatorname{Hom}_{\mathcal{C}}(A,-).$$

Exercise 7. Let A, B be two objects of a category C.

Prove that a coproduct $A \coprod B$ exists in C if and only if it corepresents the functor

 $\operatorname{Hom}_{\mathcal{C}}(A, -) \times \operatorname{Hom}_{\mathcal{C}}(B, -).$