Exercise 1. For each abelian group G the torsion subgroup t(G) of G consists of the elements $x \in G$ for which there is $0 \neq n \in \mathbb{N}$ with nx = 0. G is said to be a torsion group if G = t(G).

- (1) Show that every abelian group homomorphism $G \to H$ induces a homomorphism $t(G) \to t(H)$.
- (2) Let Ab denote the category of abelian groups. Prove that $t: Ab \to Ab$ defines a functor.
- (3) Prove that the monomorphism $\eta_G: t(G) \to G$, for every G defines a natural transformation $\eta: t \to 1_{Ab}$.
- (4) Show that t is a left exact functor

Exercise 2. Recall that an abelian group G is divisible if, for every $x \in G$ and every $0 \neq a \in \mathbb{Z}$ there is $y \in G$ such that x = ay.

Let \mathcal{D} be the full subcategory of $\mathcal{A}b$ consisting of the divisible abelian groups.

Prove that \mathcal{D} is additive, every morphism in \mathcal{D} has kernel and cokernel, but \mathcal{D} is not abelian.

(Hint: if f is a morphism in \mathcal{D} , then Kerf is the maximal divisible subgroup of the kernel of f in $\mathcal{A}b$.

The morphism $\mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ is a monomorphism and an epimorphism in \mathcal{D} , but it is not an isomorphism.)

Exercise 3. Let \mathcal{C}, \mathcal{D} be abelian categories and let $F \colon \mathcal{C} \to \mathcal{D}$ be a left and right exact functor (i.e. F preserves short exact sequences.)

Prove that, if $A \xrightarrow{f} B \xrightarrow{g} C$ is an exact sequence, then ImF(f) = F(Imf).

Exercise 4. In an abelian category C consider the following commutative diagram of short exact sequences:

Prove that if α and γ are monomorphisms (epimorphisms), then β is a monomorphism (epimorphism).

Exercise 5. Let

be a pull-back diagram. We have shown in the lectures that if f_1 is an epimorphism, then so is p_2 . Prove that:

(1) if f_1 is a monomorphism, then so is p_2 .

(2) if f_1 is a kernel of g, then p_2 is a kernel of $g \circ f_2$.

Exercise 6. Let

$$\begin{array}{ccc} C & \xrightarrow{f_1} & C_1 \\ f_2 & & \downarrow^{\nu_1} \\ C_2 & \xrightarrow{\nu_2} & P \end{array}$$

be a push-out diagram. Prove that:

- (1) if f_1 is a monomorphism, then so is ν_2 .
- (2) if f_1 is an epimorphism, then so is ν_2 .
- (3) if f_1 is a cokernel of g, then ν_2 is a cokernel of $g \circ f_2$.

Exercise 7. Let

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
$$\begin{array}{c} \alpha \downarrow & \beta \downarrow & \|_{1_C} \\ 0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C \longrightarrow 0 \end{array}$$

be a commutative diagram with exact rows in an abelian category \mathcal{C} .

- (1) Show that the left square is a pull-back.
- (2) (difficult: we will prove it in some lecture) Show that the left square is a push out diagram.